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Abstract: Land cover change (LCC) and climate change (CC) impacts on streamflow in high elevated
catchments are a great challenge to sustainable management and the development of water resources.
This study evaluates the possible future impacts of both land cover and climate change on the
streamflows in the Mohmand Dam catchment, Pakistan, by utilizing the semi-distributed hydrological
model known as the Soil and Water Assessment Tool (SWAT), along with the latest Coupled Model
Intercomparison Project phase 6 (CMIP6) dataset of different global climate models (GCMs). The
downscaling of the precipitation and temperature data was performed by the CMhyd software.
The downscaled precipitation and temperature projections from the best performing GCM, out of
four GCMs, under two shared socioeconomic pathways (SSP2 and SSP5) and future land cover
conditions were forced in a calibrated hydrological model (SWAT model). Compared to the baseline
period (1990–2015), the outputs from the selected GCM indicated an increase in the average monthly
precipitation, and the maximum and minimum temperature in the study area under both the SSP2
and SSP5 scenarios, by the end of the 21st century. It is expected that the increase in precipitation for
the period 2016–2100 is 10.5% and 11.4% under the SSP2 and SSP5 scenarios, respectively. Simulated
results from the SWAT model showed significant impacts from the projected climate and land cover
changes on Mohmand Dam flows that include: (a) an increase in the overall mean annual flow
ranging from 13.7% to 34.8%, whereas the mean monthly flows of June, July and August decreased,
and (b) a shift in the peak flows in the Mohmand catchment from July to June. It is concluded that
the projected climate changes can substantially influence the seasonality of flows at the Mohmand
Dam site. Climate and land cover change impacts are significant, so project planners and managers
must include CC and LCC impacts in the proposed operational strategy.

Keywords: climate change; land use classification; statistical downscaling; land cover change;
Mohmand Dam; GCMs

1. Introduction

For the production of food, the generation of electricity and the sustainable develop-
ment of any nation, a stable water supply is essential [1]. More than half of the world’s
water needs are being met by rivers [2]. However, river flows are susceptible to long-term
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changes in temperature and precipitation, especially in areas where flows are dominated by
snowmelt [3,4]. Variations in precipitation typically have an impact on the amount of snow
that accumulates, which can ultimately have an impact on runoff volume, whereas varia-
tions in temperature typically have an impact on the seasonality of the water supply [5,6].

The Hindukush, Karakoram and Himalaya (HKH) mountainous region has a signifi-
cant impact on both the Asian and global atmospheric circulation systems, due to its tall
mountains and vast cryospheric area [7]. Excessive groundwater pumping is leading to
negative agro-economic effects [8,9]. The sub-basins of the UIB undergo several atmo-
spheric circulation systems, with the southeast monsoon circulation system having a strong
influence on the southeastern (SE) half and the westerlies disturbances having a significant
impact on the Hindukush range (Gilgit, Chitral and Swat) [10–15]. The temperature at
the UIB is consistently rising, but the rate of this rise varies among the sub-basins [15–25].
Sub-basins controlled by the monsoon exhibit a persistent decline in precipitation, while
high-altitude sub-basins located in westerly dominated belts have not seen a clear trend of
increasing or decreasing precipitation [13,16,24–26]. To anticipate future water resources
in the context of climate change, it is necessary to examine the projected effects of cli-
mate change on the future hydrological responses at the sub-basin scale. GCMs are the
most sophisticated coupled numerical models for predicting the general circulation of
the Earth’s atmosphere, but their coarse spatial resolutions make them less accurate at
the basin scale [27–34]. Statistical or dynamic downscaling (DD) techniques are used to
downscale the outputs of GCMs, to make them appropriate and representative [31]. SWAT
is a powerful modeling tool that can be used to assess the impact of climate change and
land use change on natural resources, such as soil, water and vegetation. SWAT can help
identify areas where land use changes may have negative effects on water quality or soil
health and inform decisions about how to manage land use in a sustainable manner. By
using SWAT to model different scenarios and assess the potential impacts of various man-
agement strategies, researchers and decision-makers can develop more effective policies
and practices for managing our natural resources in a changing world.

It is expected that the average annual temperature and precipitation in the UIB will
rise by 0.3–4.8 ◦C and 19–113%, respectively, by the end of the 21st century [32]. This
has led to a number of researchers predicting how future climate change may affect the
hydrological responses of several sub-basins in the UIB, located in the Karakoram and
Himalayan ranges [8,23,33–38]. For instance, Garee et al. [39] came to the conclusion that
the Karakoram range’s river flow might be 10% higher at the end of the century. According
to Mahmood et al. [35], the Jhelum River watershed in the Himalayan range might see
a 15% increase in its annual average river flow. There is a lack of literature describing
the potential effects of land cover and climatic changes on the water resources of the UIB
sub-basins located in the Hindukush Mountains. Moreover, simple (statistical) lumped
models were employed to evaluate the hydrological response of the UIB sub-basins that
were under study [35,37]. Rarely were the physical characteristics of the UIB’s snowy
or glaciated sub-basins described [39,40]. The Swat River basin, which has the highest
water output available among all of the UIB sub-basins, has not yet been the subject of any
studies that examine how future climate change would affect its hydrological response [14].
This study seeks to address the gap in the literature, by examining the effects of expected
changes in precipitation, temperature and land cover attributes on the river flow of the
Mohmand Dam catchment.

The primary scientific goals of this investigation were: (1) to assess historical water
resource availability and land cover change trends for the Mohmand Dam catchment in
Pakistan and (2) the assessment of probable impacts of climate and land cover change on
the water resources of the Mohmand Dam catchment area using the output of GCMs under
two different shared socioeconomic pathways (SSPs 2 and 5). Additionally, assessments
were made of the temporal variations in peak flows, as well as previous and prospective
changes in the land cover. Section 2 of this document discusses the data utilized in this
investigation and the study area. The methodology of statistical downscaling used in this
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study is briefly described in Section 3, along with the hydrological model (SWAT) and its
calibration and validation. The findings and discussions are presented in Sections 4 and 5,
while Section 6 provides the conclusions. The results of this inquiry will be beneficial to
water resource managers, policy makers and hydrologists.

2. Study Area and Datasets
2.1. Study Area

The Mohmand Dam (also known as the Munda Dam) is under construction on the
Swat River about 5 km upstream of the Munda Headworks, which is located about 48 km
northeast of Peshawar (the provincial capital of Khyber Pakhtunkhwa). The total catchment
area of the Swat River at the Mohmand Dam site is 13,956 km2 (Figure 1). The Mohmand
Dam will be located at latitude 34◦21′ N and longitude 71◦32′ E. The main purposes of
the dam construction at Munda are the storage of water for irrigation and hydropower. In
addition, flood mitigation will be an added benefit from the proposed dam. The Swat River
joins the Kabul River at Charsadda, about 32 km downstream of the Munda Headworks,
and is one of the main left bank tributaries of the Kabul River.

Figure 1. Location map of the Mohmand Dam catchment area.

The Swat River initiates in the Kalam through the confluence of the Gabral and
Ushu Rivers. The Amandara and Panjkora Rivers are its primary tributaries, with a large
number of minor left and right tributaries. From north to south, the catchment area is
predominantly mountainous, with heights varying between 360–4500 m above the mean
sea level. Annual rainfall averages between 375 mm and 1250 mm. Glaciers can be seen
over 4000 m. Snowmelt has a significant impact on the runoff of the Swat River from May
to June, while monsoons have an impact from July to September. The whole catchment
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area of the proposed Mohmand Dam project is located between latitudes 34◦20′ N and
35◦56′ N, and longitudes 70◦59′ E and 72◦47′ E. Figure 1 shows the digital elevation model
(DEM) of the catchment area on the map.

In the Swat River basin the annual average precipitation gradient runs from north to
west, which shows that the spatial and temporal distribution of precipitation varies greatly
over the study area [40]. The temperature of the basin ranges from moderate (in the north)
to subtropical (in the southern parts). According to the most recent version (V06) of the
Randolph Glacier Inventory (RGI 6.0), there are 512 glaciers overall in the Swat River basin
and the total percentage of the glaciated area in the Swat basin is approximately 2.54%.
Snowmelt dominates the river discharge in the northern portion of the basin, while liquid
precipitation (rainfall) provides the majority of the flow in the southern portion [16,23].
Particularly in the northern regions of the basin, the majority of the winter precipitation in
the region takes the form of snow. The Swat River at the Chakdara gauge has a mean annual
discharge of 193 cumecs measured at the exit of the basin, based on 54 years (1964–2015)
of river flow data provided by Water and Power Development Authority (WAPDA). Peak
discharge is known to occur around July. Figure 2 shows the yearly maximum temperature,
yearly minimum temperature and annual precipitation gradient.

Figure 2. Yearly maximum temperature, yearly minimum temperature and annual precipitation
gradient.

2.2. Datasets
2.2.1. Soil Data

Soil data is considered as a significant input variable for SWAT model setup. For this
model, many types of soil surface texture, chemical and physical properties, including bulk
density, the hydraulic conductivity of the soil and the available moisture content (AMC)
are required. The IPCC Global soil classification dataset was used to prepare the soil map
of the area. A total of seven soil classes were observed in the Mohmand Dam catchment
area as shown in Figure 2. Other details of these classes, such as soil name, texture and
distribution of the soil in the study area, are given in Table 1. As observed in Figure 3,
Lithosols (I-B-U-2c) soil is the prominent soil type, as it covers 46.7% of the total catchment
area, followed by Eutric Cambisols that covers 32% of the total area.
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Table 1. Statistics on the soil distribution in the Mohmand Dam catchment area.

Sr. No. Soil Name Texture Area (km2) Weightage of Area

1 I-B-U-2c-3503 Lithosols LOAM 6517.53 46.7
2 I-X-c-3512 Lithosols LOAM 919.52 6.6
3 Be70-2-3a-3667 Haloic Cambisols CLAY_LOAM 1043.86 7.5
4 Be73-2c-3673 Eutric Cambisols LOAM 4464.06 32.0
5 I-B-U-3712 Calcaric Fluvisol LOAM 523.71 3.8
6 Xh18-bc-3870 Haplic Xerosols SILT_LOAM 220.86 1.6
7 GLACIER-6998 Gleysols UWB 266.75 1.9

Figure 3. Soil map of the Mohmand Dam catchment area.

2.2.2. GCMs-Based Climate Data

The simulated precipitation (Pr), maximum temperature (Tmax) and minimum tem-
perature (Tmin) data of four GCMs under two SSP scenarios (2 and 5) were downloaded
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from the Coupled Model Intercomparison Project phase 6 (CMIP6). Then, outputs of the
selected GCMs were downscaled to undertake the analysis on comparable resolutions at
the basin scale for the projected temperature and precipitation. The GCMs were selected
considering the spatial resolution, vintage, validity and representativeness of the simula-
tions by following the practice of Babur et al. [36]. In the present analysis, out of the four
selected GCMs, one better performing GCM was selected based on its ability to simulate the
precipitation and temperature during the baseline period (1990–2015). Different statistical
downscaling techniques for precipitation and temperature were compared to select the
best performing technique for each, which was further used to simulate streamflows in the
Mohmand Dam catchment area under climate change conditions. The simulated climatic
variables (Tmax, Tmin and Pr) of the selected GCMs were downloaded for medium (SSP2)
and high (SSP5) intensities. The descriptions of the GCMs used in the present study are
presented in Table 2. In this study, we did not include the low radiative forcing scenario
(SSP1). In the current era of industrialization, an immediate drastic decrease in the emission
of greenhouse gases is very difficult and, therefore, it is unlikely to meet this mitigation
scenario [41]. The medium stabilization forcing scenario (SSP2) and the very high radiative
forcing scenario (SSP5) were considered. The projected GCM-based climatic variables un-
der SSP2 and SSP5 were downloaded for the period of 1990–2100, which was then divided
into the baseline period (1990–2015) and future time period (2016–2100).

Table 2. Features of GCMs selected for this study.

No. Model Name Institute Nominal Resolution Release Year

1
MIROC6 (Model for

Interdisciplinary Research on
Climate, 6th version)

National Institute for
Environmental Studies and the

Agency for Marine-Earth
Science and Technology

(MIROC), Japan

250 km 2017

2
MPI-ESM1-2-HR (Max Planck
Institute Earth System Model,
version 1.2, high resolution)

Max Planck Institute for
Meteorology, Germany 100 km 2017

3

ACCESS-CM2 (Australian
Community Climate and Earth

System Simulator-Coupled
Model, version 2)

Australian Community
Climate and Earth System

Simulator-Coupled
Model, Australia

250 km 2016

4
MRI-ESM2-0 (Meteorological

Research Institute Earth System
Model, version 2.0)

Meteorological Research
Institute (MRI) of the Japan

Meteorological Agency (JMA)
100 km 2017

2.2.3. Flow Data

The flow data of the Chakdara station and Mohmand Dam site for the time periods 1964
to 2015 and 1999 to 2006, respectively, were obtained from the Water and Power Development
Authority (WAPDA), which is a government-owned public utility responsible for managing
the country’s water and power resources. The data for these sites showed that water levels
are highest in the month of July, which is considered the peak flow month. The average flow
at the Chakdara and Mohmand Dam stations is 193 and 227.4 cumecs, respectively.

3. Methodology
3.1. Statistical Downscaling

The climate projections of the four different models were downloaded under scenarios
SSP2 and SSP5. The CMhyd model was used for bias correction of the GCM-based pro-
jected precipitation and temperature estimates at the river basin scale [33,40]. It has been
successfully utilized to overcome the bias between GCM-based simulated and gauge-based
observed climatic variables in different regions of the world [42]. Anandhi et al., [42]
have documented that the CMhyd model is a reliable and robust method to downscale
the output of the GCMs for any hydro-climatological studies at the river basin scale. The
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CMhyd model provides different statistical downscaling techniques for both precipitation
and temperature. In this study, these different approaches were used to downscale the
outputs of the GCMs over the future time horizon (2016–2100), under SSP2 and SSP5
conditions. In this context, the time series data of daily projected maximum and minimum
temperatures were estimated by integrating the daily precipitation and maximum and
minimum temperature during the baseline period (1990–2015) and the projected estimates
of the GCMs.

3.2. Description and Setup of the SWAT Model

The soil and water assessment tool (SWAT) is a semi-distributed hydrological model
that simulates the impacts of climate change and land management practices on river
discharge, water quality and sediment yield [36]. It subdivides a river basin into sub-
catchments or hydrological response units (HRUs), and is computationally capable of
estimating snow and glacier melt contributions by using a temperature index algorithm
(TIA). The SWAT model was used to simulate the river discharge at the Mohmand Dam
site under two scenarios: (a) climate change only and (b) land cover and climate change.

The input parameters needed to run the SWAT model were topography, climate, land
cover, soil and land use management data. The Mohmand Dam catchment was subdivided
into three sub-catchments and 71 HRUs were generated on the basis of land cover and
soil type. While, to account for the orographic effects, each sub-catchment was split into
10 elevation bands.

3.3. Calibration and Validation of the SWAT Model

The calibration and validation of the SWAT model were conducted by using the
SWAT calibration and uncertainty program (SWAT-CUP), by following Garee et al. [8].
The uncertainty of the model parameters and its performance were checked by using the
sequential uncertainty fitting (SUFI-2) in the SWAT-CUP. The best fit values for the sensitive
parameters were obtained by running the SWAT-CUP at 10,000 iterations during model
calibration. The monthly flow data observed at the Mohmand Dam site during 1999–2002
were considered for the calibration period, while the observed data during 2003–2005 were
used for the validation of the simulated results.

Model Performance Evaluation

The performance of the SWAT model was assessed by using the percent bias (PBIAS),
the coefficient of determination (R2) and the Nash–Sutcliffe efficiency (NSE) evaluation
indices [43]. The range of R2 is −1 to 1, the higher value of R2 indicate better performance
of the simulated results. The values of NSE vary from 0 to 1, higher values of NSE indicate
less error in the simulation and values >0.50 are acceptable [44]. The values of PBAIS
ranging between −15% < PBIAS < +15 are acceptable [36]. The mathematical expressions
of R2 and NSE are given below:

R2 =

[
∑
(
Qm −Qm

)(
Qs −Qs

)]2

∑
(
Qm −Qm

)2
∑
(
Qs −Qs

)2 (1)

NSE = 1− ∑
(
Qm −Qs

)2

∑
(
Qm −Qm

)2 (2)

where, Qs, Qm, Qm, and Qs stand for simulated discharge, measured discharge, average
simulated discharge and average measured discharge respectively.

3.4. Land Cover Scenarios and Validation of Land Cover Prediction

In this study, past and future land cover trends were also discussed by preparing land
cover maps of the past years 1995, 2010, 2015, 2018 and 2021 using Landsat imagery and
then, the areas were plotted to estimate the change in each class in different years. While
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the future land cover maps were prepared for trend analysis and for input into the SWAT
model to incorporate future land cover conditions, along with future climate conditions.
The land change modeler (LCM) imbedded in the TerrSet was used to simulate future land
cover maps. A combined Markov and CA (CA–Markov) model was used in the present
study to predict the land cover for 2040, 2070 and 2100. The model was run in two steps
using the Markov and CA–Markov module.

3.4.1. Markov Chain Analysis

A tool for predictive change modeling, Markov chain analysis (MCA), is a general
macroscopic stochastic modeling procedure. Future developments are predicted using
information from the past. If an area has been split into a number of cells, each of which
represents a particular form of land use at a given moment, the MCA calculates the chance
that a cell will change from one land use class to another within a certain amount of time,
based on observed data between time periods. A transition probability is the likelihood of
moving from one condition to another. The MCA creates a transition matrix that includes
the amount of projected changes in the pixels, as well as the likelihood that each land cover
class could shift to another [45]. A Markov transition matrix P can be expressed as follows:

∥∥Pij
∥∥ =

∥∥∥∥∥∥
P1,1 P1,2 P1,N
P2,1 P2,2 P2,N
PN,1 PN,2 PN,N

∥∥∥∥∥∥ (0 ≤ Pij ≤ 1) (3)

where, Pij = the land cover type of the first time period and second time period and P = the
probability from land use type 1 to land use type 2. After a certain number of time units, a
series of conditional probability images, also known as transitional potential maps, were
created. These images indicate the likelihood that each land cover type will be present at
each pixel. The reasons for the land cover change are not taken into account in Markov
analysis. Another significant issue with Markov analysis is that it is spatially insensitive,
providing no sense of geography. Cellular automata are therefore, employed to provide the
modeling process with a spatial component.

3.4.2. CA–MARKOV

Cellular automata and a Markov chain-based built-in module named CA–MARKOV
from the TerrSet package were used to forecast the future land cover image. A land cover
prediction model called CA–MARKOV combined the cellular automata, the Markov chain,
multi-criteria and the multi-objective land allocation (MOLA) to add spatial contiguity and
information on the anticipated geographical distribution of the transitions into the Markov
chain analysis. This is how the algorithm operated: the transition regions file contained
the projected amount of land cover change from each existing category to each category
in the next time period as determined by a Markov chain analysis of the two previous
land use maps. The initial land cover picture was used to start the change simulation (the
subsequent land cover image was utilized for the Markov chain analysis). Appropriateness
maps or transition potential maps for each land cover were used to determine the inherent
suitability of each pixel for each type of land cover [45]. The suitability of the pixels far
from the existing areas of that class (as of that iteration) was typically down-weighted by a
contiguity filter, favoring suitable contiguous areas instead.

4. Results
4.1. Downscaling of Future Climate Data

The downscaling of the future climate data involved the selection of a GCM and a
suitable bias correction technique.
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4.1.1. Selection of the GCM

The climate projections of the four different models were downloaded under scenarios
SSP2 and SSP5. Out of these four GCMs, the best performing model was selected. The
names and other details of the GCMs downloaded and compared are shown in Table 2.

Four main approaches are used in the selection of GCMs depending on the study
requirements, such as selection based on: (1) resolution, (2) available data, (3) previous
study, and (4) degree of performance indicator.

Performance measures, such as the coefficient of determination (R2) and the root mean
square error (RMSE) between historical GCM data and observed ground data, are used
to assess the model’s effectiveness. The following tables show the performance of four
different CMIP6 GCMs at the Kalam station.

According to the list of climate models for the precipitation, maximum and minimum
temperature shown in Tables 3–5, “MPI-ESM1” has comparatively better R2, NSE and
RMSE values and was selected as the climate model for the assessment of the future climate
patterns in the study area. This study assessed climate projections, including precipitation
and minimum and maximum temperature that were obtained for the MPI-ESM1 model,
under two shared socioeconomic pathways (i.e., SSP2 and SSP5) for a certain duration
(2016–2100). These datasets were bias corrected using the climate model data for hydrologic
modeling tool (CMhyd).

Table 3. Performance of the GCMs in simulating precipitation.

Model R2 NSE PBIAS MAE RMSE

Access-CM2 0.09 −0.81 0.73 71.38 113.56
MIROC6 0.11 −0.48 −0.24 73.71 93.00
MPI-ESM1-2-HR 0.17 0.04 0.22 60.89 86.28
MRI-ESM2 0.10 −0.61 −0.57 68.67 103.96

Table 4. Performance of the GCMs in simulating maximum temperature.

Model R2 NSE PBIAS MAE RMSE

Access-CM2 0.16 −1.60 0.25 9.57 11.14
MIROC6 0.20 −1.64 0.39 10.05 19.61
MPI-ESM1-2-HR 0.26 −0.58 0.06 7.62 9.00
MRI-ESM2 0.19 −1.58 0.20 8.55 11.05

Table 5. Performance of the GCMs in simulating minimum temperature.

Model R2 NSE PBIAS MAE RMSE

Access-CM2 0.14 −0.93 0.46 12.36 12.40
MIROC6 0.19 −1.84 0.73 16.24 18.77
MPI-ESM1-2-HR 0.23 −0.55 0.26 7.28 9.40
MRI-ESM2 0.18 −0.71 0.31 9.73 11.55

4.1.2. Selection of Bias Correction Techniques

The GCMs provided good results in simulating the observed data on a broader scale,
but they still exhibit considerable bias when examined at the basin level [36]. The goal of
the bias correction approach was to use a specific correction factor to adjust the model time
series variable’s mean, variance and/or quintile, so that the corrected model time series
closely resembles the observed variable. To select a suitable downscaling technique for the
downloaded GCM data, five different precipitation correction techniques (Table 6) and four
different temperature correction techniques (Table 6) were compared. All of the techniques
were used to correct the precipitation and temperature at the Kalam station and then, their
performance was evaluated using time series analysis as shown in Tables 7 and 8.
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Table 6. List of bias correction techniques for precipitation and temperature.

Bias Correction for Precipitation Bias Correction for Temperature

• Linear scaling (LS)
• Local intensity scaling (LOCI)
• Power transformation (PT)
• Distribution mapping (DM)
• Delta change (DC)

• Linear scaling (LS)
• Variance scaling (VS)
• Distribution mapping (DM)
• Delta change (DC)

Table 7. Comparison of downscaling techniques for precipitation.

Model Method R2 NSE PBIAS MAE RMSE

M
PI

-E
SM

1

Raw (model simulated historical) 0.33 0.04 0.22 60.89 86.28
Delta change 0.68 0.60 0.10 31.72 46.83
Distribution mapping 0.71 0.73 0.09 28.80 40.02
Linear scaling 0.65 0.57 0.12 42.61 60.19
Power transformation 0.75 0.74 0.04 19.42 29.44
Local intensity scaling 0.66 0.58 0.11 36.27 53.47

Table 8. Comparison of downscaling techniques for maximum and minimum temperature.

Model Method R2 NSE PBIAS MAE RMSE

M
PI

-E
SM

1

Maximum temperature
Raw (model simulated historical) 0.38 −0.58 0.06 7.62 9.00
Delta change 0.68 0.36 0.20 3.69 5.72
Distribution mapping 0.86 0.72 0.02 2.56 3.76
Linear scaling 0.78 0.56 0.10 2.96 4.73
Variance scaling 0.75 0.48 0.16 3.32 5.15
Minimum temperature
Raw (model simulated historical) 0.33 −0.55 0.26 7.28 9.40
Delta change 0.64 0.29 0.18 3.58 6.40
Distribution mapping 0.88 0.76 0.05 2.11 3.70
Linear scaling 0.77 0.53 0.14 3.15 5.20
Variance scaling 0.80 0.64 0.10 2.85 4.56

According to the calculated performance measures, all bias corrections improved
the raw GCM simulations. Overall, all bias correction methods were able to correct the
monthly mean values for both temperature and precipitation, based on their range of
variability and their ability to bring the raw GCM median closer to the observations. The
“distribution mapping” performed best for temperature and the “power transformation”
for precipitation.

4.2. Probable Changes in the Precipitation and Temperature

After the GCM and downscaling techniques for both precipitation and temperature
(max and min) were selected, the projected data were downscaled till the end of the 21st
century (2100). Two datasets were created for projected precipitation and temperature,
namely the baseline period (1990–2015) and the future scenarios (2016–2100) (e.g., SSP2
and SSP5).

4.2.1. Projection of Mean Maximum Temperature

To assess the future hydrological conditions of Tmax, downscaled future projections
of the GCMs were analyzed on an annual and seasonal scale, i.e., winter (December,
January and February), spring (March, April and May), summer (June, July and August)
and autumn (September, October and November). As per Table 9, the mean maximum
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temperature in the catchment increased by 6.9% from 22.42 ◦C in the baseline period (1990–
2015) to 23.98 ◦C in the future time horizon (2016–2100) under the SSP2 scenario. While,
the increase in mean maximum temperature under the worse scenario of SSP5 was 11.1%
from 22.4 ◦C to 24.91 ◦C.

Table 9. Change in the climatic variables under different climate change scenarios.

Parameters Statistics Historical SSP2 SSP5

Precipitation mm 1136.05 1255.67 1269.51
% Change - 10.5% 11.7%

Max Temperature
◦C 22.42 23.98 24.91
% Change - 6.9% 11.1%

Min Temperature
◦C 7.92 9.20 10.01
% Change - 16.1% 26.3%

This change in temperature was analyzed on seasonal basis (winter, spring, summer
and autumn). Figure 4 shows the seasonal change in the mean maximum temperature in the
Mohmand Dam catchment area. There is an increase in the mean maximum temperature
in all the four seasons with highest increase of 12.7% from 12.63 ◦C in the baseline period
to 14.24 ◦C (Figure 4) under SSP2 and a 21.5% percent increase from 12.63 ◦C to 15.35 ◦C
(Figure 3) under SSP5 in the winter season. In summer, there was the least increase of 4.1%
from 30.69 ◦C to 31.69 ◦C under SSP2 and 6.6% from 30.69 ◦C to 32.73 ◦C (Figure 4) under
SSP5. Similarly, in spring and autumn there was an increase in the maximum temperature
under both scenarios (SSP2 and SSP5), with a higher magnitude in SSP5. The increase
in spring temperatures was 7.7% and 12.6%, which was an increase up to 24.38 ◦C and
25.48 ◦C from 22.63 ◦C under SSP2 and SSP5 scenarios, respectively. At the end of 21st
century (2100), the mean maximum temperature in autumn also increased by 6.8% and
9.8%, as shown by Figure 4.
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Figure 4. Seasonal change in the maximum temperature in the Mohmand Dam catchment area from
1990 to 2015 for the observed period and 2016 to 2100 for SSP2 and SSP5, respectively.

4.2.2. Projection of Mean Minimum Temperature

To assess the future hydrological conditions of the minimum temperature, downscaled
future projections of the GCMs were analyzed at an annual and seasonal scale, i.e., winter
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(December, January and February), spring (March, April and May), summer (June, July
and August) and autumn (September, October and November). As per Table 9, the mean
minimum temperature in the catchment increased by 16.1% from 7.92 ◦C in the baseline
period (1990–2015) to 9.20 ◦C in the future time horizon (2016–2100) under the SSP2 scenario.
While, the increase in the mean minimum temperature under the worse SSP5 scenario was
26.3% from 7.92 ◦C to 10.01 ◦C.

This change in temperature was analyzed on a seasonal basis (winter, spring, summer
and autumn). Figure 5 shows the seasonal change in the mean minimum temperature
in the Mohmand Dam catchment area. There was an increase in the mean minimum
temperature for all the four seasons, with the highest increase of 116.6% from −1.35 ◦C
in the baseline period to 0.22 ◦C (Figure 5) under SSP5 and a 70.4% percent increase from
−1.35 ◦C to −0.40 ◦C (Figure 5) under SSP2 in the winter season. In summer, there was the
least increase of 10.4% from 17.19◦C to 18.97 ◦C under SSP2 and 17.2% from 17.19 ◦C to
20.15 ◦C (Figure 5) under SSP5. Similarly, in spring and autumn there was an increase in
the minimum temperature under both scenarios (SSP2 and SSP5), with a higher magnitude
in SSP5. The increase in spring temperatures was 13.3% and 20.9%, which was an increase
up to 8.89 ◦C and 9.49 ◦C from 7.85 ◦C under SSP2 and SSP5 scenarios, respectively. At the
end of 21st century (2100), the mean minimum temperature in autumn also increased by
16.5% and 27.1%, as shown by Figure 5.
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4.2.3. Projection of Precipitation

To assess the future hydrological conditions of precipitation, downscaled future pro-
jections of the GCMs were analyzed at an annual and seasonal scale, i.e., winter (December,
January and February), spring (March, April and May), summer (June, July and August)
and autumn (September, October and November).

As per Table 9, the mean annual precipitation in the catchment increased by 10.5%
from 1136.05 mm in the baseline period (1990–2015) to 1255.67 mm in the future time
horizon (2016–2100) under the SSP2 scenario. While, the increase in the mean annual
precipitation under scenario SSP5 was 11.7% from 1136.05 mm to 1269.51 mm.

This change in precipitation was also analyzed on a seasonal basis (winter, spring,
summer and autumn). Figure 6 shows the seasonal change in precipitation in the Mohmand
Dam catchment area. There was an increase in the monthly precipitation in all the four
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seasons, with the highest increase of 35.2% from 170.2 mm in the baseline period to
230.1 mm (Figure 6) under SSP5 and a 22.4% percent increase from 170.2 mm to 230.15 mm
(Figure 6) under SSP2 in the autumn season. In spring, there was the least increase of
0.7% from 408 mm to 410.8 mm under SSP2 and 5.2% from 408 mm to 429.3 mm (Figure 6)
under SSP5. Similarly, in winter and summer there was an increase in precipitation under
both scenarios SSP2 and SSP5. The increase in winter precipitation was 6.2% and 0.4%,
which was an increase up to 304.2 mm and 321.9 mm from 303 mm under SSP2 and SSP5
scenarios, respectively. At the end of 21st century (2100), the precipitation in summer also
increased by 0.7% and 5.2%, as shown in Figure 6.
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Figure 6. Seasonal change in precipitation in the Mohmand Dam catchment area from 2016 to 2100.

This increase in precipitation may be due to climate change, which causes warmer
air due to higher temperatures, as anticipated by both climate change scenarios (SSP2
and SSP5), thus the air can hold more moisture. As the Earth’s temperature increases, the
atmosphere can hold more moisture. This means that more water evaporates from the
oceans, and when it falls as precipitation, it can result in heavier rain or snowfall events.
Secondly, this increase in precipitation can be attributed to changes in land cover, such as
deforestation or urbanization, which can alter the hydrological cycle, leading to changes in
precipitation patterns. For example, deforestation can lead to reduced evapotranspiration,
which can lead to less rainfall in some regions.

4.3. Land Cover Change Trends

The supervised image classification of the mosaicked Landsat for 1995, 2010, 2013 2015,
2018 and 2021 was conducted by using image the classification tool in ArcGIS. Classified
maps of the study area are given below in Figure 7. The images were classified into six
classes, i.e., built-up area, vegetation, water body, snow cover, forest and barren land. The
results indicated that the built-up area, vegetation and water body areas in the catchment
of the Mohmand Dam increased by 2.6%, 9.5% and 8.6% from 1995 to 2021. While, other
land cover classes like forest, barren land and snow cover decreased by the magnitude of
6.2%, 7.7% and 6.8%, respectively. The change in land cover classes is depicted in Figure 8.
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Figure 7. Classified maps for different years: (a) 1995, (b) 2010, (c) 2015, (d) 2018, (e) 2021, (f) 2030,
(g) 2060, and (h) 2100.
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Future Land Cover Maps

As the landcover map was one of the inputs in the SWAT model, so as to incorporate
future land cover conditions into the SWAT Model, landcover maps for 2030, 2060 and 2100
were prepared using the land change modeler imbedded in TerrSet. TerrSet is a geospatial
monitoring and modeling system of tools for the analysis of image time series, developed
in 1987 by Prof. J. Ronald of Clark University. It uses the Cellular Automata-Markov Chain
Model (CA-MCM) for the simulation of future land cover.

Projected land cover maps on the study area are given in Figure 7. According to
the results of the study, the built-up area and water body areas in the catchment of the
Mohmand Dam increased by 9.5% and 4.6% from 2015 to 2100, respectively. While, other
landcover classes like forest, vegetation, barren land and snow cover decreased by a
magnitude of 6.8%, 1.4%, 5.3% and 0.6%, respectively. This change in land cover classes is
depicted in Figure 9.
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4.4. Calibration and Validation of the SWAT Model

For the calibration of the SWAT model, it was essential to adjust the sensitive parame-
ters, including parameters for snow, soil, groundwater recharge and evapotranspiration.
In this study, 22 parameters that influenced the total simulated outflow at the outlet of
the Swat River basin were found to be sensitive (Table 10). These modeling parameters
were selected by considering their significant influence on the snow/glacier melt runoff, ET
and groundwater recharge, in addition to the available literature on the application of the
SWAT model to glaciated watersheds [10,25,46]. During the winter months, the majority of
the precipitation is in the form of snow, especially in northern regions of the basin. The
Swat River at the Chakdara gauge has a mean annual discharge of 243 m3/s, according to
river flow data from a 54-year period (1961–2014). The month of peak discharge is known
to be July. The values of R2 and NSE for the calibration and validation period are given in
Table 11. The monthly calibration and validation for the Swat River is shown in Figures 10
and 11, respectively.
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Table 10. Descriptions of the sensitive parameters with their adopted values.

Parameter Name Fitted Value Min Value Max Value

A__REVAPMN.gw 200.225494 196 205
V__ESCO.hru 0.62635 0.4 0.7
A__HRU_SLP.hru 0.00882 0 0.12
A__SLSUBBSN.hru 58.1325 55 90
V__CH_K2.rte 138.827499 130 145
V__SMFMN.bsn 0.08125 0 6.5
A__SURLAG.bsn 12.341 11 17
V__CN2.mgt 89.525002 70 92
V__CH_N2.rte 0.09975 0 0.1
V__SFTMP.bsn 4.971110 4 5
R__OV_N.hru 0.09255 0 0.1
R__SOL_BD(..).sol 1.2704 0.9 2.5
R__SOL_K(..).sol 0.172985 0.16 0.23
V__TLAPS.sub −0.7918 −1 0.2
V__TIMP.bsn 0.02755 0 0.1
V__PLAPS.sub 44.4375 25 50
V__GW_DELAY.gw 286.875 270 320
V__SMFMX.bsn 0.37575 0 4.5
V__GWQMN.gw 3990.625 3400 4150
R__SOL_AWC(..).sol 0.122825 0.11 0.3
R__CANMX.hru 47.57 30 50
V__CH_N1.sub 1.49275 1 3.7

Table 11. Statistical summary of the monthly calibration and validation of the SWAT model.

Calibration Validation

R2 0.81 0.78
NSE 0.79 0.74
PBIAS −10.6 11
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Figure 10. Comparison between the observed and simulated monthly flows (cumecs) in the calibra-
tion period (1999–2002).
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Figure 11. Comparison of monthly observed and simulated flows (cumecs) in the validation period
(2003–2005).

4.5. Impact of Projected Climate on Flows

After calibration and validation of the model, this setup was applied for the future
prediction of flows on an annual basis for the years 2016 to 2100. There are two scenarios
for which the future flows were assessed.

Scenario A: In the first scenario, the current land cover conditions and future climate
were used to predict the flows due to expected climate change.

Scenario B: In the second scenario, the future land cover and future climate conditions
were used to assess the combined impact of future land cover and climate change.

4.5.1. Scenario A: Climate Change Only

The calibrated model was used for the prediction of flows, based on the climate
change data for the next three decades. The precipitation increased by 10.53% and 11.74%
under SSP2 and SSP5, while the maximum temperature increased by 6.95% and 11.07%,
respectively. Similarly, the minimum temperature increased by 16.09% to 8.82% under SSP2
and SSP5, respectively. This change in precipitation and temperature when forced into
the calibrated SWAT model under constant land cover conditions (current) predicted that
the flows are expected to increase from 227.4 cumecs in the baseline period (1999–2015) to
258.72 cumecs (an increase of 13.77%) and 264.53 cumecs (an increase of 16.29%) in future
time horizon (2016–2100) under SSP2 and SSP5, respectively. Figures 12 and 13 show the
comparison between the past and predicted flows due to climate change.

Figure 14 compares the mean monthly flows for the baseline period (1999–2015) with
those for the future time horizon under the SSP2 and SSP5 scenarios, in order to examine
the temporal changes in the mean monthly flows in the Mohmand Dam catchment area.
In general, both SSPs predicted an increase in the flow during the low flow months and a
drop in the mean monthly flow during the high flow months. The average seasonal flow
was predicted to rise throughout the year, while decreasing in the summer. Both SSPs
anticipate an increase in the peak flows (July to June) at the dam site (2 and 5). This might
be connected to the westerlies circulation pattern. The increase in winter precipitation may
be the cause of an increase in the winter flows. The reduction in monsoon precipitation in
this area may be one factor in the decline in summer flows. The months with the highest
and lowest flows under both SSPs were June and January, respectively.
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Figure 12. Comparison between the past and predicted flows under SSP2, according to the current
land cover and future climate.
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Figure 13. Comparison between the past and predicted flows under SSP5, according to the current
land cover and future climate.
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Figure 14. Mean monthly flows at the dam site under current land cover and future climate conditions.

4.5.2. Scenario B: Climate and Land Cover Change

After the prediction of the flows for climate change only, the calibrated model was
used for the prediction of flows based on the climate and land cover change.

The land cover trends indicated that the built-up area and water body areas in the
catchment of the Mohmand Dam increased by 9.5% and 4.6% from 2016 to 2100. While,
other land cover classes like forest, vegetation, barren land and snow cover decreased by
the magnitude of 6.8%, 1.4%, 5.3% and 0.6%, respectively. On the other hand, precipitation
increased by 10.53% and 11.74% under SSP2 and SSP5, respectively, while the maximum
temperature increased by 6.95% and 11.07%. Similarly, the minimum temperature is
increased by 16.09% to 8.82% under SSP2 and SSP5, respectively. This change in land
cover and climate when forced into the calibrated SWAT model under constant land cover
conditions (current) predicted that the flows are expected to increase from 227.4 cumecs
in the baseline period (1999–2015) to 289.82 cumecs (an increase of 27.4%) and 306.61
cumecs (an increase of 34.8%) in the future time horizon (2016–2100) under SSP2 and SSP5,
respectively. Figures 15 and 16 show the comparisons between the past and predicted flows
due to climate and land cover change.

This increase in flow under both SSP scenarios could be attributed to increased precip-
itation as mentioned earlier, climate change is causing an increase in precipitation in many
regions of the world. When precipitation falls on land, it can either evaporate, be taken
up by plants, or flow into rivers and streams as runoff. With more precipitation, there is
more runoff, which can increase streamflow. Moreover, earlier snowmelt could be another
reason for this increase in flows as climate change is causing warmer temperatures, which
can cause snow to melt earlier in the year. This can result in increased streamflow during
the spring and summer months, when snowmelt is typically the primary source of water
for rivers and streams. Hence, under both scenarios precipitation and temperature were
increased and this increase ultimately affected the flows.
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Figure 15. Comparison between past and predicted flows under SSP5, according to future land cover
and climate change.

Water 2023, 15, x FOR PEER REVIEW 22 of 27 
 

 

Figure 15. Comparison between past and predicted flows under SSP5, according to future land cover 

and climate change. 

 

Figure 16. Comparison between past and predicted flows under SSP2, according to future land cover 

and climate change. 

Figure 17 compares the mean monthly flows for the baseline period (1999–2015) with 

those for the future time horizon under the SSP2 and SSP5 scenarios, in order to examine 

the temporal changes in the mean monthly flows in the Mohmand Dam catchment area. 

In general, both SSPs predicted an increase in the flow during the low flow months and a 

drop in the mean monthly flow during the high flow months. The average seasonal flow 

was predicted to rise throughout the year, while decreasing in the summer. Both SSPs (2 

and 5) anticipated an increase in the peak flows (July to June) at the dam site. This might 

be connected to the westerlies circulation pattern. The increase in winter precipitation may 

be the cause of an increase in the winter flows. The reduction in monsoon precipitation in 

this area may be a factor in the decline in summer flows. The months with the highest and 

lowest flows under both SSPs were June and January, respectively. 

 

Figure 17. Mean monthly flows at the dam site under current land cover and future climate condi-

tions. 

Observed Average 
227.4 (cumecs)

Average SSP2 289.7 
(cumecs)

0

100

200

300

400

500

600

700

800

1
9

9
9

2
0

0
3

2
0

0
7

2
0

1
1

2
0

1
5

2
0

1
9

2
0

2
3

2
0

2
7

2
0

3
1

2
0

3
5

2
0

3
9

2
0

4
3

2
0

4
7

2
0

5
1

2
0

5
5

2
0

5
9

2
0

6
3

2
0

6
7

2
0

7
1

2
0

7
5

2
0

7
9

2
0

8
3

2
0

8
7

2
0

9
1

2
0

9
5

2
0

9
9

Fl
o

w
 (

cu
m

ec
s)

Years

Observed SSP2 Observed Average Average SSP2

0

100

200

300

400

500

600

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fl
o

w
 (

cu
m

ec
s)

Months

Observed SSP5 SSP2

Figure 16. Comparison between past and predicted flows under SSP2, according to future land cover
and climate change.

5. Discussion

This study evaluated the effects of projected land cover and climate change on the
flows of the Mohmand Dam catchment area, using CMIP6 global climate models (GCMs)
to develop a calibrated soil and water assessment tool (SWAT) hydrological model. The
findings from the analysis of the GCM outputs (MPI-ESM1-2-HR) pointed to a persistent
warming on annual and seasonal scales of the catchment area of the Mohmand Dam in the
21st century, which is consistent with those in the neighboring south Asian regions of the
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Tibetan Plateau [47,48] and Himalaya [8,36,49]. Increased concentrations of greenhouse
gases in the local environment could be a contributing factor to the noticeably higher
temperatures at HKH mountains [12,50]. The average amount of precipitation each year
is expected to rise in the future (2016–2100). The headwaters of the Yellow River basin
were also observed to increase between the years 2015 and 2100 [43]. The GCM predicts
that precipitation will tend to increase during the future time horizon, with summer and
autumn observing the greatest increases. These findings are in contradiction with those
for Malaysia’s Kelantan River basin and the upper Cruz River basin [46,51]. Additionally,
Ozturk et al. [52] discovered a paradox in the form of a tendency for summer precipitation
to decrease in areas where the westerlies are dominant (Afghanistan and Iran). The seasonal
precipitation patterns of the study area, though, are consistent with those in the Himalayan
and Karakoram ranges. The Jhelum River basin, which is located in the Himalayan range,
has a persistently increasing tendency toward annual and seasonal precipitation, according
to Babur et al. [36]. In the Hunza River basin, which is located in the Karakoram range,
Garee et al. [8] predicted an increasing tendency for precipitation in the inter-annual and
seasonal precipitation. The westerlies circulation system, which is predominant in the
Hindukush range, may be responsible for these agreements in the results [12,14,26]. The
rising concentration of anthropogenic absorbing aerosols in the south Asian atmosphere is
another possible explanation for these similarities in precipitation behavior [53–55].

The yearly average flow over the future time horizons under both SSPs (SSP2 and SSP5)
is increasing, according to the analysis of the simulated flows obtained from the SWAT
model. The anticipated increases in yearly precipitation and warming temperature may be
related to an increase in the flow in the future. The Indus River flow has been predicted to
increase by Immerzeel et al. [56] as well. In addition, it is predicted that the peak flows may
move up by one month (from July to June), primarily as a result of the considerable rise in
precipitation over the winter and spring seasons. However, Babur et al. [36] discovered
a delay in the peak flow of the Jhelum River, which typically occurs between July and
August. The disagreement in the findings may be caused by the various anticipated trends
for winter and summer precipitation at the Hindukush and Himalayan Mountains.

6. Conclusions

In the present study, the impacts of climate and land cover change on the Swat River
flows were assessed by using the SWAT model under two scenarios, namely climate change
only and climate and land cover change in future time horizon (2016–2100) under two
SSPs (2 and 5). For the projection of climate change, the outputs of four GCMs were
compared and the best performing GCM was selected; then, five statistical downscaling
techniques for precipitation and four techniques for temperature were compared and the
best performing technique for each aspect was selected to be used for the study area.
While, for future land cover projection the land change modeler imbedded in TerrSet was
used. The SWAT hydrological model was calibrated and validated for the 1999–2002 and
2003–2005 periods, respectively. The results of the evaluation indices (PBIAS, R2 and NSE)
for both the calibration and validation periods showed that the hydrological model was
well calibrated and was reliable to be used for the projection of potential impacts of climate
and land cover change on the Swat River flows. After analysis of the streamflows in the
Swat River at the Mohmand Dam site under the projected future climate and land cover
conditions, the following conclusions have been drawn:

• Compared to the baseline period (1990–2015), the annual maximum, minimum and
mean temperature and precipitation increased consistently in the Mohmand Dam
catchment in the future time horizon (2016–2100). The increased precipitation leads to
increased streamflows in the future;

• The average daily streamflow at the Mohmand Dam site increased from 227.4 cumecs
(1999–2015) to 258.7 cumecs under SSP2 and to 264.5 cumecs under SSP5 using the
present land cover conditions;
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• Under the future land cover change scenario, the flow increased from 227.4 cumecs
(1999–2015) to 289.8 cumecs and 306.6 cumecs under SSP2 and SSP5, respectively;

• The land cover and climate change scenarios results revealed that the overall mean
monthly flows will increase by 27.4% and 34.8% under both SSPs, whereas the mean
monthly flows in June, July and August will decrease (Figure 14), while the flows for
November, December and January will increase under both SSPs (Figure 14); and

• The peak flow in the Mohmand Dam catchment is anticipated to advance by a month,
i.e., from July to June in future scenarios of land cover and climate change conditions
(Figure 14).

The present study focuses on the future change in precipitation and temperature
(maximum and minimum) and their impacts on the Swat River flows. The findings of this
study might be useful for formulating regional development and adaptation strategies, as
well as for the sustainable planning and management of water resource projects, including
hydropower and irrigation schemes.
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