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Abstract: Rainfall–runoff modeling has been of great importance for flood control and water resource
management. However, the selection of hydrological models is challenging to obtain superior
simulation performance especially with the rapid development of machine learning techniques.
Three models under different categories of machine learning methods, including support vector
regression (SVR), extreme gradient boosting (XGBoost), and the long-short term memory neural
network (LSTM), were assessed for simulating daily runoff over a mountainous river catchment.
The performances with different input scenarios were compared. Additionally, the joint multifractal
spectra (JMS) method was implemented to evaluate the simulation performances during wet and
dry seasons. The results show that: (1) LSTM always obtained a higher accuracy than XGBoost and
SVR; (2) the impacts of the input variables were different for different machine learning methods,
such as antecedent streamflow for XGBoost and rainfall for LSTM; (3) XGBoost showed a relatively
high performance during dry seasons, and the classification of wet and dry seasons improved the
simulation performance, especially for LSTM during dry seasons; (4) the JMS analysis indicated the
advantages of a hybrid model combined with LSTM trained with wet-season data and XGBoost
trained with dry-season data.

Keywords: LSTM; XGBoost; different input scenarios; joint multifractal spectra

1. Introduction

Runoff simulation and forecasting has always been a research hotspot in hydrological
science due to the complex runoff fluctuations and its essential role in guiding water
resource management [1–3]. Runoff generation and routing involve the coupling effects
of meteorological, geographic, geological, soil, and vegetation factors, etc. Some unclear
runoff processes still exist at a catchment scale. Furthermore, a significantly increasing
trend of runoff variation with the intensification of climate change and human activities
has been shown [4,5]. These issues challenge the accuracy of runoff modeling, especially
for runoff with the characteristics of rising and falling sharply in mountain rivers. Besides,
water conservancy projects in mountain rivers are relatively inadequate for flood control
and water supply. The contradiction between water demand and supply has been a long-
standing issue. Consequently, accurate runoff prediction in mountain rivers is especially
critical for alleviating damages by floods and droughts.

Recently, machine learning (ML) methods have shown great potential in runoff simu-
lation and forecasting [6–8]. ML methods can be classified into artificial neural networks,
decision trees and ensemble methods, support vectors machines, Bayesian methods, and
so on [9,10]. Many studies have compared the performances of different ML methods

Water 2023, 15, 1179. https://doi.org/10.3390/w15061179 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15061179
https://doi.org/10.3390/w15061179
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-5456-7470
https://orcid.org/0000-0001-7186-3872
https://doi.org/10.3390/w15061179
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15061179?type=check_update&version=1


Water 2023, 15, 1179 2 of 16

to reveal their applicability in streamflow simulation and forecasting in different catch-
ments. Parisouj et al. [11] showed that support vector regression (SVR) produced higher
accuracy than extreme learning machine (ELM) and feed-forward neural network (FFNN).
Li et al. [12] and Liu et al. [13] concluded that extreme gradient boosting (XGBoost) per-
formed much better than random forest. Long-short term memory neural network (LSTM)
always presented better results than convolutional neural network or traditional machine
learning models [14–16]. Particularly, a LSTM model with one hidden layer can always
satisfy the demand for streamflow forecasting, and obtain a better performance than one
with multiple hidden layers [14,15].

However, there is always no unified guidance for selecting ML methods in order to ob-
tain superior simulation accuracy. Runoff simulation performances of the same ML method
are distinct in different catchments. Nevertheless, the various streamflow simulation and
forecasting performances in different case studies facilitate the comparative analysis of
the efficiency and flexibility of different ML methods, guiding the applicable conditions
of various ML methods. Generally, simulation performances at coarser time scales and
within a shorter lead time are always better than those at finer time scales and within a
longer lead time [12]. The relationship between the watershed area and the simulation
effects of ML models is not obvious [11,13,17]. Besides, ML methods always work well even
in mountainous or snow-dominated watersheds, but perform poorly in low streamflow
regimes [14,18,19].

Benefiting from rapid growth in related studies, some insights into selecting inputs of
ML or feature selection can also be concluded for streamflow forecasting. Moosavi et al. [20]
revealed that input data were the most important factor affecting the forecasting accuracy
when compared to the factors of model type and preprocessing. The factors antecedent
streamflow and rainfall are often selected as the first choice [16,17,21]. Other meteorological
factors, such as temperature, can also be considered in modeling [11]. Global climate
indexes, for example, the Nino index, can facilitate the performance of daily forecasting
under long lead times or monthly forecasting [13,22]. According to hydrologic knowledge,
the impacts of other related input factors, such as vegetation cover and groundwater
storage, have also been explored [23,24].

Besides, a reforecast dataset, including the products of the global forecasting system
model or global flood awareness system, can be useful for improving the performance of
streamflow forecasting [13,25]. Particularly, snow cover area may be essential for predicting
streamflow in snowmelt-dominated basins [11,14]. Thus, the selection of input variables is
of great importance for model construction.

The goal of this study is to analyze the performances of various ML methods with
different input scenarios and training data for simulating daily runoff over a mountainous
river catchment. Three methods, namely SVR, XGBoost, and LSTM, which are under
different classifications of ML methods, were chosen. To analyze the impacts of rainfall
and antecedent streamflow on modeling accuracy, various input scenarios, including two
single-input scenarios and three multiple-input scenarios, were compared. Additionally,
their simulation performances were analyzed during dry and wet seasons. The hypothesis
was that different rainfall–runoff mechanisms during wet and dry seasons would lead
to significant simulationdifferences during different seasons and for different machine
learning methods.

2. Material and Methods
2.1. Study Area and Data Preprocessing

The north tributary of the Ao River (ARNT), a small mountainous catchment in
Zhejiang Province, China, was examined in this study. The Ao River covers 1580.4 km2 with
two main tributaries flowing into the East China Sea. In this study, Daitou Hydrological
Station, a national hydrological station, was selected as the control section, and the basin
area is 346 km2 (Figure 1). The mean annual discharge at the Daitou Station is 16.33 m3/s,
while the maximum discharge is 3680 m3/s and the minimum discharge is 0.57 m3/s. The
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average annual precipitation and temperature in the ARNT catchment is about 2000 mm
and 17.8 ◦C, respectively. Generally, there are two rainy periods each year, which are caused
by spring–summer monsoons (March to June, 42% of annual precipitation) and typhoons
(August to September, 29% of annual precipitation). Typhoons always bring concentrated
and extreme rainfall and cause extreme floods. By contrast, when there are fewer typhoons
in the year, drought is more likely to occur. Thus, it is of equal importance to study the
hydrological processes of both wet seasons (April to October) and dry seasons (November
to March) in the ARNT catchment thoroughly.
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Figure 1. North tributary of the Ao River (ARNT) catchment.

The data used in this study include daily precipitation data from six rainfall stations
noted as green circles and daily discharge data from one hydrological station (Daitou
Station) noted as a red triangle in Figure 1. The study period is from 1990 to 2013, before
the Shunxi Reservoir, the most important hydraulic project in the ARNT catchment, was
completed. The areal average rainfall was calculated by the Thiessen polygon method.
For constructing runoff simulation models, all the data were divided into three datasets:
data measured over 14 years (1991–2004) for training, five years (2005–2009) for validation,
and four years (2010–2013) for testing. Five input scenarios, including two single-input
scenarios and three multiple-input scenarios, are listed in Table 1. Pi denotes the daily
rainfall from one rainfall station. P is the areal average rainfall. The subscript t stands for
the time.

Table 1. Five input scenarios for three machine learning methods.

Input Scenarios Input Variables

I Qt−1
II Pt
III P1,t, P2,t, P3,t, P4,t, P5,t, P6,t
IV Pt, Qt−1
V P1,t, P2,t, P3,t, P4,t, P5,t, P6,t, Qt−1
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2.2. Support Vector Regression (SVR)

SVR is the application of the SVM (support vector machine; SVM) in regression
problems based on the rule of structural risk minimization [26]. Owing to the robust perfor-
mance and simple operation of SVR, it has been a classical machine learning method in
streamflow forecasting [27,28]. The regression function of SVR can be described as follows:

y = wφ(x) + b (1)

where w and b are the weights and bias, respectively. φ(·) is the mapping function mapping
from the input space, x, to a high dimensional space.

To allow a predefined error, ε, in the regression function, the ε-insensitive loss function
is defined:

Lε(d, y) = |d− y|ε = max(0, |d− y| − ε) (2)

The loss is zero when the deviation between target values, d, and output values, y,
is within the tolerance error. SVR aims at finding an optimal hyperplane, which is as flat
as possible with the minimum loss function [29]. Hence, the optimization problem can be
written as:

min f =
1
2
‖w‖2 + C

N

∑
i=1
|d− y|ε (3)

where the minimum of the penalty term, ‖w‖2, ensures the flatness of the regression
function. N is the sample size. C is a constant that determines the trade-off between the
flatness and deviations above the pre-defined threshold.

2.3. Extreme Gradient Boosting (XGBoost)

XGBoost, proposed by Chen and Guestrin [30], is an improved gradient-boosting deci-
sion tree algorithm (GBDT). The rapid and accurate learning makes XGBoost a superior ma-
chine learning model in data sciences, including hydro-meteorological modeling [13,31,32].
XGBoost is a tree ensemble model using K additive models, and its predicted values can be
written as:

y =
K

∑
k=1

fk(x) (4)

where fk corresponds to a tree structure with T leaves and leaf weights, w.
A major difference between XGBoost and GBDT is that they use different objective

functions. A regularization term is added for the XGBoost model, expressed as:

Obj =
N

∑
i=1

l(yi, di) +
K

∑
k=1

Ω( fk) (5)

where l is the loss function measuring the distance between the predicted value, y, and
target value, d, such as the mean-square error used in this study. The second-order Taylor
expansion is performed in the loss function to ensure its accuracy. The second term,

K
∑

k=1
Ω( fk), sums up the complexity of each base function, f, to avoid overfitting, defined as:

Ω( f ) = γT +
1
2

λ‖w‖2 (6)

where γ and λ are penalty parameters, controlling the number of leaves, T, and the L2 norm
of the leaf weights, w, respectively.

2.4. Long-Short Term Memory Neural Network (LSTM)

LSTM is a modified version of the recurrent neural network, which deals with long-
term dependency in sequences by constructing the memory cell, C, and hidden state, h, [33].
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The advantage of learning from long-term dependent time series makes LSTM successful
in many fields, such as rainfall–runoff modeling in hydrology [7,34]. LSTM has a chain of
repeating modules of LSTM cells, transferring the memory cell, C, and hidden state, h, to
the next LSTM cell. Each LSTM cell is composed of a forget gate (ft), input gate (it), and
output gate (ot). The architecture of a LSTM cell is shown in Figure 2.
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Figure 2. Architecture of LSTM cell.

The forget gate, ft, determines the extent to which information is discarded for the
memory cell, C, defined as:

ft = σ
(

W f · [ht−1, xt] + b f

)
(7)

where σ is the sigmoid activation function. W and b are the weights and bias, respectively.
The subscript f stands for the forget gate. X is the input vector.

The input gate, it, is designed to add new information for updating memory cell, Ct.
The calculation formulas can be

it = σ(Wi · [ht−1, xt] + bi) (8)

C′t = tanh(Wc · [ht−1, xt] + bc) (9)

Ct = ft · Ct−1 + it · C′t (10)

where tanh represents the hyperbolic tangent activation function. The subscripts i and c
denote the input gate and new candidate value, C′t, respectively.

The output gate, ot, outputs the value at each moment, t, and is obtained by:

ot = σ(Wo · [ht−1, xt] + bo) (11)

The output gate, ot, and memory cell, Ct, determines the hidden state, ht, which is
expressed as:

ht = ot · tanh(Ct) (12)

In this study, the mean squared error cost function was set to measure how well the
model fit the training data.

2.5. Bayesian Optimization

Bayesian optimization is an efficient global optimization algorithm for identifying
the optimal hyperparameters in many machine learning applications when the objective
function is non-convex and multimodal [35–38]. Bayesian optimization explores for the
next parameter set based on sequential optimization. In the exploration, Baye’s theorem
is used:

p( f |D) =
p(D| f )p( f )

p(D)
(13)
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where f is the objective function, and the accuracy rate of the validation set was used
in this study. D = {χ, f (χ)} is the pair of hyperparameters, χ, and its objection function
value. The posterior distribution, p(f |D), is obtained through the prior distribution, p(f ),
and the likelihood function, p(D|f ), which are calculated according to the samples of
the hyperparameters, χ. According to two critical procedures, namely the probabilistic
surrogate model and the acquisition function, the new samples are added to update the
posterior distribution at each iteration.

The probabilistic surrogate model describes these probability distributions, and deter-
mines where the hyperparameters are located corresponding to the maximum or minimum
of the objection function. The acquisition function (e.g., the expected improvement) locates
the candidate points where the uncertainty in the surrogate model is large or where the
model prediction is high. Then, the candidate points are added to the dataset, D, updating
the probabilistic surrogate model until the maximum iterations are reached.

2.6. Evaluation Criteria

The performances of various simulated models were evaluated using three criteria,
namely Nash–Sutclife efficiency (NSE) [39], root-mean-square error (RMSE), and correlation
coefficient (CC), which are defined as follows:

NSE = 1− ∑n
i=1 (di − yi)

2

∑n
i=1 (di − d)

2 (14)

RMSE =

√
1
n∑n

i=1 (di − yi)
2 (15)

CC =
∑n

i=1 (di − d)(yi − y)√
∑n

i−1 (di − d)
2
√

∑n
i−1 (yi − y)2

(16)

where yi and di are the forecasting value and observation at time, i, respectively, n is
the length of the observations, and y and d are the average of the simulation values
and observations.

Besides, the joint multifractal spectra (JMS) method was also used to provide a compre-
hensive evaluation of the simulation performances during wet and dry seasons. The JMS
method is designed with the principle that a well-simulated runoff series should reproduce
the fractal characteristics of an observed runoff series. The spectra contain information on
high-flow and low-flow simulation without manual intervention. The details of the JMS
method can be found in [40].

3. Results and Discussion

The comparison of SVR, XGBoost, and LSTM streamflow-simulating models was
assessed with single- and multiple-input scenarios. Furthermore, the simulation perfor-
mances during wet and dry seasons were evaluated to explore the impacts of rainfall–runoff
mechanisms at different periods.

3.1. Simulation Performances with Single-Input Scenarios

The antecedent streamflow combined with the areal rainfall as a single-input variable
were fed to the three simulating models, respectively. Their performances are shown in
Table 2 according to the criteria evaluation of NSE, RMSE, and CC. Except for LSTM with
the input of areal rainfall, none of them could obtain satisfactory results. The obvious
contrast between the input variable, antecedent streamflow and areal rainfall, for the LSTM
model suggests the significant impact of rainfall on streamflow fluctuation rather than the
impact of antecedent streamflow. When the areal rainfall was fed to the LSTM model, fluc-
tuations of streamflow were captured relatively well, although the peak flow was always
overestimated. The simulated streamflow of the LSTM model with the antecedent stream-
flow input could not surpass 100 m3/s without the rainfall driving force (Figures 3 and 4).
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Besides, the simulated streamflow during low-flow periods was significantly higher than
the observed streamflow overall.

Table 2. Performances of three simulated models with a single-variable input.

Input
Scenario Model

Training Validation Testing

NSE RMSE
(m3/s) CC NSE RMSE

(m3/s) CC NSE RMSE
(m3/s) CC

I
SVR 0.26 31.55 0.51 0.22 63.08 0.47 0.23 27.79 0.48

XGBoost 0.32 30.21 0.56 0.23 62.69 0.50 0.27 26.95 0.53
LSTM 0.09 34.83 0.31 0.04 69.97 0.21 0.08 30.34 0.29

II
SVR 0.11 34.46 0.47 0.13 66.46 0.63 0.09 30.12 0.37

XGBoost 0.22 32.29 0.47 0.22 63.01 0.55 0.10 29.92 0.37
LSTM 0.69 20.42 0.83 0.68 40.10 0.83 0.64 19.09 0.83
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Despite the poor performances of SVR and XGBoost with single-input scenarios, both
of them, with the antecedent streamflow input variable, were much better than those with
the input of areal rainfall. This indicates the significant difference between neural network
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methods and support vector machine methods, and decision trees and ensemble methods
for exploring the input and output relationship.

3.2. Simulation Performances with Multiple-Input Scenarios

Table 3 presents the performances of the three models with multiple-input scenarios
during the training, validation, and testing periods. Except for the SVR and XGBoost
models with the input scenario III, all the models with multiple-variable inputs were better
than those with a single-variable input. This indicates that the impacts of various inputs
can be different for different models, for example, that of the antecedent streamflow for the
SVR and XGBoost models rather than for the LSTM model. Obviously, LSTM outperformed
the other machine learning methods with different input scenarios, demonstrating its great
potential in streamflow prediction. Both the XGBoost and SVR models still performed
unsatisfactorily, with NSE values of less than 0.40 during the testing periods, even though
more variables were added for the input.

Table 3. Performances of three simulated models with multiple-variable inputs.

Input
Scenario Model

Training Validation Testing

NSE RMSE
(m3/s) CC NSE RMSE

(m3/s) CC NSE RMSE
(m3/s) CC

III
SVR 0.12 34.34 0.48 0.14 66.25 0.63 0.10 30.03 0.37

XGBoost 0.25 31.60 0.51 0.31 59.13 0.61 0.08 30.40 0.35
LSTM 0.70 20.08 0.84 0.72 38.09 0.85 0.67 18.22 0.84

IV
SVR 0.35 29.57 0.60 0.32 58.70 0.58 0.31 26.34 0.56

XGBoost 0.48 26.36 0.70 0.40 55.07 0.70 0.37 25.02 0.62
LSTM 0.72 19.30 0.85 0.68 40.32 0.83 0.70 17.27 0.85

V
SVR 0.35 29.56 0.60 0.32 58.91 0.57 0.31 26.31 0.56

XGBoost 0.61 22.82 0.78 0.54 48.58 0.75 0.33 25.85 0.60
LSTM 0.75 18.23 0.87 0.72 37.96 0.85 0.74 16.29 0.87

For the LSTM models, the spatial distribution of rainfall in the catchment improved
the simulation accuracy significantly, whether this was from the comparisons of input
scenarios II and III, or IV and V. The model with input scenario III improved the simulation
performance by increasing the NSE by 5.20%, decreasing the RMSE by 4.59%, and increasing
the CC by 1.09%, compared with input scenario II for the testing periods. However, the
LSTM model with input scenario III always underestimated the recession limbs during
floods, and overestimated the fluctuations during low-flow periods (Figures 5 and 6).
Another reason for its weakness was that it sometimes maintained a relatively fixed flow
during rainless periods. In addition, scenario V for the testing datasets improved the model
by increasing the NSE by 4.70%, decreasing the RMSE by 5.66%, and increasing the CC by
2.23%, compared with scenario IV. The LSTM model with input scenario V showed the
best performance especially in simulating the peak flow and the recession limbs of floods.
Nevertheless, the trained model still could not capture the peak flow when the discharge
was over 600 m3/s. This may have resulted from the relatively coarse temporal resolution
for rainfall homogenization and the inadequate data for high flows over 600 m3/s.

Although the information of rainfall distribution slightly improved the performances
of the XGBoost and SVR models for training, the added information deteriorated the
simulation accuracy for testing according to the comparison of their performances between
input scenarios II and III. This suggests the inferior ability for generalization of the XGBoost
and SVR models for simulating rainfall–runoff processes. Furthermore, the XGBoost models
always performed better than the SVR models.
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Figure 5. Scatter plots between observations and simulations of discharge during training (a–c),
validation (d–f), and testing periods (g–i) for LSTM models with input scenarios III (a,d,g), IV (b,e,f),
and V (c,f,i).

3.3. Simulation Performances during Wet and Dry Seasons

Taking the best input scenario as an example, Table 4 shows the simulation perfor-
mances of these three models during wet and dry seasons. The significantly different
performances between wet and dry seasons demonstrated the various rainfall–runoff re-
lationships explored by these models. The LSTM model during wet seasons performed
much better than the XGBoost and SVR models (Figures 7 and 8). However, its NSE value
during dry seasons was rather low, being less than 0.40, for testing. It was sensitive to the
minor disturbances of streamflow, and overestimated the peak flow during dry seasons
(Figures 9 and 10). This finding agrees with that of Kim et al. [19], which also showed that
better performance can be obtained in the high-flow regime for LSTM. However, other
machine learning methods, such as SVR and XGBoost, may not obey this rule. Specially,
the XGBoost model captured the streamflow fluctuations fairly during dry seasons, with
an NSE value of 0.58 for testing. Additionally, it always underestimated peak flows during
wet seasons with an NSE value of 0.30 for testing. The SVR model underestimated runoff
peaks during both dry and wet seasons and overestimated low flow during wet seasons.
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Figure 10. Time series plots for observed and simulated streamflow during testing dry periods.

3.4. Classification of Wet and Dry Seasons for Simulation

Figure 11 shows the performances of the LSTM and XGBoost models with input
scenario V trained with different datasets classified by wet and dry seasons, respectively.
Moreover, all simulated data combined with wet and dry seasons were assessed according
to the models trained with distinct datasets. Similar with the models trained with all
datasets (Table 4), XGBoost trained with datasets during dry seasons and LSTM trained
with datasets during wet seasons always obtained higher accuracy than XGBoost for wet
seasons and LSTM for dry seasons, respectively, in terms of NSE and CC. This may be
owed to the different model structures between artificial networks and decision trees
methods. The classification of different datasets did not improve the simulation accuracy
of the XGBoost models, basically. Nevertheless, the LSTM models trained with different
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datasets were better than the LSTM model trained with all datasets, especially during the
dry seasons. Although the classification of the datasets reduced the amount of data for
training, the improved performance suggests that the distinction of various rainfall–runoff
processes is beneficial for LSTM modeling.
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Figure 11. Comparison of LSTM and XGBoost models trained with different datasets (a–c) for
training, (d–f) for validation, and (g–i) for testing.

Moreover, two models were selected to be analyzed with the JMS method. The first
model was the LSTM model trained with data from all years. The second model was a
hybrid model which was combined by the LSTM model trained with wet-season data
and the XGBoost model trained with dry-season data. The simulated runoff series of
both models passed the verification of multifractality within the range of the temporal
resolution of 1–8 days, which was narrower than that of the lumped and distributed models
(1–16 days) [40], reflecting that both models performed worse than physically based models
do in simulating the long-term autocorrelation of runoff.

Figure 12 displays the multifractal spectra of the runoff series of two models. Table 5
shows the metrics of JMS. Generally, the hybrid model had better spectra for being closer
to a 45◦ line for training, validation, and testing. All spectra indicated that the models
performed well in high-flow simulation and performed unsatisfactorily in low-flow simu-
lation, which agrees with the metrics presented in Table 4 and Figure 11. The spectra of the
hybrid model for testing were wide. This indicates that the hybrid model was able to catch
the magnitude and overall trend, but failed to simulate the fluctuations accurately. All
spectra were in the upper-left part, reflecting the overestimation of both models, especially
of the LSTM model, for wet seasons.

Figure 13 displays the detailed multifractal spectra of the runoff series of two models
with selected q[O] and q[S]. The structures of the spectra of the two models for training and
validation were similar and indicated satisfactory performances. The multifractal spectra of
the hybrid model for testing illustrated the weakness in simply combining the runoff series
of two models. Specifically, due to the small area and meteorological features of the ARNT
catchment, the runoff was sensitive to rainfall events, and the regression of runoff was
similar for wet and dry seasons. By providing totally different simulations of hydrological
processes, the hybrid model failed to reproduce consistent fractal characteristics.
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Table 5. Metrics of the joint multifractal spectrum of observed and simulated runoff series in three
cases, including the slopes (k) of the fitted line of JMS and the correlation coefficients (r2) of JMS’s
α[O] and α[S] calculated from the fitted second-order polynomial used to represent the width of JMS.

k/r2 Training Validation Testing

LSTM 3.29/0.79 1.97/0.64 1.90/0.93
Hybrid model 2.48/0.76 1.94/0.81 1.06/0.65
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4. Conclusions

This study compared three machine learning methods, SVR, XGBoost, and LSTM, for
daily runoff simulation in the north tributary of the Ao River (ARNT) catchment, China.
Three evaluation criteria, namely NSE, RMSE, and CC, were selected. Five input scenarios,
including spatial or areal rainfall, and antecedent runoff, were fed to these models to analyze
their sensitivities to runoff fluctuations. Datasets were also divided according to wet and
dry seasons for assessing their performances in different rainfall–runoff mechanisms.
Furthermore, the JMS method was implemented to analyze the performances of the best
models trained with all datasets, and distinct wet and dry season datasets, thoroughly.
Several detailed conclusions can be drawn as follows:

(1) The performance of LSTM models was always better than that of XGBoost, followed
by that of SVR. The models with a gauged rainfall and antecedent streamflow input
scenario obtained the best accuracy, indicating the roles of the spatial distribution of
rainfall and antecedent water storage on streamflow fluctuations.

(2) The impacts of input variables were different for SVR, XGBoost, and LSTM. The LSTM
with only rainfall information as an input, and the XGBoost and SVR models with
only antecedent streamflow as an input, performed much better than the LSTM model
with only antecedent streamflow as an input and the XGBoost and SVR models with
only rainfall information, respectively.

(3) Although LSTM always yielded better performances, XGBoost showed relatively high
accuracy compared with LSTM during dry seasons when trained with all datasets.
Moreover, the classification of datasets according to wet and dry seasons improved the
performances of LSTM especially for dry seasons. This suggests that different rainfall–
runoff mechanisms dominated the runoff processes during wet and dry seasons.

(4) The LSTM and a hybrid model were analyzed with the JMS method. Overall, the
hybrid model outperformed the LSTM model. However, the fractal characteristics of
the hybrid model were not consistent throughout the simulation period.
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