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Abstract: Coagulation can effectively recover substances from wastewater; however, there is a
lack of efficient coagulants for simultaneous recovery of organic matter, nitrogen, and phosphorus.
We prepared a composite polysilicate metal (CSM) flocculant by combining Fe3+ and Mg2+ ions
in polysilicic acid (PSiA). According to the results of scanning electron microscopy (SEM), X-ray
diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), the CSM exhibited a larger
amorphous phase along with new compounds, including Mg3Fe2(SiO4)3 and hydroxyl metals. The
CSM demonstrated a higher coagulation efficiency than PSiA and polymeric ferric sulfate, particularly
for PO4

3−-P and NH4
+-N removal. The metal/silicate molar ratio substantially influenced the

structure and composition of the CSM, along with the coagulation efficiency, with an optimal ratio of
3:1. Additionally, we proposed a novel preparation strategy to achieve an optimum CSM basicity
(B*) for coagulation by adjusting the initial pH of PSiA (pHInitial) without adding an alkali agent.
The results demonstrated that the optimum B* can be obtained by adjusting pHInitial to 0.5 or 1. The
overall optimum coagulation performance for the simultaneous removal of organic matter, PO4

3−P,
and NH4

+-N from wastewater was 68.5%, 99%, and 17.5%, respectively. This study provides a
feasible approach for synchronous pollutant recovery from wastewater.

Keywords: coagulation; inorganic polymeric flocculants; ammonium-nitrogen recovery; basicity;
domestic wastewater treatment

1. Introduction

The recovery of organic matter, nitrogen, phosphorus, and other substances from
wastewater is an important step in energy recovery and carbon neutralization in wastewater
treatment [1,2]. Coagulation is an effective technology for direct pollutant removal from
water. It is usually applied in drinking water treatment to remove particulate and colloidal
substances from water [3]. Coagulation has also been broadly used in wastewater treatment
to remove particulates, colloids, and phosphates [4,5]. Nevertheless, the removal and
recovery of ammonium-nitrogen from wastewater by coagulation is currently limited; this
hinders the synchronous recovery of organic matter, nitrogen, and phosphorus.

Coagulants are at the core of the coagulation process; those most predominantly
used are aluminum or ferric salts, such as AlCl3 and Fe2(SO4)3 [4,6]. In recent decades,
inorganic polymeric flocculants (usually abbreviated as IPFs), such as polyaluminium
chloride (PAC) and polymeric ferric sulfate (PFS), have been developed [7,8]. Due to their
sophisticated preparation procedures, they consist of effective coagulation species, and
pre-polymerized IPFs are more effective than conventional simple inorganic salts [9,10].
Although IPFs exhibit better coagulation behavior than conventional inorganic salts, their
bridge-aggregation ability is disrupted when compared to that of organic flocculants, such
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as polyacrylamide (PAM) [11,12], because of their limited molecular size. To improve
coagulation efficiency, other components, such as polysilicic acid (PSiA), have been intro-
duced into IPFs [13,14], and are usually referred to as polysilicate metal coagulants. The
primary purposes of introducing modifiers are to increase the molecular size, enhance
the aggregation ability, and increase the stability and durability of the coagulant [15,16].
Compared to traditional coagulants, these demonstrate great advantages in the coagulation
removal of pollutants in water, especially for particulate matter, colloids, and phosphate
removal. However, the simultaneous removal of ammonium-nitrogen from water by these
coagulants remains limited.

In recent years, magnesium precipitation has been widely used to achieve the si-
multaneous recovery of ammonium-nitrogen and phosphorus from water. Magnesium
salt has been widely used to remove ammonium-nitrogen from wastewater, usually by
dosing magnesium salt and PO4

3− at a certain molar ratio under basic conditions to form
undissolved struvite (MgNH4PO4·6H2O) [17,18], and then removing ammonium-nitrogen
through chemical precipitation. However, while this method is primarily used for chemical
precipitation, few studies have combined struvite with coagulation to form coagulants with
synchronous removal and recovery of organic matter, phosphate, and ammonium-nitrogen.

Basicity (B*) is an important index in IPFs and represents the degree of binding between
metal ions and hydroxyl groups [19]. High basicity implies more effective components and
better coagulation performance in the IPFs. In the preparation of IPFs, basicity is usually
improved by adding alkalizing agents such as NaOH [20]. This undoubtedly increases
the preparation costs of IPFs. Iron, aluminum, magnesium, and other metal ions can bind
hydroxyl groups in water; this ability is related to the pH of the solution. By adjusting the
pH of an aqueous solution, the ability of an IPF to capture hydroxyl groups, i.e., its basicity,
can be achieved. To date, few studies have been conducted on the basicity adjustment of
IPFs by adjusting the pH of the solution.

Therefore, in this study, we combined polysilicates with iron and introduced magne-
sium ions to prepare a composite polysilicate metal (CSM) coagulant. The structure and
morphology of the samples were analyzed by scanning electron microscopy (SEM), X-ray
diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The objectives of
this study were: (i) to prepare a composite polysilicate metal coagulant and investigate
its coagulation performance in wastewater; (ii) to evaluate two important impact factors,
metal/silicate (M/Si) molar ratio and the initial pH of PSiA (pHInitial), on the characteristics
and coagulation performance of CSM; and (iii) to investigate the potential of regulating
the basicity of IPFs by adjusting pHInitial. This study provides a feasible technology for the
preparation of inorganic polymer coagulants and the simultaneous recovery of substances,
especially organic matter, phosphorus, and ammonium-nitrogen, from wastewater.

2. Materials and Methods
2.1. Chemicals

Na2SiO3·9H2O, MgSO4·7H2O, Fe2(SO4)3, and polymeric ferric sulfate (PFS) were
procured from Sinopharm Chemical Reagent Company. All reagents were analytically pure
chemicals, and deionized water was used to prepare the solutions.

2.2. Preparation of Composite Polysilicate Metal Coagulants

The CSMs were prepared by hydroxylation of a mixture of PSiA and metal salts (Fe3+

and Mg2+) using Na2SiO3·9H2O, Fe2(SO4)3, and MgSO4·7H2O as raw materials.

2.2.1. Metal/Silicate Molar Ratio Solutions

Na2SiO3·9H2O was dissolved and diluted to obtain a PSiA solution at a concentration
of 0.15 mol/L and pH = 4. As its viscosity increased to 0.005–0.006 Pa·s, Fe2(SO4)3 and
MgSO4 with an Fe: Mg molar ratio of 1:1 were added to the solution under vigorous stirring
to obtain the M/Si molar ratios of 2:1, 3:1, and 4:1. The mixture was stirred for 30 min
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until it became transparent. It was then left to stand for 24 h, resulting in a homogeneous,
transparent, and orange-yellow or orange-red solution.

2.2.2. pHinitial Solutions

To obtain CSM with different basicity values, a new strategy (see Section 2.5) was
applied by adjusting the pHInitial instead of adding extra alkalizing agents such as NaOH.
The preparation procedure was similar to that described above, except that pHInitial was
adjusted to 0.5, 0.75, 1, 3, and 5. The M/Si molar ratio was 3:1.

2.3. Characterization of Composite Polysilicate Metal Coagulant

The liquid samples were vacuum-dried for 36 h at 60 ◦C in a DZF-6050 Vacuum Drying
Oven (Lanphan, Shanghai, China) and then transferred to a desiccator at 25 ◦C. The solid
products were pulverized for further characterization.

The morphologies of the coagulants were examined using a Hitachi S-4700 SEM.
Crystalline phases were determined by XRD using a Siemens D-500 X-ray diffractometer
(10–90◦ 2θ at 2◦/min). Powdered coagulant was mixed with KBr and then analyzed by
FTIR using a PerkinElmer spectrophotometer in the range of 400–4000 cm−1.

2.4. Coagulation Experiments

The wastewater used was real domestic wastewater obtained from the Beijing Academy
of Agriculture and Forestry Sciences campus in Beijing, China. The main parameters
were as follows: suspended solids (SS), 150–300 mg/L; chemical oxygen demand (COD),
350–500 mg/L; PO4

3−-P, 3–5 mg/L; NH4
+-N, 30–50 mg/L; temperature, 18–22 ◦C; pH,

6.5–7.5.
CSM, PSiA, and PFS were compared to determine their coagulation performance in

domestic wastewater treatment. Coagulation tests were performed via a jar test appara-
tus with six paddles (MY3000-6B, Wuhan, China). Each wastewater sample (1.0 L) was
transferred in a beaker and stirred rapidly at 150 rpm for 1.5 min after coagulant dosing
(0–160 mg/L), followed by slow stirring at 80 rpm and 40 rpm for 5 min, and final sedi-
mentation for 20 min. Supernatants were collected for SS, COD, PO4

3−-P, and NH4
+-N

measurements. All analyses were performed according to the Standard Methods [21]. SS,
COD, PO4

3−-P, and NH4
+-N were determined using gravimetric, potassium dichromate,

potassium persulfate digestion-molybdenum antimony spectrophotometry, and Nessler’s
reagent spectrophotometry methods, respectively.

2.5. Relationship between pHInitial and Basicity

The evaluation of hydroxyl metals in IPFs is usually described by the basicity param-
eter (B*, where B* = [OH]/[metal ions]), which has a substantial effect on the degree of
polymerization and coagulation performance of IPFs. Tang and Stumm [22] suggested the
following definition for Fe(III) solutions:

B∗ =[OH−]bound/[FeT ] = BH + B − A (1)

where [OH−]bound refers to the OH− that participated in the polymerization. FeT is the
total iron concentration. BH is the initial ratio calculated from the pH of the initial solution.

BH =
[
H+]/[FeT

]
= 10−pH/[FeT ] (2)

B and A are the added base and acid ratios,

B = [OH−]add/[FeT ] (3)

A = [H+]add/[FeT ] (4)
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During the preparation of the CSM, solid metal salts were added directly to the
PSiA solution, with no pre-hydrolysis of the metal ions. However, the pH of the solution
decreased after the addition of metal salts, which was caused by binding of the added
metal ions to the OH− in the solution. After the metal salts are added, hydrolysis reactions
occur as follows:

xFe3+ + yH2O = Fex(OH)(3x−y)+
y + yH+ (5)

xMg2+ + yH2O = Mgx(OH)(2x−y)+
y + yH+ (6)

As shown in the equations above, when one unit of OH− is grasped by the metal salts,
one unit of H+ is produced, that is, the quantity of OH− grasped by the metal salts equals
that of H+ produced simultaneously. We evaluate the OH− grasped by metal ions without
the assist of added base by evaluating the alteration of pH values before and after the solid
metals adding. Equation (1) can be modified as:

B∗ =[OH−]bound/[MT ] = BH2 − BH1 + B − A (7)

where MT is the total metal concentration in CSM (mol/L), BH1 equates to BH in Equation (1),
and BH2 is the final ratio calculated from the pH value of the final solution. Thus, the
basicity of CSM can be calculated as:

B∗ =
[
10−pHFinal − 10−pHInitial + CB − CA]/[MT

]
(8)

where CB and CA represent the concentrations of base and acid, respectively, pHInitial is the
initial pH value of PSiA, that is, pH value of PSiA in preparation, and pHFinal is the final
pH value of the coagulant.

Equations (8) and (9) can be applied to the preparation of IPFs without metal pre-
hydrolysis. When no extra base or acid is added during coagulant preparation, as applied
in this study, Equation (9) is as follows:

B∗ =
[
10−pHFinal − 10−pHInitial ]/[MT

]
(9)

2.6. Statistical Analysis

Statistical differences among the samples were evaluated using SPSS Statistics ver. 21.0
software, and p < 0.05 was considered statistically significant. All assays were performed
in duplicate, and data of all three replicates were subjected to an analysis of variance.

3. Results and Discussion
3.1. Morphology of Composite Polysilicate Metal Coagulant

Variations in the morphology of the CSM with different M/Si ratios were analyzed
via SEM micrographs. As illustrated in Figure 1, CSM with small M/Si ratios consists of
many tiny particles aggregated together, similar to those contained in PSiA (Figure 1a). As
the M/Si molar ratio increased (Figure 1c–f), the CSM tended to exhibit a lump morphol-
ogy. The lumps were unevenly distributed on the surface, indicating the presence of an
amorphous phase. The major structures of the CSM were absorbed by tiny particles, which
adhered to the major structure through aggregation, and their amount decreased as the
M/Si molar ratio increased. This could be an evaluation of the aggregating ability of the
CSM, suggesting that the aggregating ability decreases with decreasing silicate proportion.
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Figure 1. SEM spectra of PSiA, PFS and CSM: (a) PSiA; (b) PFS; (c) CSM (M/Si = 2:1); (d) CSM (M/Si 
= 3:1); (e) CSM (M/Si = 4:1); (f) pHInitial = 0.5; (g) pHInitial = 0.75; (h) pHInitial = 1; (i) pHInitial = 3; (j) pHInitial 
= 5. 

Figure 1f–j show SEM micrographs of the CSM at different pHInitial. Generally, pHInitial 
significantly affects the structure of the CSM. When pHInitial was below one, the CSM had 
a predominantly sliced or lumped morphology. As pHInitial increased to five, this structure 
was rarely observed; however, some axiological or acicular particles aggregated. In addi-
tion, many tiny particles were adsorbed on the major structure when pHInitial was below 
one; however, they disappeared when pHInitial reached seven, similar to the analysis of the 
M/Si molar ratios, indicating a decrease in the aggregation ability of CSM.  

  

Figure 1. SEM spectra of PSiA, PFS and CSM: (a) PSiA; (b) PFS; (c) CSM (M/Si = 2:1); (d) CSM
(M/Si = 3:1); (e) CSM (M/Si = 4:1); (f) pHInitial = 0.5; (g) pHInitial = 0.75; (h) pHInitial = 1;
(i) pHInitial = 3; (j) pHInitial = 5.

Figure 1f–j show SEM micrographs of the CSM at different pHInitial. Generally, pHInitial
significantly affects the structure of the CSM. When pHInitial was below one, the CSM had a
predominantly sliced or lumped morphology. As pHInitial increased to five, this structure
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was rarely observed; however, some axiological or acicular particles aggregated. In addition,
many tiny particles were adsorbed on the major structure when pHInitial was below one;
however, they disappeared when pHInitial reached seven, similar to the analysis of the M/Si
molar ratios, indicating a decrease in the aggregation ability of CSM.

3.2. XRD Analysis

Figure 2 shows the XRD patterns of the powdered PSiA, PFS, and CSM. In general,
the CSM demonstrated a larger amorphous phase. Different from the XRD spectra of PSiA
(Figure 2a), a large, broad peak was found at approximately 2θ = 20◦, indicating that the in-
troduction of PSiA to metal salts possibly led to the amorphous phase of CSM. Additionally,
the diffractive crystal spectra of Fe2(SO4)3, Fe(OH)3, Fe3O4, and SiO2 disappeared, whereas
several new compounds, including Fe2SiO4, Mg2(SiO6), and MgFe2O4, were observed. This
indicates that Fe-Si, Mg-Si, Fe-O-Si, and Mg-O-Si bonds were formed, and that the CSM
contained new species rather than a mixture of raw materials. Despite the XRD spectra of
CSM with different M/Si molar ratios (Figure 2a) being similar, the intensity of the broad
peak at approximately 2θ = 20◦ decreased with increased M/Si molar ratios, suggesting
that a higher proportion of metal favors less influence of polysilicate on CSM.
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Figure 2. XRD spectra of CSM, PSiA and PFS: (a) PSiA, PFS and CSM with different M/Si molar
ratios; (b) CSM with different pHInitial, M/Si = 3:1.

The XRD spectra of the CSM with different pHInitial (Figure 2b) were similar, and two
large broad peaks were present. One was at around 2θ = 20◦, and another was at around
2θ = 30◦. As pHInitial increased, the peak at approximately 2θ = 20◦ tended to be sharp,
intense, and crystallized compared to PSiA. This suggests that a lower pHInitial resulted in
lower degree of PSiA polymerization.

The peak at around 2θ = 30◦ tended to be broad, intense, and bigger as pHInitial
decreased. The compounds involved with the peak at around 2θ = 30◦ consisted predomi-
nantly of new compounds formed by Mg, Fe, and Si, such as Mg3Fe2(SiO4)3, suggesting
that a lower pHInitial favored the formation of Fe-Si, Mg-Si, or Fe-O-Si, Mg-O-Si bonds. New
compounds, such as Mg3Fe2(SiO4)3, were formed by the metal ions and Si in the CSM.

3.3. FTIR Spectra Analysis

Figure 3a shows the FTIR spectra of CSM with M/Si molar ratios of 2:1, 3:1, and 4:1.
CSM exhibited two characteristic bonds at 3423–3400 cm−1 and 1643–1635 cm−1; these
are attributed to the vibration of -OH associated with metal ions [23,24]. The intensities of
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both peaks increased as the M/Si molar ratio increased from 2:1 to 3:1 but decreased as the
M/Si molar ratio increased further. This indicates that a metal proportion that is too small
or too large leads to worse absorption, polymerization, and crystallinity of water during
CSM coagulation.
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Strong absorption peaks were observed at 3000–2974 cm−1, corresponding to the vibra-
tion of Fe-OH [25–27]. The two peaks at 950–948 cm−1 and 470 cm−1 were associated with
the Si-O-Fe and Si-O-Mg bonds, respectively [28]. When the M/Si molar ratio increased
(Figure 3a), the peaks at 3000–2974 cm−1 predominately increased, whereas the peaks at
950–948 cm−1 and 470 cm−1 decreased, indicating that the metal-O-Si bonds tended to
transform into metal-OH bonds, i.e., hydroxyl magnesium and hydroxyl iron [29,30]. How-
ever, excess metal-OH bonds may lead to the formation of Fe(OH)3 and Mg(OH)2, which
cannot be dissolved in solution, thus reducing the effectiveness of CSM. An appropriate
M/Si molar ratio should be determined to favor the formation of hydroxyl metals and
avoid the formation of precipitates.

As the M/Si molar ratio decreased, the peaks at 1152–1122 cm−1 and 950–948 cm−1,
which corresponded with the O-Si and Si-O-metal bonds, respectively, increased [29,30].
This suggests that the introduction of PSiA favored the metal ions and that PSiA reacted
together to form complex compounds consisting of both metal ions and PSiA. As the PSiA
proportion increased, more metal ions tended to participate in the complexion, preventing
the polymerization of silicate (to form Si-O-metal bonds); thus, the polymerization degree
of CSM tended to be greater. It has been reported that a low silicate proportion favors the
Si-O-metal-O-metal-Si bonds forming, whereas high silicate proportions favored forming
Si-O-metal-Si-O-Si bonds [28,31].

The pHInitial also substantially affected the FTIR spectra of the CSM (Figure 3b).
When pHInitial decreased, the peaks at 3000–2974 cm−1 increased, whereas the peaks
at 3423–3400 cm−1 decreased, indicating that the dissociative -OH bond was probably
transformed into a metal-OH bond. This suggests that a lower pHInitial favors the formation
of hydroxyl metals, which are effective components of CSM. The peaks at 2520–2514 cm−1

increased with pHInitial, which were related to the O-Fe and O-Mg bonds, indicating that a
lower pHInitial favored the formation of O-metal bonds.

3.4. Composite Polysilicate-Metal Coagulant Performance

The coagulation efficiency of CSM for treating domestic wastewater was evaluated by
measuring removal efficiencies, including SS, COD, PO4

3−-P, and NH4
+-N, and compared

to that of conventional coagulants (PSiA, and PFS).
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3.4.1. Influence of Metal/Silicate Molar Ratios

Figure 4 presents the coagulation performance of domestic wastewater using CSM
with different M/Si molar ratios. The coagulation performance was significantly influ-
enced by the CSM dosage (p < 0.05). At lower dosages, the coagulation performance was
markedly improved with an increase in the CSM dosage; the optimal dosage of CSM was
60–80 mg/L, under which the removal efficiencies of SS, COD, PO4

3−-P, and NH4
+-N

reached 98%, 65%, 99%, and 15%, respectively. These removal efficiencies were higher than
PSiA and PFS (p < 0.05), especially for PO4

3−-P and NH4
+-N removal. In addition, CSM

exhibited significantly higher removal efficiencies of SS, COD, PO4
3−-P, and NH4

+-N than
traditional coagulants (FeCl3 and Al2(SO4)3) at the same dosage (Table S1, p < 0.05). The
concentrations of SS, COD, PO4

3−-P, and NH4
+-N under optimal removal were 4 mg/L,

126 mg/L, 0.15 mg/L, and 21.9 mg/L, respectively. The coagulation process for hydrolyz-
ing metals is a combination of charge neutralization, bridge aggregation, entrapment,
and other reactions [32,33]. During the coagulation process, CSM can be hydrolyzed into
polynuclear species of hydroxyl coordination compounds carrying a high positive charge,
which exhibit a strong charge-neutralization reaction with suspended and colloidal parti-
cles, as well as negatively charged phosphate radicals with a negative charge. Meanwhile,
the introduction of PSiA made the molar size and weight of CSM markedly larger than
those of PFS, such that the polymeric species predominated in the coagulant, resulting in
a higher coagulation efficiency. The adsorption of multinuclear and polymeric materials
on the particles enables the formation of condensation bridges between adjacent particles,
thus facilitating the subsequent formation of precipitation-prone flocculants [28,29,31,34].
Additionally, the dissociated Mg2+ and its hydrolyzed product Mg(OH)+ can complex
with NH4

+-N in domestic wastewater, forming a precipitate MgNH4PO4, which is then
absorbed by destabilizing particles.
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Additionally, an increase in the M/Si molar ratio led to a slight deterioration in the
coagulation efficiency (Figure 4). This may be related to the reversal of the surface charge
due to the excessive absorption of metal ions to the surface of the initial flocs, which could
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hinder subsequent absorption, resulting in the failure to form large flocs [26]. As shown in
Table S2, CSM with M/Si = 4:1 showed smaller floc size than that of CSM with M/Si = 3:1
at the end of coagulation process. The M/Si molar ratio represents the proportion of metal
salts and silicate in the CSM, which are associated with the charge-neutralization capacity
and bridge-aggregating ability, respectively [35]. A higher M/Si molar ratio indicates a
greater charge-neutralization ability of CSM, whereas a lower M/Si molar ratio indicates a
better bridge-aggregating capacity of CSM. Suspended and colloidal particles in domestic
wastewater mainly carry negative charges, so that the M/Si molar ratio could facilitate
charge neutralization to be destabilized by impurities. However, the particle surface charge
reverses as the M/Si molar ratio continues to increase, unable to favor the formation of
large flocs (Table S2), which has a similar mechanism as the coagulant dosage. Despite that,
the floc size of CSM was significantly larger than those of PSiA and PFS (Table S2, p < 0.05),
resulting in higher coagulation performances of CSM.

3.4.2. Influence of Basicity and pHInitial

The B* parameter of CSM was calculated using Equation (9). B* varied along with
pHInitial and had values of 0.08–1.29 (Table 1 and Figure 5a). When pHInitial was 0–1, the B*
of CSM increased to a maximum of 1.29 at pHInitial = 0.75, and then decreased as pHInitial
increased. The quantity of OH− grasped by the metal ions can be attributed to two factors:
the degree of dissociation of the metal ions and the concentration of H+ [36]. A higher
degree of dissociation indicates a higher grasping ability; it could be very difficult for metal
ions to grasp OH− with a high concentration of H+. When the pHInitial was below 4, the
metal ions mostly existed in a dissociated state, and the degree of dissociation increased
with decreasing pH, which also indicated the higher grasping ability of the metal ions.
However, a lower pHInitial means a higher concentration of H+, which competes with metal
ions to grasp OH−, resulting in a decrease in the B* value of the CSM.

Table 1. Composite polysilicate metal (CSM) with different basicities (B*).

NO. 1 2 3 4 5 6 7 8 9

pHInitial 0.25 0.50 0.75 1 2 3 4 5 6.00
pHFinal 0.15 0.26 0.30 0.48 1.02 1.24 1.33 1.55 1.68

[MT] (mol/L) 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
B* 0.58 0.93 1.29 0.86 0.34 0.23 0.19 0.11 0.08

It has been reported that the B* of IPFs can affect coagulation performance; generally,
coagulants with larger B* exhibit better coagulation efficiency [19]. Figure 5b shows the
coagulation performance of domestic wastewater using the CSM with different B*. The
increase in B* favored higher coagulation efficiency, and the optimum value was B* = 1.0,
when pHInitial = 0.5 or 1.0. Removal efficiencies of SS and COD were 99% and 68.5%, and
99% and 17.5%, respectively. However, an excessively large B* can weaken the coagulation
efficiency, probably because of excessive OH− which may react with metal ions to form
Fe(OH)3 and Mg(OH)2 precipitates. The relationship between the coagulation performance
of the CSM and basicity was evaluated (Figure 5b). A good correlation between the
coagulation performance of the CSM and their basicities was found (R2 > 0.8), which meant
that a larger B* would enhance the coagulation performance of the CSM.
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Here, the purpose of adjusting the pHInitial was to make the solution acidic before
polymerization, under which the metal ions were dissociated; this is so that metal ions
such as Fe3+ and Mg2+ could have a strong ability to grasp OH− in the coexisting solution,
aiming to form hydroxyl metals, which are the prerequisite and efficient constituents of
CSM (Figure 5c). The quantity of OH− grasped by the metal ions can be attributed to two
factors: the degree of dissociation of the metal ions and the concentration of H+. A higher
degree of dissociation indicates a higher grasping ability; it could be very difficult for metal
ions to grasp OH− with a high concentration of H+. When the solution pH was 4, Fe and
Mg mainly existed in dissociated states (Fe3+ and Mg2+) [22], and the degree of dissociation
increased with decreasing pH, which also indicated a higher grasping ability for metal ions.
However, a solution with a very low pH (<0.75) indicates a higher concentration of H+,
which would compete with metal ions to grasp OH−, resulting in a decrease in the B* of
CSM. In contrast, when the pH was above four, Fe and Mg mainly existed as metal-hydroxyl
complexes, such as Fe(OH)3 and Mg(OH)2 (Figure 5c), which were mainly precipitated
in which Fe and Mg were not dissociated; thus, they could not grasp OH− to form larger
metal-Si-O complexes during the secondary preparation of CSM. Therefore, pHInitial played
a predominant role in the preparation of CSM, and the optimum value was 0.5 or 1, at
which point the B* of CSM could reach 1.29. Additionally, this preparation method does
not require supplemental basic chemicals, such as NaOH or NaHCO3, but requires the
adjustment of pH1 to obtain the optimum basicity of coagulants, when compared with
traditional methods for preparing inorganic polymer flocculants [7,14,30]. Compared with
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traditional methods, this could be an efficient way to reduce costs. However, the B* value
of CSM in this study was still lower than that of the other IPF prepared by adding an
additional alkalizing agent. Future studies should focus on improving the B* without
using an additional alkalizing agent. In addition, the introduction of Mg into CSM greatly
enhanced the removal of NH4

+-N from wastewater, resulting in the simultaneous removal
of organic matter, phosphorus, and ammonium-nitrogen. This method provides a feasible
approach for the simultaneous recovery of various pollutants from wastewater.

4. Conclusions

A composite polysilicate metal (CSM) coagulant was prepared to enhance the removal
of pollutants from wastewater. The M/Si molar ratio and B* significantly affected the
structure and composition of CSM. XRD and FTIR analyses suggest that CSM presents a
larger amorphous phase, and that Fe-Si, Mg-Si, Fe-O-Si, Mg-O-Si, and metal-OH bonds
are formed. New compounds such as Mg3Fe2(SiO4)3 were formed by metal ions and
Si in the CSM. CSM exhibited significantly better coagulation efficiency than PSiA and
PFS, especially for PO4

3−-P and NH4
+-N removal in domestic wastewater treatment. The

coagulation efficiency increased with dosage and M/Si molar ratio, with optimum values
of 60–80 mg/L and 3:1, respectively. A novel strategy to obtain the basicity (B*) of CSM
was achieved by adjusting the PSiA pHInitial, which was calculated using the method
proposed in this paper. The optimum B* of the CSM for domestic wastewater treatment
was approximately 1.0, when pHInitial = 0.5 or 1.0. Future studies should focus on improving
the B* without using an additional alkalizing agent.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15091782/s1, Table S1: Comparison of coagulation performance
between CSM and traditional coagulants (FeCl3 and Al2(SO4)3) at the same dosage (80 mg/L);
Table S2: Floc size of different coagulants at the end of coagulation processes.
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