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Abstract: Drinking water demand modelling and forecasting is a crucial task for sustainable manage-
ment and planning of water supply systems. Despite many short-term investigations, the medium-
term problem needs better exploration, particularly the analysis and assessment of meteorological
data for forecasting drinking water demand. This work proposes to analyse the suitability of ERA5-
Land reanalysis data as weather input in water demand modelling. A multivariate deep learning
model based on the long short-term memory architecture is used in this study over a prediction
horizon ranging from seven days to two months. The performance of the model, fed by ground
station data and ERA5-Land data, is compared and analysed. Close-to-operative forecasting is then
presented using observed data for training and ERA5-Land dataset for testing. The results highlight
the reliability of the proposed architecture fed by ERA5-Land data for different time horizons. In
particular, the ERA5-Land shows promising performance as input of the multivariate machine learn-
ing forecasting model, although some meteorological biases are present, which can be improved,
especially in close-to-operative application with bias correction techniques. The proposed study
leads to practical implications in the use of regional climate model outputs to support drinking water
forecasting for sustainable and efficient management of water distribution systems.

Keywords: water distribution systems; drinking water demand; medium-term forecasting; regional
climate models; deep learning

1. Introduction

Nowadays, water distribution systems (WDSs) require efficient integrated urban wa-
ter management solutions for sustainable planning of drinking water use [1–3]. Indeed,
climate change and rising water demand are forcing the improvement of the water sector to
cut resource waste and increase service quality. For this purpose, water demand modelling
and forecasting play a crucial role in plenty of different activities, such as optimal pumping
scheduling, operational management of tank replenishment and maintenance planning,
and achievement of the pressure level required in the water distribution networks [4–6].
Furthermore, the increased frequency of drought periods and the decreasing availability of
high-quality water have become necessary for medium-term planning to guarantee drink-
ing water equitably, without intermittent services or prohibitive shortages [7,8]. Hence,
the need for decision-making processes related to the management of large water basins
and the multiple strategic uses of water is forcing the development of medium-term water
demand forecasting procedures [9–12]. Furthermore, to successfully model and forecast
medium-term water demand, seasonal climate models which are able to supply weather
forecasting are also required, which can be fed into forecasting algorithms. Such datasets
are generated by agencies such as Met Office, U.K.; European Centre for Medium-Range
Weather Forecasts (ECMWF); National Weather Service, U.S. In addition, also water de-
mand datasets are crucial for many applications, such as burst detection [13–15], network
model calibration [16,17], state estimation [18,19], and plenty others.
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Several methods have been proposed to forecast drinking water demand, which
can be broadly categorised into simple statistical and machine learning algorithms. As
traditional methods are easy to implement, these methods can be classified into time series
and regression models. Some widely implemented time series models are Autoregressive
Integrated Moving Average (ARIMA) as adopted by [20] for forecasting daily tank water
level for an urban water distribution network in Italy, while [21] evaluated the water
budget for three locations in Poland and analysed the trend using such models. Regression
models were used by [22] to study the industrial water demand in Beijing, China. However,
traditional methods are not able to fully exploit the information of the historical data and
their dependence on exogenous variables, such as temperature, wind, and humidity, due
to the non-linearity of the problem [23]. Therefore, over the past ten years, the use of
machine learning has aided in increasing the performance of water demand modelling and
forecasting with accurate and reliable results [24].

Artificial Neural Networks are machine learning tools that cluster, classify, predict,
capture, and focus on the functional relationship in historical water demand data [25,26].
Support Vector Regressions (SVR) have also been widely applied for forecasting water
demand [27,28]. Several studies have applied these methods to forecast water demand for
the short, medium, and long-term. Ref. [29] used four ensemble deep learning models based
on four different neural network architectures: Simple Recurrent Neural Network, Long
Short-Term Memory (LSTM), Gated Recurrent Unit, and Feed Forward Neural Network,
to forecast short-term (hourly and daily) urban drinking water consumption for two case
studies in Italy. To tackle the uncertainty related to the variability of the dataset, an ensemble
of 10 neural network sub-models of each architecture were generated and stacked, which
gave reliable results and outperformed single sub-models. All four architectures were able
to produce reliable and robust results. Ref. [30] studied LSTM, SVR, ARIMA, and random
forest models to predict water demands for a city in China with temporal resolutions from
15 min to 24 h and concluded that the LSTM model performed better than the other models
in predicting water demand for high time resolution. Ref. [31] performed LSTM and Vector
Autoregressive Models (VARs) to predict daily water consumption for optimising pump
operation. LSTM model was able to differentiate between different days of the week from
each other, leading to better performance than VAR due to its characteristic long-term
memory. LSTM model was also able to learn from a completely untrained model and
required a few days to achieve reasonable results.

Drinking water demand forecasting is affected by several factors, which include
population, consumer preferences, habits, household density, water tariff, technological
practices, management strategies, etc. [32,33]. In addition to these factors, temperature and
precipitation are the most significant weather variables which impact the water demand
behaviour [34–37]. Varying temperatures and precipitation change the water request,
with a negative dependence between precipitation and water use [37,38] and a positive
relationship between temperature and water use. Refs. [39–41] compared the performance
of three models to forecast water demand, with and without weather inputs, with one day
lead time for different water supply zones in the Netherlands and concluded that using
weather variables improved the performance of the models, which can be of relevance
when higher accuracy of forecasting is important. Similar findings were also inferred
by [42], which used temperature, rainfall, evaporation, solar radiation, vapour pressure,
and relative humidity to forecast the water demand for a catchment in Australia, which
provides support to the argument that weather variables affect water demand.

Water demand models use different inputs, and a crucial input for feeding these
models are meteorological inputs such as historical datasets (local ground measurement
stations) or reanalysis data, which are climate numerical models output based on past
data to create the best-modelled data on a fixed spatial and temporal resolution [43,44].
Indeed, reanalysis data are a valid alternative to historical metered data in the areas where
the ground stations are present but not complete or their spatial/temporal resolution is
not feasible for the application. The reanalysis data used in this paper are ERA5-Land,
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the ECMWF product produced at the global scale using the land component of the 5th
generation of European ReAnalysis (referred to ERA5 hereafter). The high spatial resolution
of 9 kilometres, the hourly temporal resolution, and the wide selection of variables available
lead to the high interest in this dataset. ERA5 has been used in different fields, such as
to model wind power [45], to estimate the surface irradiance [46] and for hydrological
modelling [47]. However, the use of ERA5-Land is still a novelty in the water demand field.
Indeed, there are no published applications using reanalysis as meteorological forcing for
water demand analysis. The same numerical models used to produce climate reanalysis
are the core of forecasting data production, with fixed initial conditions and without
data assimilation. For example, in the case of ERA5, the seasonal forecasting product is
SEAS5 [48]. Therefore, from a practical point of view, ERA5 could be used in the prediction
of real drinking water demand as follows: as meteorological input for models training and
models validation as hindcast, as a proxy for SEAS5 forecasting meteorological data with
only the uncertainty of the Regional Climate Model (RCM) and not the weather forecasts,
to test the capability of drinking water models.

Tiwari and Adamowski, 2015 [35] describe long-range water demand forecasting,
which works at a time step larger than a month, for planning and design of water supply
systems. However, water managers also use medium-term forecasting, which is conducted
at a weekly to monthly time horizon, to make informed decisions for managing water
resources by balancing the water demand amongst various sectors such as water supply,
residential or industrial demands, as well as maintenance activities [35,49]. Moreover,
forecasting at hourly, daily, or a time step of less than a week, also known as short-term
water demand forecasting, is beneficial for the operational management and optimisation of
water supply systems [23,35,39]. Several authors have forecasted water demand in the short
term [50–52], while a more restricted group in the long term [53,54]. However, medium-
term forecasting of water demand is still a concept that has not been fully explored. To
the best of the author’s knowledge, no seasonal climate models have been used to support
water demand forecasting. Thus, in this paper, drinking water demand in the medium
term (from seven days to two months) is forecasted by feeding the ERA5 dataset to a
multivariate deep learning model. The performance of the model using the observed
dataset and ERA5 will be analysed. In addition, close-to-operative forecasting is also
presented using observed data for training and ERA5 data for testing the model to prove
the feasibility of ERA5 data as weather input for water demand modelling. Therefore, the
purpose of this study is to evaluate ERA5 in feeding deep learning algorithms as a viable
option for modelling drinking water demand.

The rest of the paper is divided as follows. Section 2 introduces the case studies with
the related data and the methodology developed for the medium-term water demand pre-
diction. Section 3 describes the results of the proposed forecasting method fed by observed
and ERA5 weather data, while Section 4 presents the discussion about the suitability of
ERA5 data for close-to-operative medium-term forecasting. The final remarks are proposed
in Section 5.

2. Materials and Methods

The materials and methods of the proposed work are described hereafter, specifically,
Sections 2.1 and 2.2 present the water demand and the meteorological data, while Section 2.3
introduces the forecasting methodology. In addition, two case studies in the mountainous
region of Trentino Alto Adige in the northern part of Italy are selected to compare ERA5
data with observed data in water demand forecasting.

2.1. Water Demand

This section introduces the water demand data used in this study. In particular, the
demand data belong to two WDSs in the north of Italy. The first case study has almost
eight years (from 1 January 2013 to 1 September 2020) of observations, while the second is
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almost seven years long (from 1 January 2013 to 1 September 2019). Figure 1 shows the
daily average value of the demand for both case studies.
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Figure 1. (a) Daily average water demand for case study 1 from 2013 to 2020, (b) Daily average water
demand for case study 2 from 2013 to 2019. Black line depicts the daily average value, whereas the
purple interval shows the minimum and maximum value for each day.

In Figure 1a, the black line depicts the daily average value for case study 1 from 2013
to 2020 while Figure 1b depicts case study 2 from 2013 to 2019. The intervals represent
the minimum and the maximum water demand registered for each day of the year. The
typical seasonal water demand behaviour emerges with a significant yearly periodicity
that involves both data level and variability. It is worth mentioning that these case studies
are typical of small-medium residential systems. Study area 2 has more water users than
study area 1. The variation of the water demand over the year depends on the different
water usage from the final users, e.g., more water is consumed during summers due to
outdoor water use such as watering of gardens and lawns [55,56], while less is consumed
during winters. Table 1 gives the overall summary of the observed data of the two case
studies, including the mean, standard deviation, and quantiles.

Table 1. Summary of observed data of the two case studies.

Case Study 1 Case Study 2

Number of Inhabitants 861 20,482
Mean (L/s) 3.53 49.57

Standard deviation (L/s) 0.56 6.70
Minimum (L/s) 2.53 36.25

Q1/4 (L/s) 3.13 44.50
Q1/2 (L/s) 3.39 48.03
Q3/4 (L/s) 3.80 52.94

Maximum (L/s) 6.15 76.81

Concerning the training and testing portion of the dataset, the observations from 1
January 2013 to 1 November 2018 are adopted as training and the remaining almost 2 years
as testing for case study 1. Similarly, the data from 1 January 2013 to 1 November 2017
are used as training, while the remaining part is until 1 September 2019 as testing for case
study 2.
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2.2. Meteorological Data

The weather data used in this work are the measurements of ground stations, and the
results of the RCM provided as reanalysis. The measurements of the Autonomous Province
of Trento (Italy) of the station of Laste (TN) are the reference dataset for this paper, which
was obtained from Meteotrentino. The station of interest represents the area for both the
case studies, and the dataset covers the entire period used in this work.

Furthermore, the ERA5 dataset is the main meteorological driver of the forecasting
model analysed in this paper. These data are the fifth generation of reanalysis produced
by the ECMWF, and the motivation to use them is to evaluate how the model itself is
feasible as input of the water demand forecasting models. Indeed, ERA5 and the seasonal
forecasting (SEAS5) products of ECMWF are based on the same physical model, but the
former provides an enhanced version of the results without the prediction uncertainty.
Specifically, the reanalysis dataset includes just the model uncertainties because the data
assimilation process and the improved initial condition reduce the other uncertainties
(i.e., initial condition and model parameters uncertainties). The ERA5 data are available
to download on the Copernicus Climate Change Service Climate Data Store, and the
data of interest in this work are the relative humidity (as a combination of 2 m dewpoint
temperature and 2 m temperature), solar radiation (surface solar radiation downwards)
and temperature (2 m temperature) at hourly temporal resolution and depending on the
variable, the data are accumulated or instantaneous values. Figure 2 shows the data at the
nearest point of the ERA5 grid to the ground weather station of the two case studies.
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Figure 2. Meteorological ERA5 data from 2013 to 2020 for different variables. Black line depicts the
daily average values, whereas the purple interval shows the minimum and maximum values for each
day of the year.

The relative humidity does not have a particular pattern, and the mean value is 72%
against the 66% of the measurements. The temperature pattern is clear along the year,
with ERA5 meanly cooler than ground station values (10 ◦C vs. 13 ◦C). The last variable
used is the radiation, where a slight pattern along the year is present, with ERA5 that
overestimates the real measurements with a mean of 542.88 kJ m−2 against the real value
of 520.69 kJ m−2 (shown in Table 2). Although the ERA5 data are a good representation
of weather conditions, there are some biases with respect to the measurements, leading to
inaccuracy in the inputs of the water demand forecasting algorithm.
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Table 2. Summary of the two types of meteorological data used in the study: ERA5 and observed.

Humidity (%) Radiation (kJ m−2) Temperature (◦C)
ERA5 OBS ERA5 OBS ERA5 OBS

Mean 72.40 65.93 542.88 520.69 9.94 13.20
Standard
deviation 12.24 16.79 777.22 851.88 7.15 7.61

Minimum 33.65 1.04 0.00 0.00 −9.24 −3.55
Q1/4 63.96 55.08 0.00 0.00 3.74 6.44
Q1/2 72.99 65.93 24.13 0.10 10.21 13.59
Q3/4 81.39 77.89 972.18 806.82 16.06 19.60

Maximum 98.99 100.00 3443.94 3932.30 26.36 30.15

2.3. Forecasting Model

This section presents the model used for this study based on the LSTM units, which
have been used with remarkable results for water demand forecasting [57]. Figure 3
presents the architecture of the model, which is the same developed in [57].
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Figure 3. Diagram of the proposed medium-term forecasting model based on LSTM units.

The proposed model of Figure 3 has firstly to model the input sequence. This latter is
composed of past observations of the water demand and the meteorological variables of
relative humidity, temperature, and solar radiation. Therefore, this model is a multivariate
LSTM with four different features. Concerning the demand, the sequence is equipped with
the past observation of this latter. Differently, the other variables of temperature, humidity,
and radiation are forecast data. Generally, this model aims at providing the forecast of
daily demand from the time step t until time step t + n, where n is the number of days to be
forecasted.

The hyper-parameters of the model are crucial [58] and have been tuned using a
conventional grid search procedure with the observed data, and the results of the process
are reported in Table 3.
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Table 3. Hyper-parameters of the models for different time horizons.

Time Horizon 7 Days 14 Days 30 Days 60 Days

Number of layers 3 3 3 3
Number of units 48-72-48 48-72-48 32-48-32 32-48-32

Activation function tanh/sigmoid tanh/sigmoid tanh/sigmoid tanh/sigmoid
Optimiser Adam Adam Adam Adam

Loss function mse mse mse mse
Number of epochs 100 100 150 200

For all the implementation, a computer with Windows 10 and an AMD Threadripper
3960X processor is used to develop the predictions and using the Keras [59] and Tensor-
Flow [60] libraries in Python.

2.4. Evaluation Metrics

The mean absolute error (MAE) and the mean absolute percentage error (MAPE) are
adopted to evaluate the prediction ability of the proposed models. These metrics can be
defined as follows:

MAE =
1
N
−∑N

i=1|yi − ŷi|, (1)

MAPE =
100
N ∑N

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣, (2)

where N is the number of predicted values, yi and ŷi are the observed and the forecasted
values at the i hourly time step, respectively. It is worth mentioning that the low value of
both MAPE and MAE determines a well-performing model.

3. Results

Forecasting of drinking water demand is performed for different time horizons ranging
from seven days to two months (i.e., 7, 14, 30, and 60 days). Weather variables (temperature,
humidity, and radiation) obtained from ERA5 are used as input to the LSTM deep learning
model and are compared with observed data in order to test the feasibility of using ERA5
data as a benchmark for gridded data, which is tested on two case studies.

The model is first trained and tested using observed data to understand the metrics,
as discussed in Section 2.1. The results using observed data are shown in Table 4 as “LSTM-
OBS”. The shorter time horizon of seven days gives better results than the longer time
horizon for both case studies using observed (OBS) data. Next, training and testing of
the model are completed on the ERA5 dataset for both case studies (shown in Table 4,
“LSTM-ERA5”). The MAE using ERA5 data for seven days is 0.24 L/s and 2.10 L/s for case
studies 1 and 2, respectively. Similarly, MAPE for seven days is 6.51% and 3.88% while
using ERA5 as input data for both case studies, respectively. However, as the time horizon
increases, the efficiency of the model decreases, with MAE increasing from 0.25 L/s to
0.36 L/s from 14 days to 60 days for case study 1 and 2.62 L/s to 4.22 L/s from 14 days
to 60 days for case study 2. In order to test the capability of the model, close-to-operative
forecasting is performed in which the model is trained using observed data, and testing
is carried out using ERA5 data; the results are shown in Table 4 “LSTM-MIX”. The MAE
of the close-to-operative model called LSTM-MIX for seven days is 0.31 L/s and 2.49 L/s
for case studies 1 and 2, respectively. Similarly, MAPE for seven days for the LSTM-MIX
dataset is 8.20% and 4.60% for both case studies, respectively. With an increasing time
horizon, MAE increases from 0.25 L/s to 0.36 L/s from 14 days to 60 days for case study 1
and from 3.67 L/s to 3.93 L/s from 14 days to 60 days for case study 2. Similarly, MAPE
increases from 9.16% to 9.68% from 14 days to 60 days for case study 1 and from 3.67% to
3.93% from 14 days to 60 days for case study 2.
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Table 4. Evaluation metrics of case studies.

Case Study 1 Case Study 2
Meteo MAPE (%) MAE (L/s) MAPE (%) MAE (L/s)

7 days
LSTM-OBS 6.16 0.23 3.49 1.89

LSTM-ERA5 6.51 0.24 3.88 2.10
LSTM-MIX 8.20 0.31 4.60 2.49

14 days
LSTM-OBS 6.47 0.24 4.14 2.25

LSTM-ERA5 6.93 0.25 4.84 2.62
LSTM-MIX 9.16 0.34 6.62 3.67

30 days
LSTM-OBS 7.86 0.29 5.47 3.02

LSTM-ERA5 8.44 0.31 6.07 3.29
LSTM-MIX 8.88 0.33 5.88 3.23

60 days
LSTM-OBS 9.29 0.34 7.29 3.95

LSTM-ERA5 9.80 0.36 7.75 4.22
LSTM-MIX 9.68 0.36 7.24 3.93

Figure 4 shows the results obtained by the model for case study 2 for different time
horizons; in particular, the black line shows the observed drinking water demand, while
the orange and blue line shows the modelled drinking water demand for the testing period
using observed data and ERA5 data, respectively. Panel a shows the modelled water
demand for seven days. Similarly, panels b, c, and d show modelled water demand using
different inputs for 14-, 30-, and 60-day horizons for the testing period, respectively. All
outputs from the model using different inputs show similar results for the months from
October to June. However, for the months from July to September, during high-temperature
periods and high variability demand, the model predicts increasing errors with increasing
time horizons, with maximum errors for 60 days. The same behaviour of the model can
also be seen for study area 1 (see Figure S1 in Supplementary Materials).
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4. Discussion

The proposed input of ERA5 to the LSTM model is tested on two study regions, and
the results for different combinations, i.e., weather inputs, models, and time horizons, are
shown in Table 4. The simulations show better results for case study 2 in all the cases (see
Table 4). For example, for the LSTM-OBS to model a seven-day forecast, the MAPE is 6.16%
for case study 1 against 3.49% for case study 2. This is due to the higher number of water
users in study area 2 than in study area 1, making the demand for case study 2 smoother
with less variability and, thus, easier to model and forecast.

Moreover, the behaviour of both case studies is similar, showing a decrease with an
increase in the prediction horizon. For this reason, the main discussion in the current section
is on case study 2, but it is held to be valid for the other case study. The comparison between
observed water demand and modelled water demand using observed and ERA5 data are
shown in Figure 4. The LSTM-OBS model leads to a MAPE from 3.49% of the seven days
forecasting up to 7.29% at 60 days. It is important to underline that the model with ERA5
input shows similar results with a MAPE from 3.88% (seven days forecasting) up to 7.75%
(60 days forecasting). The meteorological bias between the LSTM-OBS and LSTM-ERA5 is
reflected in the forecasting outcomes, but this does not invalidate the simulations using
ERA5, which seems to be promising.

The LSTM-MIX emphasises the influence of the meteorological input biases, which
is even more crucial in a procedure of close-to-operative forecasting where the training
data are the observation, while the testing/prediction data are the RCM outputs. The
simulations on 7–14 days of forecasting degrade the performance obtained by LSTM-OBS
and LSTM-ERA5 models. On the other side, LSTM-MIX on 30- and 60-day time horizon
perform in line with LSTM-OBS. It means that the impact of the input data decreases
with the increase in the time horizon, and on the contrary, the uncertainty of the LSTM
model rises with the growth of the forecasting window. This latter factor does not depend
on the input type but only on the forecasting procedure. It can be concluded that the
LSTM-ERA5 model can be used as a reference gridded dataset to weather data in the field
of drinking water demand forecasting, but the application of a bias correction procedure
on the RCM outputs could be helpful to avoid the propagation of the errors in the deep
learning algorithm.

Figure 5 shows the absolute errors for different time horizons for case study 2 using
different input datasets. Similar results are obtained for case study 1, which is shown in
Supplementary Materials (Figure S2).

In Figure 5, the blue boxes represent the modelled absolute errors using the ERA5
dataset (LSTM-ERA5), observed dataset (orange boxes), and close-to-operative forecasted
data (green boxes). The months from October to March show smaller errors. However,
higher errors can be seen from June to September due to different seasonality of consump-
tion.
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5. Conclusions

Drinking water demand modelling and forecasting are essential for sustainable man-
agement and planning of water supply systems. This work aims to evaluate ERA5 in
feeding deep learning algorithms as suitable input to model medium-term drinking water
demand. A multivariate deep learning model based on the LSTM architecture was adopted
to capture the weather data’s time dependencies with water demand. Several simulations
were carried out using observed and ERA5 datasets over different time horizons for ana-
lyzing the performance of the water demand hindcasting with a particular focus on the
suitability of ERA5 reanalysis inputs. In addition, close-to-operative forecasting was also
presented, which was trained on the observed data and tested on ERA5 data as a proxy
of SEAS5, the seasonal forecasting product of the same RCM provided by ECMWF. The
analysis was performed for different time horizons ranging from seven days to two months
for two case studies in northern Italy.

With the increase in the time horizon, the uncertainty related to the prediction and its
complexity also increased. The LSTM-ERA5 model shows good results when compared to
the LSTM-OBS model; however, the meteorological biases of ERA5 lead to slightly worse
results. LSTM-MIX emphasises the influence of such biases. For shorter time horizons, the
performance of LSTM-MIX is worse than LSTM-OBS and LSTM-ERA5 models. However,
for higher time horizons, it is in line with LSTM-OBS, meaning that the impact of the input
data decreases with the increase in the time horizon, and the uncertainty of the LSTM
model rises with the increase in the forecasting window, which can be attributed to the
forecasting procedure and not the input data. Thus, it can be concluded that ERA5 can be
used as a reference gridded dataset to weather data to model and forecast drinking water
demand. Moreover, it could be significant to use bias correction methods on RCM outputs
to avoid propagation errors in the deep learning algorithms, which could be studied in
future studies. Due to the use of data from two real-world case studies to model and
forecast water demand, it can be concluded that this methodology can be an effective tool
for modelling water demand at the medium-term horizon.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15081495/s1. This section reports the results also for case study
1 in terms of forecasting in Figure S1 and in terms of variability of the error in Figure S2.
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