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Abstract: Wetland ecosystems with proper functioning provide various ecosystem services. Therefore,
their conservation and restoration are of fundamental importance for sustainable development. This
study used a deep learning model for groundwater level prediction to evaluate a wetland restoration
project implemented in the Kushiro Wetland in Japan. The Kushiro Wetland had been degraded
due to river improvement work. However, in 2010, a wetland restoration project was carried out to
restore the meandering river channel, and a decade has passed since its completion. In this study,
the wetland restoration project was evaluated by comparing the response of the groundwater level
using a model that reproduced physical conditions with different characteristics before and after
the restoration. At first, a deep learning model was created to predict groundwater levels pre- and
post-restoration of a meandering river channel using observation data. Long short-term memory
(LSTM) was used as the deep learning model. The most important aspect of this study was that
LSTM was trained for each of the pre- and post-restoration periods when the hydrological and
geological characteristics changed due to the river channel’s restoration. The trained LSTM model
achieved high performance with a prediction error of the groundwater levels within 0.162 m at all
observation points. Next, the LSTM models trained with the observation data of the post-restoration
period were applied to evaluate the effectiveness of the meandering channel restoration. The results
indicated that the meandering channel restoration improved hydrological processes in groundwater
levels, i.e., their rainfall response and average groundwater water levels. Furthermore, the variable
importance analysis of the explanatory variables in the LSTM model showed that river discharge and
precipitation significantly contributed to groundwater level recovery in the Kushiro Wetland. These
results indicated that the LSTM model could learn the differences in hydrological and geological
characteristics’ changes due to channel restoration to groundwater levels. Furthermore, LSTM is a
data-driven deep learning model, and by learning hydrological and geological conditions to identify
factors that may affect groundwater levels, LSTM has the potential to become a powerful analysis
method that can be used for environmental management and conservation issues.

Keywords: wetland restoration; hydrological processes; peatland; data-driven AI model; deep
learning; variable importance analysis

1. Introduction

Wetland ecosystems provide important and essential services for humans [1,2]. These
services are diverse, including flood protection, water storage, water purification, food
chain support, juvenile feeding place creation, freshwater fish resource conservation, biodi-
versity conservation, carbon storage, and climate regulation [3,4]. Since the proper function-
ing of wetland ecosystems provides these ecosystem services, the conservation and restora-
tion of wetland ecosystems are of great importance for sustainable development [5–7].
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From the beginning of the 20th century to the present, especially since 1970, wetlands
in many parts of the world have lost their original functions due to the effects of human
activities such as water withdrawal, social infrastructure development, land development,
eutrophication, invasive alien species, and climate change [3,5]. Therefore, many conser-
vation and restoration studies have been conducted in wetland ecosystems around the
world: for example, in the United States [8,9], the United Kingdom and Hungary [10],
Poland [11,12], and Germany [13].

This study examined the wetland restoration project in the Kushiro Wetland, which
is a representative nature restoration project in Japan, along with those in the Tama River
and Lake Kasumigaura [14]. The Kushiro Wetland underwent a meandering channel
restoration from 2006 to 2011, and evaluation studies were conducted immediately after
the restoration [15,16]. However, there are still areas where trees have become overgrown
and the grassland marsh has not yet recovered, even now, a decade after the restoration
project’s completion. Therefore, it is important to verify the effects of meandering channel
restoration from a current scientific perspective.

Hydrological conditions are important for wetland conservation [10,17,18]. In particu-
lar, restoring the groundwater level is essential for restoring wetland vegetation [19–21].
In hydrology, simulations using physical process models have been the mainstream so
far [22–25]. However, conventional hydrological models are complex, computationally
intensive, and difficult for environmental management professionals to use. In particular, a
groundwater flow model requires specialized knowledge and time to construct because
the flow field conditions, such as its meteorology, hydrology, and geology, are complex.
Therefore, introducing data-driven deep learning models [26,27] could complement physi-
cal process models, resulting in progress in our understanding of wetland conservation
and management.

This study attempted to use a data-driven model to learn about changes in hydrologic
and geologic characteristics due to channel restoration. The most important aspect of this
study was that a data-driven model was trained for each of the pre- and post-restoration
periods when the hydrological and geological characteristics changed as a result of the river
channel’s restoration. In this study, we used deep learning. Deep learning is a technique that
aims to mimic the mammalian brain [28]. That is, it reproduces the brain’s ability to transmit
signals through a complex hierarchical structure. An important aspect of deep learning is
that the layers of its complex structure are not designed by humans [29]. Deep learning
provides a non-linear “black box” modeling approach for simulation and prediction [30].

In recent years, the use of the machine and deep learning in hydrology has ex-
ploded [31–34], and long short-term memory (LSTM) models have increasingly been used
in the field of groundwater hydrology [33,34]. Table 1 summarizes a list of recent machine
and deep learning studies, including uses of LSTM, in groundwater hydrology. LSTM and
its modifications have been applied in many cases since 2018 to predict groundwater levels.
Furthermore, comparison with other machine learning models also confirms that LSTM
models effectively predict groundwater level time series.

This study differs from the development studies of new LSTM models listed in Table 1.
In this study, a simple LSTM model, the performance of which has been demonstrated in
many studies, was trained for both the pre- and post-restoration periods of meandering
channels in the Kushiro Wetland. The objective of this study was to identify changes in
the characteristics of groundwater level fluctuations by using these two LSTM models
trained with different hydrological and geological conditions before and after the river
channel’s restoration.

First, we developed an LSTM model to predict groundwater levels before and after the
meandering channel restoration with observation data. Then, using the developed pre- and
post-restoration prediction models, we quantitatively evaluated whether the groundwater
level recovered before and after the restoration of the meandering channel and verified the
effectiveness of the restoration project. Furthermore, we analyzed the importance of the
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explanatory variables used in the deep learning model, examining the meteorological and
hydrological quantities that affect groundwater level changes in the Kushiro Wetland.

Table 1. List of the recent machine and deep learning research, including uses of LSTM, in the field of
groundwater hydrology.

Region/Country Models Purpose Best Model Reference

Hetao Irrigation District in
China LSTM, FFNN Model development R2: 0.789–0.952 [35]

Pohang Gibuk in
Republic of Korea

LSTM, NARX-DNNs,
GRU, ARX Model comparison LSTM and NARX-DNNs [36]

Virginia in United States LSTM, RNN Model comparison LSTM [37]

Otway and Murray Basins in
Australia LSTM, LR, MLP Model comparison LSTM [38]

Republic of Korea LSTM with PCA Model development Optimal input data,
window size [39]

Hebei Province in China LSTM with WT Model development NSE: 0.819 [40]

Jiangsu Province in China LSTM with KNN and
WT Model comparison KNN-LSTM [41]

Shandong Province in China Convolutional LSTM,
etc. Model comparison Convolutional LSTM [42]

Varuna River basin in India Bidirectional LSTM Model development Comparison of 5 model
settings [43]

Miandoab Plain in Iran Bidirectional LSTMs Model development Double-Bidirect-ional
LSTM [44]

Central Europe/Rhine River LSTM, CNNs, NARX Model comparison LSTM, CNNs for larger
datasets. [45]

Europe LSTM Model development water table depth < 3 m [46]

California in United States LSTM, MLP, RNN,
CNN Model comparison MLP [47]

Texas in United States LSTM-NN, simple NN Model comparison LSTM-NN [48]

Anseongsi area in
Republic of Korea LSTM with CNN Model development AUC > 0.8 for all locations [49]

Notes: ARX: auto-regressive exogenous. AUC: area under the receiver operating characteristics curve. CNN:
convolutional neural network. DNN: deep neural network. FFNN: feed-forward neural network. GRU: gated
recurrent unit. KNN: K-nearest neighbor. MLP: multi-layer perception. NARX: non-linear auto-regressive
exogenous. NN: neural network. PCA: principal component analysis. RNN: recurrent neural network. WT:
wavelet transform.

2. Materials and Methods
2.1. Target Site

As shown in Figure 1, the Kushiro Wetland is in the lower reach of the Kushiro River,
which originates from Lake Kussharo. The Kushiro River basin drains an area of 2510 km2

with the main channel being 154 km in length with a bed gradient of 0.001. The Kushiro
Wetland is located in the southern part of the Kushiro River basin. Its area is approximately
260 km2. We conducted our study in a part of the Kushiro Wetland near the outlet of
the Kushiro River on the Island of Hokkaido, Japan. Climate normals near the target site
(1991–2020) [50] indicate an annual precipitation of 1054.9 mm, an average temperature of
18.4 ◦C in the warmest month (August) and −7.9 ◦C in the coldest month (January), and a
maximum annual snow depth of 59 cm. A cool and humid spring and summer and dry
winters with little snowfall characterize the region. The Kushiro Wetland is Japan’s first
registered wetland under the Ramsar Convention [51] and is Japan’s largest peat grassland
wetland that serves as an important habitat for wildlife. The main vegetation in the Kushiro
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Wetland includes alder (Alnus japonica), reed (Phragmites australis), moss (Polytrichum spp.,
Sphagnum spp.), sedge (Eriophorum vaginatum), willow (Salix spp.), Japanese ash (Fraxinus
mandshurica var. japonica), and meadowsweet (Spiraea salicifolia) [52].

The Kushiro Wetland has been developed for a long time; since the 1880s, there have
been changes in land-use types to urban and agricultural uses. In the 1970s and 1980s
in particular, meandering rivers were straightened in the northern part of the wetland
to protect agricultural lands from flooding. As a result, flood flows, whose transport
capacity became increased by straightening, carried sediment and nutrients from upstream
agricultural lands into the wetland interior [52,53]. These sediments and nutrients changed
the moisture characteristics and plant composition of the wetland, resulting in a significant
transformation of the previous wetland environment. The Kushiro Wetland became drier,
and shrubland species, mainly alder, flourished. Therefore, in the 2000s, the Japanese
administration implemented a nature restoration project to restore the previous wetland
environment through the restoration of meandering stream channels [15,16].
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Figure 1. The Locations of the Kushiro River basin, Kushiro Wetland, and the study site area.
Source: modified from the data in National Geodetic Data Download Service (administrative area,
watershed/non-watershed boundary, natural park area, lake, and river) [54]. 1:10 m from Natural
Earth by Physical Vectors Coastline.

The study site is located 30–33 km from the mouth of the Kushiro River, in the
northeastern part of Kushiro Wetland, as shown in Figure 1. It is a site close to the
Kayanuma railway station, where the meandering stream channel has been restored. Aerial
photographs of the study site indicate contrasting situations in three different times shown
in Figure 2: near pristine marshland in 1948; marshland after the straightening of the river
channel in 2005; and marshland after the restoration of the meandering stream channel
in 2021. In the study site, the river channel was straightened in 1984. As a result, the
river and groundwater levels lowered, and the frequency of flood inundation decreased.
The marshland vegetation was transformed accordingly, with reed communities being
replaced by alder forests. In response to this alteration, the Japanese administration
restored the study site between 2006 and 2011, replacing the straight river channel again
with the meandering stream channel in 2010 as a part of the restoration project. Monitoring
is currently ongoing to verify the effectiveness of the meandering channel restoration.
However, as shown in the 2021 aerial photograph of Figure 2, alder forests continuously
thrive in parts of the study site.
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Figure 2. Historical changes in the study site of Kushiro Wetland from aerial images. These aerial
images cover 2 km square centered at 43◦12′ N, 144◦30′ E ((a): 15 October 1948, (b): 24 September 2005,
Source: modified from the image in Geospatial Information Authority of Japan [55]), ((c): 19 May 2021,
Source: modified from the image in Google Earth Engine [56]).

Figure 3 shows the groundwater level observation points in this study. The meander-
ing restored channel of the Kushiro River flows in the south-western direction in Figure 3.
There are five observation points, including two upstream, across the meandering restored
channel (Sts.1 and 2); one downstream next to the meandering channel (St.3); one between
the old straight channel and the meandering channel (St.4); and one reference observation
point a further 2 km downstream of St.4 where grassland wetlands are preserved (St.5(ref.):
“(ref.)” means the abbreviation of the “reference” point). The former straight channel
flowed north of St.2 and St.4, and the remains of the straight channel can be seen faintly
in Figure 3.
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Figure 4 shows the time series of groundwater levels upstream at St.2 and down-
stream at St.3. Figure 4 indicates that the amplitude of the groundwater level fluctuations
increased after the restoration, and the frequency and intensity of spike-like high-frequency
fluctuations also increased. In addition, the mean groundwater level at St.2 upstream
became higher after the restoration. It should be noted that a period of significant and
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specific decline in groundwater levels was observed in 2008. The Kushiro Wetland usually
experiences snowfall from December to the following March during the winter season,
and the amount of snowfall affects the groundwater level. The significant drop in the
groundwater level in 2008 could be due to the low snowfall in the previous year.
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channel restoration.

Figure 5 shows the time series of groundwater levels and rainfall in 2009 at the most
downstream site, St.5(ref.). This site, which preserves grassland wetland, indicated an
increase in the groundwater level of 40–50 cm in March during the snowmelt season. Then,
the water table remained almost at ground level until the end of October, subsequently
declining in December when snowfall began. Furthermore, the site is characterized by a
very high response of the water table to rainfall events. This grassland wetland remains
wet from early June, when the rainy season begins, until late autumn in November. The
ground elevation at this site is 9.4 m. The mean groundwater level from 2004 to 2017 was
9.27 m (standard deviation: 0.087 m). This suggests that the close distance between the
ground surface and the groundwater level is the original state of the wetland.

2.2. Data and Instrumentation

This study used six time series to predict groundwater levels in an LSTM model. The
data were temperature, sunshine hours, Normalized Difference Vegetation Index (NDVI),
precipitation, snow depth, and river discharge. The first three variables are related to
evaporation and transpiration, while the other three variables are related to water inflows
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from the atmosphere and upstream. These were used as explanatory variables for the
LSTM model described in the following section.
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The groundwater level time series (daily mean) were obtained from the Kushiro
Development and Construction Department, Hokkaido Regional Development Bureau,
Ministry of Land, Infrastructure, Transport and Tourism. The air temperature (daily mean),
sunshine duration (daily daylight hours), precipitation (daily total), and snow depth (daily
deepest recorded) were obtained from the official website of the Japan Meteorological
Agency [57] at the observatory site of Shibecha, Hokkaido, Japan. The NDVI was obtained
from the Google Earth Engine, in which the MODIS (Moderate Resolution Imaging Spec-
troradiometer) observations within the study site existed as a 250 m mesh centered at
about 43◦17′59′ ′ N, 144◦36′3′ ′ E [56]. For the river discharge (daily mean), observation data
were used from the Japanese Ministry of Land, Infrastructure, Transport and Tourism’s
Hydrological and Water Quality Database [54].

The groundwater levels of St.3 were missing from 23 December 2007 to 31 December
2007 (0.4% of the total), and precipitation data were missing on 15 February 2009. A linear
completion was performed for these missing data. The NDVI is 23 times per year (once
every 16 days). In order to use an explanatory variable that would allow us to understand
the seasonal variability of the NDVI, a linear completion series was applied to the NDVI
time series.

2.3. Deep Learning Model

This study developed a predictive model for groundwater levels using LSTM [58].
LSTM is a deep learning model developed in the 1990s to overcome the problems of
Recurrent Neural Networks (RNN) [59,60]. Since 2010, LSTM has rapidly developed and is
one of the most important deep learning methods widely employed in natural language
processing, including real-time translation [61]. As already shown in Table 1, it has been
applied to many groundwater level time series since 2018.

Figure 6 shows the flowchart of the LSTM structure used in this study. The input layer
was exposed to the six explanatory variables measured on three subsequent days to obtain
a groundwater level for the following day.

The right-hand side of Figure 6 shows the LSTM model detail used in this study.
In addition to two LSTM layers, the model included Dropout, Dense, and Flatten layers
with a basic unit count of 128. The activation function used in the LSTM layers was the
hyperbolic tangent tanh. A dropout layer with a ratio of 0.2 was added behind each LSTM
layer. The optimization function was set to the Adaptive moment (Adam). The maximum
number of epochs was set to 100, and early stopping was used as a countermeasure against
overfitting. The learning rate was initially set at 0.001 and multiplied by 0.1 every 10 epochs.
The LSTM model was implemented in Python [62] v3.8.10, using TensorFlow [63] v2.30,
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scikit-learn [64] v0.24.2, Pandas [65] v1.2.4, NumPy [66] v1.19.2, and Keras [67] v2.4.3,
which are all open-source libraries.
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2.4. Steps of the Assessment
2.4.1. Data Division for Pre- and Post-Restoration and the LSTM Evaluation Index

In this study, to evaluate the nature restoration project before and after the meandering
stream channel restoration, the decadal data between 2004 and 2017 were divided into two
periods, pre- and post-restoration, creating a prediction model for each. The same data
length was used for training pre- and post-restoration to eliminate differences in prediction
accuracy caused by differences in data volume. Pre-restoration, the learning period was set
from 2004 to 2008, with 2009 as the prediction period. Conversely, for post-restoration, the
learning period was set from 2012 to 2016, with 2017 as the prediction period.

The root mean square error (RMSE) between the observed and predicted values was
used to assess the LSTM model’s accuracy. The definition of RMSE is given in Equation (1):

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 , (1)

where ŷi is the groundwater level predicted by the LSTM model in length, while yi is the
observed value of the groundwater level. N is the total number of samples.

2.4.2. Evaluation of the Meandering Stream Channel Restoration

Two LSTM models, before and after the meandering channel restoration, were trained
to predict groundwater level fluctuations for each period. These two LSTM models were
both applied for the eight years after restoration (2012–2019) with the corresponding
observation data of the six explanatory variables. The relative effect of the meandering
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channel restoration on groundwater levels was then evaluated by comparing the LSTM
results in terms of short- and long-term aspects, as explained in the following.

A short-term perspective analyzes the frequency of groundwater level responses to
rainfall. In the grassland wetland time series shown in Figure 5, the groundwater level
indicated a high response to rainfall. This study focused on this response: a stepwise
frequency analysis was conducted on the groundwater level response for the number of
days above the 0.25 m increment threshold for two LSTM predictions, one before restoration
and the other after restoration. The increase in frequency was used here as an indicator of
the restoration effect of the short-term hydrological characteristics in groundwater levels
after the meandering stream channel restoration.

For a long-term perspective, groundwater levels from April to November, excluding
the snow season, were compared before and after the restoration. The equation used for
evaluation is Equation (2):

∆ŷ =
1
N

N

∑
i=1

(ŷi_a − ŷi_b), (2)

where N is the total sample number of groundwater level data for each year after the
channel restoration (2012–2018); ŷi_a and ŷi_b are the predicted groundwater levels (m) on
day i using the LSTM models of after _a and before _b the restoration, respectively; and
∆ŷ is the mean of ŷi_a − ŷi_b in each year of the post-restoration period. Here, a positive
∆ŷ represents an increase in the mean groundwater level due to the meandering channel
restoration, while a negative ∆ŷ indicates a decrease in the mean groundwater level.

2.4.3. Importance Analysis of the LSTM Explanatory Variables

This study used an applied version of wrapper methods, conventionally used in
machine learning [68,69], to analyze the relative importance of explanatory variables in
LSTM models (hereafter referred to as AWM for the abbreviation of the applied wrapper
method). Conventional wrapper methods attempted to use refining explanatory variables
in machine learning. The AWM was used to evaluate the importance of explanatory
variables for the LSTM model. In AWM, the truncation of the explanatory variable with
a maximum accuracy decline was decided to lead to the most important variable for the
LSTM model.

Figure 7 shows a flowchart of AWM. In the AWM procedure, at first, an LSTM model
with an explanatory variable truncation was trained with the same hyperparameters as
the original LSTM model with all explanatory variables. Then, Equation (3) calculated the
relative deviation X between the RMSEs with observed data in the truncated and original
LSTM models. The larger the relative deviation X between the two models, the higher the
importance of the truncated explanatory variable would be expected for the LSTM model:

X =
RMSEn−1 − RMSEn

RMSEn
× 100, (3)

where RMSEn−1 is the RMSE between observed values and those predicted by the truncated
LSTM in n − 1 explanatory variables; RMSEn is the RMSE between the observed values
and those predicted by the original LSTM in n explanatory variables; and X is the relative
deviation between RMSEn−1 and RMSEn. In recent years, explainable artificial intelligence
(XAI) [70] has improved the interpretability of black box deep learning. Importance was
able to be determined by applying XAI to LSTM [71]. XAI was not used in this study but
will be the topic of future research.
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3. Results
3.1. LSTM Model Accuracy for Groundwater Level Prediction

Figure 8 shows the observed groundwater levels over time and those predicted by
LSTM at St.3 in 2009 and 2017, respectively. As noted in Section 2.4, the years 2009 and
2017 were the prediction periods that the two LSTM models learned for the pre- and
post-restoration periods. The RMSEs were 0.162 m before the restoration and 0.116 m after
the restoration. Figure 8 indicates that the LSTM models can predict groundwater level
fluctuation characteristics of the observed values, including their sudden increases due to
rainfall. The main reason for the prediction error would be during recessions, in which the
predicted groundwater level decreased more slowly than the observed one immediately
after rainfall.

Table 2 summarizes the RMSEs for Sts.1–4. The RMSEs ranged between 0.082 and
0.162 m. As shown in Figure 8, the LSTM model accurately predicted the groundwater level
response to rainfall. These results strongly support that the prediction error of the LSTM
model is sufficiently small. Therefore, we confirmed that the LSTM model has sufficient
accuracy to evaluate the meandering stream channel restoration effect in this study.

Table 2. RMSEs before and after the meandering stream channel restoration.

Observation Point RMSE before Restoration
in 2009 (m)

RMSE after Restoration
in 2017 (m)

St.1 0.082 0.134

St.2 0.094 0.139

St.3 0.162 0.116

St.4 0.161 0.136
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channel restoration in 2017.

3.2. Evaluation of the Meandering Stream Channel Restoration

Figure 9 shows the typical results of the short-term evaluation. It indicates the fre-
quency analysis of groundwater level responses to rainfall for St.2 (upstream) in 2014 and
St.4 (downstream) in 2016 using the two LSTM models for pre- and post-restoration. The
results for all the periods and stations are presented below in Table 3. Figure 9 indicates that
the frequency of groundwater level response to rainfall has increased after the restoration
of the old meandering stream channel at both observation stations. In particular, at the
upstream station St.2, the frequency of groundwater level fluctuations increased signifi-
cantly at the small amplitude of +0.25 m. On the other hand, as shown in Figure 9b, the
fluctuation of the groundwater level above +1.00 m at St.4 decreased in frequency after
the restoration.
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Figure 9. Frequency analysis of groundwater level response to rainfall using the LSTM models:
(a) Observation point St.2, the upstream side, in 2014. (b) Observation point St.4, the downstream
side, in 2016.

Table 3. Annual mean frequency of groundwater level response to rainfall: (a) Before the meandering
stream channel restoration. (b) After the meandering stream channel restoration.

(a)

Counts St.1 St.2 St.3 St.4

Mean GWL
+0.25 m 13.4 12.2 20.0 29.3

Mean GWL
+0.50 m 0.667 0.667 7.11 11.0

Mean GWL
+0.75 m 0 0.333 2.00 4.44

Mean GWL
+1.00 m~ 0 0 4.00 6.11

Total counts 14.1 13.2 33 50.9

(b)

Counts St.1 St.2 St.3 St.4

Mean GWL
+0.25 m 20.1 22.4 29.2 34.0

Mean GWL
+0.50 m 3.11 3.11 8.89 11.3

Mean GWL
+0.75 m 1.78 1.22 5.22 3.89

Mean GWL
+1.00 m~ 0.444 0.111 2.78 3.33

Total counts 25.4 26.9 46.1 52.6
Note: GWL: Groundwater level.
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Table 3 summarizes the annual mean frequency of groundwater level response to
rainfall at all stations before and after the restoration. The frequency ratio increased at
Sts. 1–4 by 1.80, 2.04, 1.39, and 1.03, respectively. Therefore, the groundwater level response
to rainfall has become more frequent after the restoration at all the observation points. In
particular, the upstream side indicated more significant increases in frequency compared to
the downstream side.

Figure 10 shows the boxplots of the mean groundwater level change ∆ŷ before and
after the restoration at the observation points St.1 to 4 from April to November, excluding
the snow season. The median values of ∆ŷ at the upstream observation points (St.1 and
St.2) were 0.040 m and 0.145 m, respectively, and at the downstream observation points
(St.3 and St.4), these values were −0.117 m and −0.208 m, respectively. This indicated
that the meandering stream channel restoration caused increases in the groundwater level
upstream and decreases downstream. In addition, it resulted in a more significant rise in
the groundwater level at St.2, located far from the restored meandering stream channel.
These results reveal that the groundwater hydrological characteristics from a long-term
perspective show a trend toward a wetland environment upstream but toward a drying
trend downstream. Furthermore, the mean groundwater level at observation point St.5(ref.),
shown in Figure 5, remains at ground level. In contrast, the groundwater levels do not reach
ground level at all at the observation points St.1 to 4 in the meandering stream channel
restoration area.
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3.3. Importance Analysis for the LSTM Model Explanatory Variables

Figure 11 shows the results of applying AWM to the LSTM model before and after
the restoration to analyze the importance of explanatory variables. The vertical axis of
Figure 11 is the relative deviation X calculated by Equation (3). As a result, although there
were variations between observation points, the relative deviations X of river discharge and
precipitation were more significant than those of other explanatory variables, regardless
of whether the meandering stream channel was restored. This clearly indicates that river
discharge and precipitation significantly affect the fluctuation of groundwater level in the
LSTM model. These are hydrological quantities strongly related to the changes in mean
groundwater levels in the short-term and long-term perspectives described above. In
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addition, even if the observation point was close to the river channel, the importance of the
river discharge was not necessarily high.
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4. Discussion
4.1. Advantages and Limitations of the LSTM Model in This Study

In this study, an LSTM model was trained for each of the pre- and post-restoration
periods when the hydrological and geological characteristics changed due to the river
channel’s restoration. The LSTM model was able to quantitatively predict the groundwater
level’s response to rainfall as well as changes in the annual mean groundwater level before
and after the restoration of the meandering stream channel. The use of LSTM allowed
an evaluation of the effect of nature restoration on the hydrological characteristics of
groundwater. The time series data used for the learning of the LSTM model were analyzed
for abundant rainfall events that occur frequently as well as the mean groundwater level
that exists as a basic trend. In other words, the LSTM model in this study was able to learn
those abundant data features as a black box model. So far, the assessment of hydrological
properties in wetland environments has mainly used complex physical-process-based
models [22–25]. On the other hand, the LSTM model in this study is data-driven, making it
an excellent alternative method that can learn the hydrological and geological characteristics
in different environments without detailed geophysical settings.

As for the model’s limitations, the LSTM model in this study could not successfully
predict the large drop in groundwater level in spring 2008, as shown in Figure 4. This large
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drop in the groundwater level was due to the lack of snowfall in the previous winter. This
was a low-frequency phenomenon only occurring in that year in the learning data before
the restoration. Snow depth was also included as an explanatory variable in the LSTM
model, but predicting phenomena that rarely occur in the learning dataset was challenging.
In this study, since we focused on the rainfall response and the annual mean groundwater
level, it was sufficient to set the learning data periods before and after the restoration to
five years. However, in general, deep learning could be expected to improve prediction
accuracy with big data [45]. Furthermore, it has been reported that at least 10 to 12 years
of consecutive data are required for accurate monthly mean groundwater level prediction
using machine learning [72]. Therefore, to use a data-driven deep learning model when the
amount of data is limited, such as the LSTM model in this study, it should be essential to
apply the model based on the characteristics of the dataset and the learning model.

4.2. Restoration of Hydrological Processes and Wetland Ecosystems in the Kushiro Wetland

The LSTM model analysis in this study indicated that groundwater hydrological
characteristics, such as rainfall response and mean groundwater level, tended to recover
to the previous state before 1984 after the meandering stream channel was restored. In
particular, the recovery trend was remarkable on the upstream side of the study site.
However, even though the natural restoration project restored the flow path to its previous
meandering state, alder trees continue to flourish in the area, and the grassland wetland
has not yet been restored, even after one decade. This issue might be due to increased
local evapotranspiration caused by the trees, having created a gap in groundwater level
recovery. Cases where the hydrological environment has recovered but the wetlands have
not been restored have also been reported in the Scott Starling Nature Sanctuary in the
United States [73] and the Rhone River in France [74].

In the Kushiro Wetland, the sedge family forms herbaceous clumps (called “Yachi-
bouzu” in Japanese) on which alder trees can grow, as shown in Figure 12. This situation
makes it possible for alder trees to survive in a unique wetland environment that experi-
ences snowfall in winter and snowmelt in spring. The growing environment created by
Yachibouzu could be one of the reasons why it is difficult to return to the grassland wetland
environment once woody plants have invaded it.
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Figure 12. The herbaceous clumps of the sedge family in the Kushiro Wetland (“Yachibouzu” in
Japanese): (a) Without alder trees. (b) With alder trees.

In addition, it has been reported that peat soil properties are essential for the natural
restoration of peat swamps [75], and complete restoration of peatlands is impossible [76].
Based on these findings, restoring groundwater characteristics alone would not be sufficient
to restore peat grassland wetlands such as the Kushiro Wetland. There is also a report
that a combination of stream channel improvement and tree cutting could be effective in
swamps in Sweden [77]. Even in the Kushiro Wetland, under the current situation where
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the meandering stream channel restoration has shown a trend toward the recovery of
hydrological conditions, a further restoration approach would be necessary, e.g., combining
soil improvement and the removal of woody plants.

4.3. Future Model Development

The LSTM model in this study was a simple groundwater level prediction model that
focused on rainfall responses and mean groundwater level changes. Applying it before
and after the meandering stream channel’s restoration made it possible to evaluate the
hydrological process part of the restoration. On the other hand, the LSTM model could
not reproduce the low-frequency events in the dataset, such as the drop in groundwater
level caused by the small amount of snowfall described above. In general, observation data
obtained from nature restoration projects are limited. Therefore, to improve the prediction
accuracy of the model, it would be essential to pre- and post-process the features inherent
in the dataset [27,78–80]. New metaheuristic algorithms [81] would be useful for machine
learning modeling with limited datasets. In addition, as mentioned in the section on
the importance analysis of explanatory variables, the LSTM model of this study would
be insufficient to consider the relationship between groundwater level fluctuations and
topography/soil. Therefore, it would also be important to use machine learning models that
can express their spatial distribution characteristics [42] and to develop hybrid data-driven
deep learning models that combine the outputs of physical process models [16].

5. Conclusions

In this study, LSTM models learned groundwater level characteristics pre- and post-
restoration of a meandering river channel and analyzed how hydrological and geological
characteristics changed due to the channel’s restoration. This study chose the precipita-
tion, air temperature, sunshine duration, snow depth, NDVI, and river discharge as the
explanatory variables of the LSTM model, which were easily available through the public
domain. The trained LSTM models achieved high performance, with prediction RMSEs for
the groundwater levels that were within 0.162 m at all the observation points. The analy-
sis of the simple LSTM models clarified that the meandering stream channel restoration
regained hydrological processes in groundwater levels, i.e., their rainfall responses and
mean groundwater levels. In particular, the restoration tendency was remarkable at the
observation points on the upstream side. Furthermore, the variable importance analysis of
the explanatory variables in the LSTM model showed that river discharge and precipitation
significantly contributed to groundwater level recovery in the Kushiro Wetland.

The LSTM model in this study is data-driven, making it an excellent alternative method
that could learn the hydrological and geological characteristics in different environments
without detailed geophysical settings. Subsequently, when the amount of data is limited, as
in this research, it would be essential to apply hybrid models based on the dataset features
and the machine learning characteristics.
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