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Abstract: Rapid prediction of urban flooding is an important measure to reduce the risk of flooding
and to protect people’s property. In order to meet the needs of emergency flood control, this paper
constructs a rapid urban flood prediction model based on a machine learning approach. Using
the simulation results of the hydrodynamic model as the data driver, a neural network structure
combining convolutional neural network (CNN) and long and short-term memory network (LSTM)
is constructed, taking into account rainfall factors, geographical data, and the distribution of the
drainage network. The study was carried out with the central city of Zhoukou as an example. The
results show that after the training of the hydrodynamic model and CNN−LSTM neural network
model, it can quickly predict the depth of urban flooding in less than 10 s, and the average error
between the predicted depth of flooding and the measured depth of flooding does not exceed 6.50%,
which shows that the prediction performance of the neural network is good and can meet the seeking
of urban emergency flood control and effectively reduce the loss of life and property.

Keywords: urban flooding; convolutional neural networks (CNN); long and short-term memory
networks (LSTM); fast prediction

1. Introduction

Against the backdrop of frequent global weather extremes and accelerated urbaniza-
tion, extreme precipitation is increasing and intensifying [1], and waterlogging caused by
rainfall is becoming a “normalized” risk. In recent years, there have been a number of
major disasters caused by heavy rainfall. On 21 July 2012, an extremely heavy rainfall in
Beijing caused the collapse of 10,600 houses and affected 1.9 million people [2]. On 11 April
2019, a short period of extreme precipitation caused some areas in Shenzhen to be flooded
and 11 people drowned [3]. On 21 July 2021, the heavy rainfall in Zhengzhou caused
14,786,000 people to be affected and 398 people to die or go missing [4]. Rapid prediction
and warning of urban flooding caused by heavy rainfall is an effective way to improve the
ability of government departments to deal with disasters.

At present, scholars have conducted a lot of research on the prediction of storm
water flooding. The commonly used hydrodynamic models for predicting urban flooding
mainly include the Storm Water Flood Management Model (SWMM), the Integrated Urban
Watershed Drainage Model (infoWorks ICM), MIKE URBAN, etc. These models calculate
the water flow state by solving hydrodynamic equations, with clear physical mechanisms
and easy to obtain high precision numerical simulations results. For example, Li et al. [5]
used the Minzhi area of Shenzhen City as the research object and constructed a rainfall
model based on a 1D and 2D coupled urban flooding numerical model to simulate the
flooding situation in the area, and used ArcGIS and hierarchical analysis to evaluate the
flooding hazard in the area. Harsha et al. [6] used a densely populated area in Vijayawada,
India, to simulate the surface runoff and network water volume data under extreme rainfall
events. Zhang et al. [7] used a pilot sponge city area in Ningbo to simulate the flooding
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risk under short and long recurrence periods of design rainfall. Sarkar et al. [8] used four
areas in Khulna, Bangladesh, to simulate and analyze the surface runoff, inundation level,
drainage capacity, and the impact of urban flooding on municipal traffic and buildings
based on the MIKE model. Li et al. [9] used the Huangtaiqiao watershed in Jinan City as
the research object, coupled the SWMM 1D pipe network model with the LISTLOOD FP 2D
surface inundation model, and analyzed the number of overflow nodes and their spatial
distribution characteristics under different recurrence period design precipitation. Ren
et al. [10] used the Dongtang Wei area of Chaohu City as a research object to construct a fully
distributed refined urban flooding model and compared its simulation differences with the
traditional SWMM model under different storm scenarios. However, the numerical model is
complex and time-consuming to solve under large scale and complex subsurface conditions,
and it is difficult to meet the time-effective requirements of storm water prediction.

In recent years, to make up for the shortcomings of numerical models, scholars have
gradually applied machine learning methods to storm water flooding disaster prediction.
Kan et al. [11] coupled ANN with K-neighborhood methods to improve problems such as a
poor ANN forecasting ability. Liu et al. [12] proposed a new method for predicting urban
flooding risk based on the combination of BP neural networks and numerical models. Mei
et al. [13] conducted flood forecasting based on support vector machines, and the model
had the advantages of a strong generalization ability and fast training speed. Hou et al. [14]
considered meteorological, geographical, and social factors and used a neural network
model to achieve a short-time prediction calculation of the depth of water accumulation
at a single point. Li et al. [15] constructed a storm flooding disaster prediction model and
found that the XGBoost model performed better than a back propagation neural network.
These studies show that machine learning techniques also have broad application prospects
in urban flooding prediction.

In this paper, high-precision data obtained from numerical simulations are used as the
data set. A neural network structure combining convolutional neural network (CNN) and
long short-term memory network (LSTM) is constructed. The data set from the numerical
simulation is used for learning and training to achieve rapid prediction of waterlogging
depth, which can provide scientific reference for early warning and forecasting of urban
flooding, as well as disaster prevention and mitigation work.

2. Materials and Methods
2.1. Research Process

In the study of urban flooding prediction, efficient simulation of the urban flooding
process can often improve the accuracy of rainfall forecast data [16]. In this paper, based
on the hydrodynamic model and machine learning algorithm (CNN−LSTM), a numerical
model is established to simulate the 3 h short calendar time intense rainfall process in the
central city of Zhoukou as a rainfall scenario, and the simulation results are used as the
data driver for neural network prediction at each waterlogged point. The process is shown
in Figure 1.

The data-driven model for predicting the depth of water in urban storms consists of
two main components.

(1) Generating time series data on flooding

Urban storm waterlogging data are typically time series data, and the urban storm
waterlogging prediction problem is also a unique time series prediction problem, i.e., the
data at one moment has a large impact on the data at a later moment, and thus can be
converted into a supervised learning problem. Assuming that the current moment is t,
the first three time steps, i.e., moment t − 3, moment t − 2, moment t − 1, are entered to
predict the water depth values for the next two time steps, i.e., moment t, moment t + 1.
The flooding features extracted from the rainfall, etc., data are first taken, followed by time-
series-based prediction and specific methods such as data normalization, reconstruction to
supervised data, and data complementary length to generate urban storm flooding time
series data as a direct input to the subsequent bathymetric prediction model.
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Figure 1. Technical flow chart.

Supervised learning refers to the process of learning a mapping function relationship
between the input to output using an algorithm oriented to the input variable X and the
output variable Y. The expression is as follows.

Y = f(x) (1)

It is called supervised learning because the data input to the model are labelled and
the algorithm iterates continuously to achieve predictions on the training data, updating
and correcting the model parameters by comparing the differences between the predicted
labels and the true labels, and stopping learning when the performance of the algorithm
reaches an acceptable level.

(2) Building a neural network structure

A neural network structure combining CNN and LSTM was developed to predict
urban storm flooding with multivariate inputs and multiple time steps. The neural network
structure combines CNN and LSTM deep learning algorithms, using CNN to extract the
spatial features of flooding, and then LSTM to extract the temporal features of flooding,
and finally output the depth of urban storm flooding predicted by the model.

2.2. Hydrodynamic Models

The MIKE URBAN model simulates urban drainage networks into two broad steps:
firstly, rainfall runoff simulation, based on the division of the corresponding catchment area
through urban rainwater wells, and inputting rainfall boundary conditions to simulate a se-
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ries of urban surface catchment processes such as rainfall, flow production, and confluence.
The main hydrological models used to simulate this process are the time−area curve model,
the non-linear reservoir model, the linear reservoir model, and the unit hydrological process
line model. The most commonly used model for practical calculations is the time−area
curve model, which is divided into two modules: production flow control and confluence
control. The parameters to be determined for production flow control are impermeability,
initial loss, and subsequent loss (hydrological attenuation coefficient), while the parameters
to be determined for confluence control are time−area curve type and confluence time
(average flow rate).

This is followed by the pipe network simulation, where the input boundary conditions
are the flow process lines output from the previous step of the rainfall runoff simulation.
Traditional network hydraulic calculations assume a constant flow in the pipe and use the
inferential equation method, the results of which do not accurately interpret the actual flow
process in the pipe. In contrast, the MIKE URBAN model uses non-constant flow in the
hydraulic calculation of the pipe network, and applies the implicit finite difference method
to solve the system of St. Venant equations for 1D free surface flow [17], and the simulation
results are more accurate.

2.3. Combined CNN and LSTM Neural Network Structures

Urban storm water depth prediction is a multivariate input multiple time step output
time series prediction problem. In this paper, the input data features are rainfall, water
depth, time, slope, pipe network density, road network density, water system density, and
land use type for the first three moments. The output data features are the predicted water
depths at the last two moments. In this paper, a combined CNN and LSTM deep learning
neural network is constructed by combining the input data features and the output data
features. The CNN layer is responsible for extracting the spatial features of the input data
for internal flooding. The CNN layer is responsible for extracting the spatial features of
the input data, while the LSTM layer is responsible for acquiring the temporal features of
flooding by taking a single rainfall event as a whole. In this paper, the depth of the neural
network is increased to improve the ability of the model to predict the depth of urban storm
waterlogging. The neural network structure of the combined CNN and LSTM is shown in
Figure 2.
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The study of urban storm water depth prediction needs to take into account the
ability of the model to represent both temporal and spatial features. Therefore, this paper
proposes a deep learning neural network structure combining CNN and LSTM, taking
into account the complementary nature of CNN and LSTM when constructing the urban
storm water depth prediction model. CNN is used to capture the spatial characteristics
and local variations of urban storm waterlogging temporal data, and LSTM is used to learn
the short-time variation characteristics and long-time period characteristics of urban storm
waterlogging temporal data, so as to improve the performance of the data-driven urban
storm waterlogging prediction model and make it better able to simulate and forecast
urban storm waterlogging characteristics.

2.4. Convolutional Neural Networks (CNN)

CNN was proposed by LeCun [18] and others, and is able to discard useless infor-
mation, reduce network parameters, and speed up model training. Its implicit layer is
mainly composed of three parts: convolutional layer, pooling layer, and fully connected
layer. CNNs are suitable for studying the extended domain of spatial features of data,
and are distinguished by their local connectivity and parameter sharing, and are often
used to extract local variations in data, which can then be abstracted and combined into
higher-level effective features.

In the data-driven urban storm water depth prediction model of this paper, the input
data features are set as rainfall, water depth, time, slope, pipe network density, road network
density, water system density, and land use type for the first three moments and the output
data features are the predicted water depth for the last two moments. The convolution
layer in CNN is first used to process and extract the values of the main geographical
feature factors in the input data, by setting an M × N matrix as the convolution kernel
and sliding over the whole input feature matrix according to a certain step size; each
time the convolution kernel is moved, the dot product operation is repeated to obtain the
corresponding local matrix [19]. This convolution process retains the original order of
the input factors, discards some features, and reduces the number of weight parameters,
thus reducing the computational pressure of the neural network; then, the pooling layer in
CNN is used to sample the output of the previous convolution, which reduces the spatial
dimension of the vectors in the model while ensuring that the depth of the network remains
unchanged. This reduces the spatial dimension of the vectors in the model, and reduces the
number of parameters and data features in the hidden layer to reduce the computational
complexity of the model.

2.5. LSTM Neural Network Model

LSTM solves the problem of gradient disappearance and gradient explosion during
the training of long sequences [20]. Its hidden layer consists of one or more memory units
that are responsible for remembering arbitrary time intervals, and each memory unit has
three “gate” structures, i.e., forgetting, input, and output gates. The so-called “gate” is a
sigmod activation function applied to each matrix element and calculated by multiplying
the corresponding elements. The memory cell structure of LSTM is shown schematically in
Figure 3.

In Figure 2, the input urban storm flooding time series data is x, the current moment
is t, h is the output of a single LSTM memory cell, and σ denotes the chosen activation
function, e.g., the sigmoid function. Zf, Zi, and Z0 are converted from the splicing vector
multiplied by the weight matrix and then converted to a value between 0 and 1 by the
activation function sigmoid as a gating state. In this paper, we increase the depth of the
LSTM to better implement the learning of short-time variation features and long-time
periodic features of urban storm water depth, which is implemented as follows.

In this paper, a data-driven model for predicting the depth of urban storm water
flooding first uses the forgetting gate in the LSTM neural unit to selectively lose some
information. This is done by using the current input urban storm flooding time series data
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Xt and the flooding time series output data ht−1 of the previous memory unit to generate
a scale value between 0 and 1, which is used to determine the probability of information
forgetting in the previous long-term state; when the value is equal to 0, all information is
lost, and when the value is 1, the complete information is preserved. Next, the input gate
in LSTM is used to add information, and when the input urban storm waterlogging time
series data Xt and the output data ht−1 of the previous memory unit at this moment pass
through the input gate, the information to be updated is determined and the new candidate
memory unit is obtained through the tanh layer; then the output gate in LSTM is obtained
and the previous long-term state is updated to the final state by the joint action of the
forgetting gate and the input gate. Finally, the hidden state activated in the previous step is
combined with the urban storm flooding time series data input at the current moment to
update the hidden state, and multiplied with the hidden state activated in the tanh layer to
obtain the final state output which is the final predicted water depth of the model.
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2.6. Predictive Model Accuracy Validation
2.6.1. Cross-Validation Methods

In order to validate the simulation performance of the data-driven urban storm water
depth prediction model in this paper on new sample data, it is usually necessary to divide
the experimental data into training and test sets in advance. Considering the instability of
the prediction results obtained from a single data division, and at the same time, in order
to try to avoid the influence of subjective factors caused by the artificial allocation of data
sets, this paper will combine the cross-validation approach to reduce the chance in order to
compensate for the lack of accuracy of the experimental data and to improve the prediction
accuracy of the model as much as possible. In this experiment, the ten-fold cross-validation
method [21] is used to analyze the model prediction results and to test the accuracy and
validity of the data-driven urban storm water depth prediction model in this paper. In this
paper, the ten-fold cross-validation method is applied: firstly, the urban storm waterlogging
time series data samples are randomly partitioned into ten, then nine of them are randomly
selected as the training set for learning and training, and the last one is used as the model
test set for validation. The accuracy and reliability of the CNN−LSTM-based urban storm
water depth prediction results can be tested and guaranteed. The mean squared error (MSE)
is within 0.03 after ten-fold cross-validation. The mean absolute error (MAE) is within 0.06
on average.
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2.6.2. Model Evaluation Methods

In order to evaluate and validate the accuracy of the CNN−LSTM-based urban storm
water depth prediction results, it is also necessary to introduce uniform evaluation metrics.
In this paper, the mean square error (MSE), mean absolute error (MAE), and goodness of fit
(R2) metrics are mainly used for determination.

Mean square error (MSE), the loss function of the model, is often used as an evaluation
indicator for neural network regression models. A smaller value indicates that the error
between the prediction result of this model and the true observation is smaller. The formula
for calculating this value is as follows.

MSE =
1
m∑m

i=1 (yi −
∧
yi)

2 (2)

The mean absolute error (MAE) is the average of the absolute errors, which can better
reflect the mean absolute deviation between the predicted bathymetric values of the model
and the true observed values; a smaller value indicates that the error between the prediction
results of the model in this paper and the true observed values is smaller. The value is
calculated as follows.

MAE =
1
m∑m

i=1

∣∣∣(yi −
∧
yi)

∣∣∣ (3)

The goodness of fit is often used to assess how well the model is fit, i.e., how well the
model can explain the proportion of the variation in the dependent variable through the
independent variables. The range of values is [0, 1]: if the value is 0, the model is a poor
fit; if the result is 1, the model is error-free. The larger the value of the goodness of fit, the
better the model fit. The formula for calculating this value is expressed as follows.

R2 = 1− ∑i (
∧
yi−yi)

2

∑i (yi−y)2
(4)

3. Results and Discussion
3.1. Hydrodynamic Model Validation and Training Sample Generation

Using the period of 20 July 2021 in Zhoukou City as an example to illustrate, 20 major
waterlogging points in the central city were selected and the distribution of waterlogging
points is shown in Figure 4. The measured maximum ponding depth data were compared
with the maximum ponding depth simulated by the numerical model, as shown in Table 1.
It can be seen that the simulated and measured values were close to each other, and the
difference was within 5 cm, which was a small error, indicating that the numerical model
was close to reality and qualitatively met the requirements of neural network learning.
The inundation sample data obtained from the hydrodynamic model were used to build
separate neural network models for each of the 20 major waterlogging points.

The rainfall scenarios included actual short duration historical heavy rainfall processes
from 1975–2019 and design rainfall based on the Zhoukou City storm intensity formula.
A total of 832 rainfall scenarios with a duration of 3 h were calculated, and 20,422 storm
inundation samples were obtained. The number and type of samples obtained met the
requirements of the neural network model in terms of the number and type of samples
learnt. For training, 90% of the samples were selected for training and 10% for testing.
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Table 1. Comparison of measured and numerically modelled ponding depths at inundated water
points for 20 July 2021.

Location of Waterlogged Spots Measured Water Depth
/[cm]

Simulated Water Depth
/[cm]

Difference
/[cm]

Waterlogged spot 1 60 64 4
Waterlogged spot 2 40 41 1
Waterlogged spot 3 55 57 2
Waterlogged spot 4 30 32 2
Waterlogged spot 5 80 77 −3
Waterlogged spot 6 80 82 2
Waterlogged spot 7 60 57 3
Waterlogged spot 8 40 43 3
Waterlogged spot 9 40 41 1

Waterlogged spot 10 40 43 3
Waterlogged spot 11 40 37 −3
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Table 1. Cont.

Location of Waterlogged Spots Measured Water Depth
/[cm]

Simulated Water Depth
/[cm]

Difference
/[cm]

Waterlogged spot 12 40 41 1
Waterlogged spot 13 60 57 −3
Waterlogged spot 14 60 62 2
Waterlogged spot 15 40 41 1
Waterlogged spot 16 60 64 4
Waterlogged spot 17 40 41 1
Waterlogged spot 18 35 37 2
Waterlogged spot 19 30 33 3
Waterlogged spot 20 30 33 3

3.2. Analysis of the Results of CNN−LSTM Neural Network for Predicting Waterlogging

Because of the excessive number of ponding points, six ponding points were selected
for the results and analysis. The trained CNN−LSTM neural network model was used to
predict the actual rainfall and the design rainfall based on the Chicago rainfall type, respec-
tively. The central city of Zhoukou is dominated by unimodal rainfall with a combined
peak ratio of r = 0.5 [22]. Therefore, the design rainfall was selected as the 20-year rainfall
with a Chicago rainfall type with peak r = 0.5; the results of the predictive evaluation are
shown in Table 2 and the results are shown in Figure 5.

Table 2. Water depth prediction model accuracy evaluation.

Location of Waterlogged Spots MSE MAE R2

Waterlogged spot 1 0.012 0.039 0.9967
Waterlogged spot 6 0.021 0.053 0.9792
Waterlogged spot 7 0.014 0.043 0.9955

Waterlogged spot 10 0.012 0.040 0.9964
Waterlogged spot 14 0.013 0.041 0.9957
Waterlogged spot 19 0.012 0.040 0.9967

When training machine learning algorithms, the selection of input parameters is
very important. Reasonable optimization of the parameters can ensure the accuracy and
precision of the model, and also enhance the timeliness of the model [23]. As can be seen
from Figure 5, the coefficients of determination R2 are all above 0.95, indicating that the error
between the ponding process predicted by the CNN−LSTM model and the hydrodynamic
model was small. The design rain front r = 0.5, which peaked at the middle moment, shows
that the ponding depth increased faster at 90 min, and then the ponding depth gradually
tended to equilibrate with time. The waterlogging process pattern was basically similar
at each waterlogging point. The results of the hydrodynamic model were derived from
simulations such as rainfall data, while the results of the CNN−LSTM neural network
model were derived from data-driven training of the hydrodynamic model. Both models
provide a good response to the relationship between water depth and time at the water
accumulation points. The predicted results were similar to the actual results.

The CNN−LSTM neural network model was selected to compare the predicted max-
imum ponding depths with the actual measurements based on the good design rainfall
continuity in Chicago and the poor actual rainfall continuity. The model was used to predict
the maximum ponding depth results for each ponding point during 20 July 2021 where
no training was involved. The results of the comparison with the measured maximum
ponding depths are shown in Table 3.



Water 2023, 15, 1397 10 of 14Water 2023, 15, x FOR PEER REVIEW 10 of 14 
 

 

 

(a) Waterlogged spot 1 

 

(b) Waterlogged spot 6 

 

(c) Waterlogged spot 7 

Figure 5. Cont.



Water 2023, 15, 1397 11 of 14Water 2023, 15, x FOR PEER REVIEW 11 of 14 
 

 

 

(d) Waterlogged spot 10 

 

(e) Waterlogged spot 14 

 

(f) Waterlogged spot 19 

Figure 5. Comparison of simulation results of the design rainfall scenarios based on the storm in-

tensity formula. 
Figure 5. Comparison of simulation results of the design rainfall scenarios based on the storm
intensity formula.



Water 2023, 15, 1397 12 of 14

Table 3. Comparison of measured and simulated water depths at inundated water accumulation
points for 20 July 2021.

Location of
Waterlogged Spots

Measured
Maximum

Water
Depth/[cm]

Numerical
Model Simulates
Maximum Depth

of Water Accu-
mulation/[cm]

CNN−LSTM
Model Simulates
Maximum Depth

of Water Accu-
mulation/[cm]

Numerical
Model and
Measured

Maximum Depth
of Water

Accumulation
Error/[%]

CNN−LSTM
Model and
Measured
Maximum

Ponding Depth
Errors/[%]

CNN−LSTM
Model and
Numerical

Model
Maximum

Ponding Depth
Error/[%]

Waterlogged spot 1 60 64 65 6.67 8.33 1.56
Waterlogged spot 2 40 41 43 2.5 7.5 4.88
Waterlogged spot 3 55 57 56 3.64 1.82 1.75
Waterlogged spot 4 30 32 33 6.67 10 3.13
Waterlogged spot 5 80 77 76 3.75 5 1.30
Waterlogged spot 6 80 82 83 2.5 3.75 1.22
Waterlogged spot 7 60 57 58 5 3.33 1.75
Waterlogged spot 8 40 43 45 7.5 12.5 4.65
Waterlogged spot 9 40 41 43 2.5 7.5 4.88
Waterlogged spot 10 40 43 42 7.5 5 2.33
Waterlogged spot 11 40 37 39 7.5 2.5 5.41
Waterlogged spot 12 40 41 37 2.5 7.5 9.76
Waterlogged spot 13 60 57 58 5 3.33 1.75
Waterlogged spot 14 60 62 63 3.33 5 1.61
Waterlogged spot 15 40 41 42 2.5 5 2.44
Waterlogged spot 16 60 64 63 6.67 5 1.56
Waterlogged spot 17 40 41 43 2.5 7.5 4.88
Waterlogged spot 18 35 37 36 5.71 2.86 2.70
Waterlogged spot 19 30 33 34 10 13.33 3.03
Waterlogged spot 20 30 33 34 10 13.33 3.03

Average error 5.20 6.50 3.18

As seen in Table 3, the average error between the maximum ponding depth of the
hydrodynamic model and the measured values was 5.20%. The average error between the
predicted maximum ponding depth of the CNN−LSTM neural network and the measured
values was 6.50%. The hydrodynamic model simulation results were used as training
samples for the CNN−LSTM neural network, and thus by the accumulation of errors,
but the difference was small. The actual rainfall continuity itself was poor, and the error
between the CNN−LSTM neural network model and the hydrodynamic model was only
3.18%, satisfying a more accurate calculation accuracy.

In terms of time efficiency, the model took several hours to calculate 3 h of rainfall,
as the speed of the hydrodynamic model was closely related to the number of grids and
the size of the terrain. However, the neural network model did not need to consider these
factors, and the CNN−LSTM neural network model took only 10 s. This is a significant
time saving and can meet the needs of emergency flood control.

4. Conclusions

In this study, the CNN−LSTM neural network model and hydrodynamic model were
used to construct a rapid prediction model for urban flooding in the central city of Zhoukou,
and to achieve rapid prediction of urban flooding disasters. The main research findings are
as follows.

(1) The main causes of waterlogging are excessive rainfall intensity, low-lying terrain,
and insufficient drainage capacity of pipes. Therefore, the effects of rainfall, topography,
pipe networks, and land use types are taken into account in the prediction model.

(2) The machine learning CNN−LSTM algorithm used in this paper has a good
performance when making urban flooding predictions. The average error between the
CNN−LSEM neural network prediction of the maximum ponding depth and the measured
value is 6.50%, and the error between the CNN−LSTM neural network model and the
hydrodynamic model is only 3.18%.
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(3) After the hydraulic modelling and CNN−LSTM training, it only takes 10 s for
the CNN−LSTM neural network model, which can buy a lot of lead time for emergency
decision making and help decision makers to take better emergency management measures.

This paper proposes a CNN−LSTM-based fast prediction model for urban flooding
depths, which can forecast the water depths of urban flood-prone spots more accurately and
can provide an important scientific basis for urban disaster prevention and mitigation work.
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