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Abstract: The Lueyang and Xunyang counties in the Shaanxi province (China) are highly susceptible
to rainfall-induced landslides. Rainfall thresholds are the most used tool to predict the occurrence of
rainfall-induced landslides over large areas. However, the definition of robust thresholds may be
difficult for unbalanced datasets, for which the number of non-landslide observations is much higher
than the number of landslide observations. This study aims at defining adequate rainfall thresholds
for the two study areas using landslide datasets that are strongly unbalanced in terms of occurrences
vs. non-occurrences. Two types of rainfall thresholds are determined using a frequentist method at
several non-exceedance and exceedance probabilities, separately considering rainfall events responsi-
ble for landslides (positive thresholds) and rainfall events not responsible for landslides (negative
thresholds). The comparison between the two sets of thresholds shows that the method based on
non-triggering events allows defining rainfall thresholds characterized by lower uncertainties and a
better performance than the ones defined considering the triggering events, in both the study areas.
In particular, the best-performing thresholds are the negative threshold defined at 15% exceedance
probability for the Lueyang county and the negative threshold defined at 20% exceedance probability
for the Xunyang county.

Keywords: rainfall-induced landslide; early warning system; non-triggering rainfall event;
performance; China

1. Introduction

Rainfall-induced landslides are a common hazard that cause casualties and eco-
nomic losses worldwide. According to the National Geohazards Bulletin of China, from
2014 to 2018, an average of 5148 landslides occurred each year, most of which were
triggered by rainfall. Landslide early warning systems (LEWSs) are being increasingly
implemented in landslide-prone areas to mitigate landslide risk as non-structural and
cost-effective measures at two scales of operation [1–4]. For LEWSs operational over
large areas at regional scale, rainfall thresholds are commonly employed to characterize
the functional relationship between rainfall and the triggering of landslides within the
warning model [2,3,5,6].

Rainfall thresholds represent rainfall conditions that, when reached or exceeded,
are likely to trigger landslides [7–9]. Empirical (statistical or historical) and physically
based methods can be used to define rainfall thresholds [9–11]. Physically based methods
simulate the slope stability during rainfall infiltration to define thresholds. Empirical
methods analyze the rainfall events that triggered landslides to define thresholds. Since
only rainfall records and historic landslide events are required, empirical methods are
widely used for analysis over large areas. On the contrary, physically based methods are
usually used in small catchments or slopes because the simulation needs detailed soil
parameters, which are difficult to obtain at regional scale [12,13].

The quality and quantity of rainfall and landslide data strongly affect the reliability
of the empirical rainfall thresholds. For instance, when adequate rainfall records are

Water 2023, 15, 1058. https://doi.org/10.3390/w15061058 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15061058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-0077-2196
https://orcid.org/0000-0003-2264-9698
https://orcid.org/0000-0002-3899-1722
https://doi.org/10.3390/w15061058
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15061058?type=check_update&version=1


Water 2023, 15, 1058 2 of 15

collected for a relatively long period, e.g., a few decades, during which no landslides have
been recorded because a landslide catalogue does not exist for the area of interest, it is
difficult to use that dataset because the absence of data on landslides does not necessarily
mean that none of the preceding recorded rainfall events triggered landslides [14–18].
In China, the systematic rainfall monitoring started just a few decades ago and often
information on landslide occurrences is not available [19], thus landslide datasets for some
landslide-prone areas located in mountain areas are characterized by scarce records or
records concentrating on a few dates [20,21]. In these cases, the landslide dataset provides
quite limited information on triggering events. Therefore, one has to deal with unbalanced
landslide datasets and the definition of reliable rainfall thresholds is not straightforward.

Peres and Cancelliere [22] categorized the rainfall event datasets used to define em-
pirical thresholds in three types: (i) only triggering events, (ii) only non-triggering events,
and (iii) both triggering and non-triggering events. Most thresholds are defined based on
only triggering events by applying the frequentist method [11,23,24]. Brunetti et al. [23]
pointed out that the results can be improved when the frequentist method is applied to a
large and uniform dataset covering the range of analyzed rainfall events. Some thresholds
are defined based on both triggering and non-triggering events. In this case, Bayesian
approaches [25] or methods based on a contingency matrix can be applied, considering
the balance of true and false predictions to define thresholds [26–29]. Peres and Cancel-
liere [22] stressed that these methods require an adequate number of triggering events to
define robust thresholds. Methods for threshold identification based on only non-triggering
rainfall may have the practical advantage that can in principle be used where limited
information on landslide occurrence is available (newly instrumented areas). Peres and
Cancelliere [22] compared different sets of thresholds using a synthetic rainfall-landslide
dataset and proved that thresholds based on only non-triggering events can have good
robustness, low sampling variation, and even better performance than thresholds defined
on only triggering events [22]. However, methods based on non-triggering events have
been never applied to real unbalanced datasets.

In this study, two counties of southern Shaanxi province with unbalanced landslide
datasets are considered as study areas. According to the collected rainfall and landslide
records, rainfall events are divided into triggering and non-triggering events using an
automatic detection and classification tool. Successively, rainfall thresholds are defined
based on the reconstructed rainfall events. Finally, contingencies, related skill scores, and re-
ceiver operating characteristic (ROC) curves are employed to assess the performance of the
different sets of thresholds in order to determine the best-performing ones [30]. This study
may be considered a first attempt to define robust rainfall thresholds in areas where limited
information on landslide occurrence is available. Indeed, thresholds determination may
start from identifying thresholds from non-triggering events only, subsequently moving
to methods considering also the triggering events, when sufficient landslide information
become available.

2. Materials and Methods
2.1. Study Area

Shaanxi province, located in northwest China, is susceptible to rainfall-induced land-
slides and debris flows [31] (Figure 1a). Luyang (LY) and Xunyang (XY) counties are located
in the southwest and southeast parts of Shaanxi province, respectively (Figure 1b).
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Figure 1. (a) Location of Shaanxi province; (b) location of Lueyang (LY) and Xunyang (XY) counties;
(c,d) distribution of weather station, rain gauges, and landslides in LY and XY counties, respectively
(image sources: SRTM V3 data).

Topographically, LY and XY belong to Qinba mountain area, which is a collisional
orogenic belt, fault developed, and landslide hotspot zone [32–35]. The topography of LY
and XY is characterized by high mountains and steep valleys. For climate conditions, from
north to south of LY, the climate changes from a warm temperate climate to a subtropical
climate. The climate of XY is subtropical. According to the records of weather stations
available from 1981 to 2021 (http://data.cma.cn/ (accessed on 20 October, 2022)), the
average annual precipitation of LY and XY is 826 mm and 758 mm, respectively. Rainfall
is concentrated from July to September and features intense or continuous precipitation
events. Rainfall-induced landslides and debris flows are widespread in the two counties.

2.2. Datasets

The information on rainfall-induced landslides was collected from the Geo-Environmental
Monitoring Center of Shaanxi province. Available information includes occurrence time, ge-
ographical coordinates, volume, and consequences. For LY, the landslide dataset comprises

http://data.cma.cn/
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176 rainfall-induced landslides, which occurred in the 5-year period from January 2018 to
October 2022. For XY, 29 rainfall-induced landslides from January 2017 to December 2021
(5-year period) were considered. For both datasets, information on the hour of occurrence
of the landslides is available. Hourly rainfall records are also available for 20 rain gauges
in LY from January 2018 to October 2022 and 28 rain gauges in XY from January 2017 to
December 2021 (Figure 1c,d). It should be noted that additional landslides, not recorded in
the available dataset, may have occurred during the analyzed periods.

Figure 2a,b show the comparison of monthly rainfall recorded by the weather stations
and the collected landslide occurrences in the two counties. As expected, these landslides
mainly occurred in the rainy season (Figure 2c,d). For LY, nearly 93% of landslides concen-
trated on two dates (11 July and 14 of 2018) triggered by a rare heavy rainstorm [36,37]. For
XY, nearly 61% of landslides concentrated on a few dates. Thus, the landslide datasets of
these two counties are strongly unbalanced, especially for LY.
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Figure 2. (a,b) Comparison between monthly rainfall and number of landslides for LY and XY
counties, respectively; (c,d) Date distribution of landslides for LY and XY counties. The total number
of landslides occurred in July of 2018 in LY is 164: 1 on 10th, 75 on 11th, 88 on 14th.
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2.3. Methods

In this study, the methodology can be schematized into two successive phases: recon-
struction of rainfall events and definition of rainfall thresholds (Figure 3).
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Figure 3. Flowchart of the procedure adopted in this study.

2.3.1. Reconstruction of Rainfall Events

The rainfall measurements were divided in two separate datasets, for calibration and
validation purposes. The rainfall measurements from January 2018 to December 2021
in LY, and the measurements from January 2017 to December 2020 in XY were taken to
define the calibration set. The rainfall measurements from January to October of 2022 in LY,
and the measurements from January to December of 2021 in XY were used to define the
validation set.

The tool CRTL–T (Calculation of Thresholds for Rainfall-induced Landslides–Tool)
developed by Melillo et al. [38,39] was employed to reconstruct the rainfall events adopting
the following steps: (a) labelling gaps and noise of the input rainfall records by means of
sensitivity parameter (GS); (b) excluding the isolated rainfall measurements, specifying
a time period (P1) and minimum cumulated rainfall value (ER); (c) identifying rainfall
sub-events adopting another time period parameter (P2); (d) excluding the sub-events
irrelevant to landslides, specifying a minimum cumulated event rainfall for isolated events
(P3); (e) identifying rainfall events, by means of a third period parameter (P4); (f) for each
failure, selecting rain gauges within a circular area of a set radius (Rb), centered on the
landslide location; (g) selecting the rainfall events associated with landslides to reconstruct
multiple rainfall conditions (MRCs) for landslides, which can be a single rainfall sub-event
or a set of two or more sub-events, and to define the associated cumulated rainfalls (EL) and
durations (DL); (h) assigning a weight w to each subset of MRCs according to the following
formula w = d−2EL

2DL
−2, where d is the distance between the landslide and the rain gauge;

(i) selecting the representative rain gauge and reconstructing the maximum probability
rainfall conditions (MPRCs), which is the subset of MRCs with the highest weight w. In this
way, rainfall events (REs), MRCs, and MPRCs were reconstructed. Non-triggering events
(NTEs) were reconstructed by excluding the rainfall events associated with landslides from
the set of identified REs. Figure 4 shows, as an example, a graphical depiction of how
the rainfall measures are indeed used to reconstruct REs, NTEs, MRCs, and MPRCs. The
values of the input parameters adopted for this study are shown in Table 1. P1, P2, and P4
are different for “warm” (Cw) and “cold” (Cc) periods. The start and the end of Cw and Cc,
and the time interval ratio between Cw and Cc, were determined by adopting a monthly
soil water balance (MSWB) model [40].
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Figure 4. Example of the reconstruction of REs, NTEs, MRCs, and MPRCs. (a) Hourly rainfall
measurements of Heihaba rain gauge from 6th to 16th July 2018; bars with different colors are the
identified rainfall sub-events. (b) Selection of the rainfall event associated with landslides (RE 2),
(c) reconstruction of MRCs and MPRC for the first landslide; red bars are the computed event rainfall
of MRCs, and (d) reconstruction of MRCs and MPRC for the second landslide.

Table 1. Input parameters of CRTL-T adopted in this study.

Parameter Name
Parameter Value

Unit
Warm Periods (CW) Cold Periods (CC)

Gs 0.1 0.1 mm
ER 0.2 0.2 mm
Rb 15 15 km
P1 3 6 h
P2 6 12 h
P3 1 1 mm
P4 48 96 h
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2.3.2. Definition of Rainfall Thresholds

In this study, the power-law function of cumulated rainfall (E, in mm) and rainfall
duration (D, in h) was employed to calculate the rainfall thresholds:

E = (α+ ∆α)Dγ+∆γ (1)

where α is the scaling parameter, γ is the shape parameter, and ∆α and ∆γ are the uncer-
tainties (standard deviation) of α and γ.

The calibration sets were used to define the thresholds. Positive thresholds were
defined based on reconstructed MPRCs and MRCs, respectively. Identified non-triggering
events were used to define negative thresholds. Both positive and negative rainfall thresh-
olds were determined using a frequentist method [23]. Specifically, different positive
thresholds were defined starting from a best-fit line of the triggering events, to determine
the shape parameter γ, and then changing the scaling parameter α for different values of
non-exceedance probabilities (i.e., seeking lower bounds of the dataset). Similarly, negative
thresholds were also defined starting from a best-fit line of non-triggering events and then
determining the scaling parameter for different exceedance probabilities (i.e., seeking upper
bounds of the dataset). The uncertainties were determined by a statistical technique named
“bootstrap” [24].

A validation set, computed contingency matrices, four skill scores, and the ROC
curve [41] were used to validate the defined thresholds and to assess their performance.
The rainfall events from January to October 2022, in the LY study area, and the rain-
fall events from January to December of 2021 in the XY study area, were considered as
no-landslide occurrences. Due to the limitations of the landslide dataset, no available infor-
mation can be used to reconstruct an independent landslide occurrence set for validation.
Thus, the reconstructed MPRCs were taken as landslide occurrences for the validation set.
The adopted contingency matrix is illustrated in Table 2. When a threshold is defined,
comparing the actual and predicted events produces four outcomes: true positives (TP),
false negatives (FN), true negatives (TN), and false positives (FP).

Table 2. Contingency matrix defined for comparing the actual and predicted events based on a
defined threshold E = f(D).

Actual Events
Landslides No Landslides

Predicted events
Landslides: E ≥ f(D) TP FP

No landslides: E < f(D) FN TN

The following four skill scores, derived from the elements of the contingency matrix,
were employed in this study:

• Efficiency index (Equation (2));

EI =
TP + TN

TN + TP + FN + FP
(2)

• True positive rate (also referred to as hit rate, probability of detection rate, and sensi-
tivity (Equation (3)));

TPR =
TP

TP + FN
(3)

• False positive rate (also referred to as probability of false detection (Equation (4)));

FPR =
FP

FP + TN
(4)

• Positive predictive value (also referred to as precision (Equation (5)));
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PPV =
TP

TP + FP
(5)

ROC curves were computed and plotted, in a diagram TPR vs. FPR, for each defined
threshold. The point with FPR = 0 and TPR = 1 represents the perfect prediction capacity.
For each threshold, the distance δ between the point representing the threshold and the
perfect point was calculated. The lower the value of δ, the better is the performance of the
threshold, accounting for both true and false predictions. As a last step, the optimal rainfall
threshold was determined.

3. Results
3.1. Reconstraction of Rainfall Events

For the calibration set, the statistic of reconstructed REs, MPRCs, MRCs, and NTEs are
shown in Table 3. For LY, a total of 2467 REs were reconstructed. Among them, 29 REs are
associated with landslides and 2438 are NTEs. Furthermore, 465 MRCs and 171 MPRCs
were reconstructed from the 29 REs associated with landslides. Given that most landslides
are concentrated on two dates, many were triggered by the same rainfall conditions. Thus,
232 repeated MRCs and 97 repeated MPRCs were eliminated, and the values used to define
the positive thresholds were 233 and 74, respectively, for MRCs and MPRCs. For XY, 19 RE
associated with landslides and 3210 NTEs were reconstructed. From the 19 REs associated
with landslides, 45 MRCs and 21 MPRCs were reconstructed.

Table 3. Statistic of reconstructed rainfall events in the calibration set for Lueyang (LY) and Xunyang
(XY) counties.

Events Number
Duration (h) Cumulated Rainfall (mm)

Min Max Min Max

LY

RE 2467 1 1075 1.1 690
RE associated with landslides 29 2 383 14.5 690

MRC total/not considering repetitions 465/233 2 230 5.1 306.8
MPRC total/not considering repetitions 171/74 2 120 5.3 277.9

Non-triggering RE 2438 1 1075 1.1 381.9

XY

RE 3229 1 669 1.1 298
RE associated with landslides 19 13 669 21 298

MRC 45 3 337 7.9 163.9
MPRC 21 3 187 13.3 163.9

Non-triggering RE 3210 1 526 1.1 280

3.2. Definition of Rainfall Thresholds

Negative thresholds were defined at 5%, 10%, 15%, and 20% exceedance probabilities
for LY and XY (Figure 5). Table 4 illustrates the values of the parameters and their relative
uncertainties (4α/α and4γ/γ) for the defined negative thresholds. For negative thresh-
olds, the relative uncertainties on α range from 3% to 4%, while the relative uncertainties
on γ are equal to 2%.

Similarly, positive thresholds were defined at 5%, 10%, 15%, 20%, and 50% non-
exceedance probabilities for LY and XY. Figures 6 and 7 show the positive thresholds based
on MRCs and MPRCs, respectively. The functions and the parameter relative uncertainties
of the positive thresholds are shown in Table 5. For both cases, the relative uncertainties of
the positive thresholds are significantly higher than the ones computed for the negative
thresholds. Indeed, relative uncertainties for positive thresholds based on MRCs range
from 13% to 52% for α and from 8% to 28% for γ, while relative uncertainties for positive
thresholds based on MPRCs range from 18% to 88% for α and from 12% to 96% for γ.
These results are not surprising, as the triggering events are significantly lower than the
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non-triggering events. However, the relative uncertainties are quite high also for thresholds
based on 233 MRCs reconstructed in LY county, although the number of points in the sample,
higher than 200, can be considered adequate for the definition of robust thresholds [22].
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Table 4. Negative threshold functions and relative uncertainties of threshold parameters.

Label Threshold Equation 4α/α (%) 4γ/γ (%)

N5,LY E = (10.44 ± 0.45) × D(0.57 ± 0.01) 4% 2%
N10,LY E = (7.43 ± 0.31) × D(0.57 ± 0.01) 4% 2%
N15,LY E = (5.91 ± 0.24) × D(0.57 ± 0.01) 4% 2%
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N20,XY E = (5.43 ± 0.19) × D(0.57 ± 0.01) 3% 2%
N50,XY E = (2.65 ± 0.08) × D(0.57 ± 0.01) 3% 2%
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Table 5. Positive threshold functions and relative uncertainties of threshold parameters.

Label Threshold Equation 4α/α (%) 4γ/γ (%)

P20,LY,MRC E = (14.59 ± 1.93) × D(0.38 ± 0.03) 13% 8%
P15,LY,MRC E = (13.61 ± 1.84) × D(0.38 ± 0.03) 14% 8%
P10,LY,MRC E = (12.48 ± 1.74) × D(0.38 ± 0.03) 14% 8%
P5,LY,MRC E = (10.97 ± 1.59) × D(0.38 ± 0.03) 14% 8%
P50,LY,MRC E = (19.68 ± 2.35) × D(0.38 ± 0.03) 12% 8%
P20,XY,MRC E = (10.98 ± 5.60) × D(0.34 ± 0.10) 51% 28%
P15,XY,MRC E = (10.12 ± 5.19) × D(0.34 ± 0.10) 51% 28%
P10,XY,MRC E = (8.98 ± 4.53) × D(0.34 ± 0.10) 50% 28%
P5,XY,MRC E = (7.61 ± 3.81) × D(0.34 ± 0.10) 50% 28%
P50,XY,MRC E = (16.13 ± 8.41) × D(0.34 ± 0.10) 52% 28%
P20,LY,MPRC E = (11.80 ± 2.14) × D(0.47 ± 0.05) 18% 12%
P15,LY,MPRC E = (10.73 ± 1.99) × D(0.47 ± 0.05) 19% 12%
P10,LY,MPRC E = (9.51 ± 1.82) × D(0.47 ± 0.05) 19% 12%
P5,LY,MPRC E = (7.96 ± 1.58) × D(0.47 ± 0.05) 20% 12%
P50,LY,MPRC E = (17.84 ± 2.92) × D(0.47 ± 0.05) 16% 12%
P20,XY,MPRC E = (24.43 ± 19.85) × D(0.18 ± 0.17) 81% 96%
P15,XY,MPRC E = (22.04 ± 17.58) × D(0.18 ± 0.17) 80% 96%
P10,XY,MPRC E = (19.36 ± 14.91) × D(0.18 ± 0.17) 77% 96%
P5,XY,MPRC E = (15.99 ± 11.92) × D(0.18 ± 0.17) 75% 96%
P50,XY,MPRC E = (38.10 ± 33.51) × D(0.18 ± 0.17) 88% 96%

3.3. Performance Evaluation

For validation purposes, the following values of the non-triggering rainfall events were
considered (green points in Figure 8): 559 rainfall events in the ranges of 1 ≤ D ≤ 120 h and
1.1 ≤ E ≤ 198.3 mm in the period from January to October, 2022 for LY case; 918 rainfall
events in the ranges of 1 ≤ D ≤ 187 h and 1.1 ≤ E ≤ 211.6 mm in the period from January
to December, 2021 for XY case.

Tables 6 and 7 report the number of elements of the contingency matrices calculated
for the negative and the positive thresholds. The skill scores were derived from these
elements (Tables 8 and 9). For the LY case, the highest number of TP (71) is obtained
considering N20,LY, although this results in a significant number of FP (92) when compared
to the other thresholds. A better compromise is represented by N15,LY and P5,LY,MPRC, which
allow achieving a high number of TP (70), both minimizing the number of FP (60 and 61,
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respectively). The overall good performance of N15,LY and P5,LY,MPRC is also confirmed
considering the skill scores listed in Table 8. Indeed, both the thresholds show high values
of the true positive rate (TPR) and low values of the false positive rate (FPR). Looking at
the efficiency index (EI), a general increase is observed raising the percentile of the positive
thresholds and reducing the percentile of the negative one. The positive predictive value
(PPV) shows variations similar to the EI, with values higher than 0.5 for all the thresholds,
apart from N20,LY.
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Table 6. Number of elements of the contingency matrix calculated for the rainfall thresholds defined in LY.

Label TP FN FP TN

N5,LY 54 20 16 543
N10,LY 65 9 37 522
N15,LY 70 4 60 499
N20,LY 71 3 92 467

P20,LY,MRC 62 12 41 518
P15,LY,MRC 65 9 44 515
P10,LY,MRC 67 7 54 505
P5,LY,MRC 68 6 64 495

P20,LY,MPRC 62 12 29 530
P15,LY,MPRC 63 11 34 525
P10,LY,MPRC 66 8 48 511
P5,LY,MPRC 70 4 61 498

For the XY case, the highest numbers of TP (from 17 to 19) are generally obtained
considering positive thresholds. The only negative threshold showing a good capability
of detecting the occurred landslides is N20,XY, with a TP of 17. It should be observed that
the XY case shows sensitively higher values of FP than the LY case. In particular, there is
an order of magnitude of difference between FP and TP for the XY case, and of course the
difference is also related to the low number of landslides that occurred in XY. The worst
performance of the thresholds due to the high number of FP is confirmed by the low values
of the PPV (Table 9). Values of the TPR higher than 0.8 are observed for N20,XY and all the
positive thresholds, apart from P20,XY,MPRC (0.71). The EI assumes relatively high values
due to the significant influence of the TN.
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Table 7. Number of elements of the contingency matrix calculated for the rainfall thresholds defined in XY.

Label TP FN FP TN

N5,XY 4 17 33 885
N10,XY 7 14 103 815
N15,XY 14 7 146 772
N20,XY 17 4 184 734

P20,XY,MRC 17 4 210 708
P15,XY,MRC 17 4 223 695
P10,XY,MRC 18 3 258 660
P5,XY,MRC 19 2 279 639

P20,XY,MPRC 15 6 171 747
P15,XY,MPRC 17 4 190 728
P10,XY,MPRC 17 4 214 704
P5,XY,MPRC 18 3 255 663

Table 8. Skill scores for the defined rainfall thresholds in LY (the best values of the scores, for each
type of threshold, are underlined).

Label EI TPR FPR PPV δ

N5,LY 0.94 0.73 0.03 0.77 0.271
N10,LY 0.93 0.88 0.07 0.64 0.134
N15,LY 0.90 0.95 0.11 0.54 0.121
N20,LY 0.85 0.96 0.16 0.44 0.165

P20,LY,MRC 0.92 0.84 0.07 0.60 0.175
P15,LY,MRC 0.92 0.88 0.08 0.60 0.411
P10,LY,MRC 0.90 0.91 0.10 0.55 0.135
P5,LY,MRC 0.89 0.92 0.11 0.52 0.136

P20,LY,MPRC 0.94 0.84 0.05 0.68 0.168
P15,LY,MPRC 0.93 0.85 0.06 0.65 0.162
P10,LY,MPRC 0.91 0.89 0.09 0.58 0.142
P5,LY,MPRC 0.90 0.95 0.11 0.53 0.121

Table 9. Skill scores for the defined rainfall thresholds in XY (the best values of the scores, for each
type of threshold, are underlined).

Label EI TPR FPR PPV δ

N5,XY 0.95 0.19 0.04 0.11 0.811
N10,XY 0.88 0.33 0.11 0.06 0.679
N15,XY 0.84 0.71 0.16 0.09 0.331
N20,XY 0.80 0.81 0.20 0.08 0.276

P20,XY,MRC 0.77 0.81 0.23 0.07 0.298
P15,XY,MRC 0.76 0.81 0.24 0.07 0.306
P10,XY,MRC 0.72 0.86 0.28 0.07 0.313
P5,XY,MRC 0.70 0.90 0.30 0.06 0.316

P20,XY,MPRC 0.81 0.71 0.19 0.08 0.347
P15,XY,MPRC 0.79 0.81 0.21 0.08 0.283
P10,XY,MPRC 0.77 0.81 0.23 0.07 0.298
P5,XY,MPRC 0.73 0.86 0.28 0.07 0.313

After that, FPR and TPR values of each defined threshold were used to plot the ROC
curves (Figure 9). Then, for each threshold, the distance δ from the optimal prediction
point was calculated (Tables 8 and 9). According to the distance δ, for the LY case, the
best negative threshold is N15,LY and the best positive threshold is P5,LY,MPRC. The two
thresholds show the same distance δ from the perfect point (0.121 in both the cases). For
XY, N20,XY is the best among the negative thresholds. P15,XY,MPRC is the best among the
positive thresholds. N20,XY is characterized by a slightly shorter distance from the perfect
point compared to P15,XY,MPRC (0.276 vs. 0.283).
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4. Discussion

For the LY case, according to the skill scores, the performances of P5,LY,MPRC and N15,LY
are similar. However, the relative uncertainties of the scaling and shape parameters (4α/α
and4γ/γ) for P5,LY,MPRC are 19% and 12%, which are much greater than those for N15,LY,
respectively equal to 4% and 2%. For the XY case, the best negative threshold (N20,XY) has
a lower FPR and a higher EI than P15,XY,MPRC. The relative uncertainties of P15,XY,MPRC,
almost 100% for the shape parameter, are much higher than those associated to N20,XY.
Thus, N20,XY clearly shows an overall better performance for the XY case. When comparing
the two case studies, the performance of the two sets of negative optimal thresholds is quite
similar. Indeed, for both cases, despite the small differences, the best negative thresholds
show lower numbers of FP and FN compared to the positive ones. This means that, in case
they are employed in an operational warning model, the LEWS would benefit from a better
compromise between false and missed alarms. In any case, the key difference between the
two sets of thresholds is that the best negative thresholds exhibit significantly lower relative
uncertainties of threshold parameters than the positive ones. The uncertainties depend on
the number and the distribution of rainfall event points [24,42]. The relative uncertainties
are also important for assessing if and how any given rainfall-threshold can be applied
in an operational LEWS. Peruccacci et al. [24] stressed that an acceptable value of relative
uncertainties is 10% and at least 175 even-distributed (D, E) points are required to limit
the relative uncertainties below 10%. Although reconstructing multiple rainfall conditions
for one single landslide to define rainfall thresholds can increase the sample number and
decrease the relative uncertainties of defined thresholds, the problem of the non-uniform
distribution of the sample points determined by the unbalanced dataset cannot be solved.
For example, the relative uncertainties of shape parameter for thresholds defined based
on 233 MRCs (>175) in the LY case are still greater than 10%. Therefore, for unbalanced
datasets, negative thresholds can be considered better than positive ones. As suggested
by Peres and Cancelliere [22], the overlooked methods based on rainfall-event that do not
trigger landslides deserve wider application.

5. Conclusions

In this study, three groups of rainfall events were reconstructed according to the hourly
rainfall measurements and rainfall-induced landslide records of Lueyang and Xunyang
counties, southern Shaanxi province (China). ED thresholds at several exceedance and non-
exceedance probabilities were defined using statistical methods respectively employing
rainfall-events that trigger (positive thresholds) or do not trigger (negative thresholds)
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landslides. For both study areas, the negative thresholds show a better trade-off between
true and false predictions, and relative uncertainties that are significantly lower than
the ones computed for the positive thresholds. Although further studies are needed to
generalize these results, it seems wise to recommend to analysts using unbalanced rainfall-
induced landslide datasets, a very common condition in many areas of the world, to
start with identifying rainfall thresholds from non-triggering events. Subsequently, when
sufficient information on landslides become available, analysts can also move to methods
that consider the triggering events, to refine and improve the already identified thresholds.
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