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Abstract: In this study, we utilized exposure time (θ) as a key metric to investigate water exchange
and its spatiotemporal variations in the Northern South China Sea (NSCS). The Eulerian adjoint
method and Lagrangian tracking were adopted to capture a comprehensive view of water exchange
in coastal regions. Our findings reveal distinct spatial and seasonal variations in θ. Spatially, a long
θ (exceeding 150 days) appears in the coastal region, and the largest values occur in the Beibu Gulf
(300 days). Temporally, θ exhibits clear seasonal patterns across the extensive shelf area, influenced by
the seasonal monsoon which induced seasonally reversing shelf current and results in symmetrical
distribution patterns of θ across the board shelf during both winter and summer months. θ is longer
in winter than in summer. The study also revealed pronounced vertical contrasts in cross-isobath
transport over the NSCS shelf, though significant vertical variations in net exchange time were noted
only in specific locations, including the northeast side of Hainan Island, the Beibu Gulf mouth, and
along the west side of Taiwan Island. The Beibu Gulf emerged as a critical factor in the NSCS’s water
exchange dynamics in both seasons. In summer, it impacts more than 20% of the water exchange
over adjacent areas, particularly through its westward transport against typical northeastward shelf
currents. This highlights the combined effect of the westward spread of the Pearl River freshwater
and the stable slope current on regional hydrodynamics. In winter, the Gulf’s retention characteristics
profoundly affected even distant areas, contributing to up to 50% of water exchange, showing its
broad impact on the NSCS’s water dynamics throughout the year.

Keywords: exposure time; Northern South China Sea; lagrangian and eulerian methods; seasonality;
hydrodynamics

1. Introduction

Coastal waters serve as critical interfaces where terrestrial and marine ecosystems
intersect, playing an essential role in global material cycles. These waters, influenced by
the confluence of rivers and oceans, are subject to dynamic processes shaped by tides,
winds, buoyancy waters and ocean circulation [1–4]). Meanwhile, the functioning of
coastal ecosystems is increasingly threatened by anthropogenic impacts and climate change,
leading to detrimental effects such as eutrophication, harmful algal blooms, and hypoxia
exacerbated by inadequate water exchange [5,6]. These ecological disturbances highlight
the importance of understanding water exchange processes, as they are fundamental in
determining the transport and fate of water quality indicators [7,8].

Over the Northern South China Sea (NSCS), the shelf circulation and water movement
experience complex dynamics driven by wind, tides, the Kuroshio intrusion, freshwater
discharge from the Pearl River Estuary (PRE), and modulated by the local topography [9,10].
The alternate variation of northeasterly winter monsoon to southwesterly summer monsoon
induces contrasting seasonally changed southwestward to northeastward shelf current and
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a strong seasonal difference in rainfall over southern China and related buoyant discharge
into the NSCS, which together impacts water exchange rates and thus the ecological balance
of the region [11,12]. Under the interaction of topography and summer southwesterly wind,
extensive upwelling was generated at the coastal region of NSCS and brings cold, salty,
nutrient-rich deep waters to the surface and therefore, improves the primary production
in these regions [9,13,14]. Although previous studies have recognized the influence of
the East Asia Monsoon on the NSCS’s hydrodynamic processes, indicating substantial
seasonal variability [15–17], the specific seasonal patterns of water exchange, the major
hydrodynamic processes, and their cumulative impacts remain poorly understood.

Transport timescales and water exchange rates, crucial for evaluating the distribu-
tion of properties critical to marine ecosystems and climate, are significantly affected by
seasonality of the seasonally contrasting shelf current. Metrics such as exposure time,
water age, and flushing time, offer a high-resolution understanding of these variations and
have proven effective for assessing coastal water exchange capacities, particularly in tidal
regions where water reentry is a key factor [1,18]. These timescales are vital benchmarks
in complex dynamic settings and provide insight into how varying conditions impact the
transport of phytoplankton biomass and contaminants [19–22]. Earlier research on water
exchange in the NSCS primarily concentrated on coastal regions, specifically estuarine
areas, for instance, Ren et al. (2014) [23] found riverine influence plays a crucial role in
water exchange in the Pearl River Estuary, with tides affecting the fluctuation range of
water exchange. Wind predominantly impacts the vertical structure of water exchange
during winter [24]. It is also noticed that the large-scale coastal controls the seasonal pattern
of bay-shelf exchanges [25]. Over the shelf, research mainly focuses on the cross isobath
water motions, such as Liu et al.’s [26] study highlighted that southwesterly wind induced
flows in the Taiwan Strait sustained northeastward upwelling currents near the Pearl River
Estuary, promoting the extensive upslope movement of deep shelf waters. Therefore,
investigation into the seasonal patterns of water exchange in the NSCS and the related
hydrodynamic processes could provide valuable information for the effective management
and improvement of coastal environments, emphasizing the critical nature of seasonal
dynamics in coastal water that is influenced by monsoon.

Following this introduction, Section 2 introduces the numerical model, adjoint model,
and tracking model used in this study. Section 3 discusses the spatial-temporal characteris-
tics of water exchange. Finally, Section 4 summarizes the study.

2. Methodology
2.1. Ocean Model

To accurately simulate estuarine and shelf circulation with high resolution, this study
utilized a hierarchically nested modeling approach based on the Regional Ocean Modeling
System [27]. The model’s domain encompasses the NSCS shelf (Figure 1), with horizontal
grid spacing that finely transitions from approximately 1 km in the coastal proximity to
3 km across the broader NSCS shelf area. Employing the terrain-following s-coordinate
system [28], the vertical structure of the water column was discretized into 60 levels to
enhance resolution and a higher resolution was used in both the surface and bottom
boundary layers. To solve the turbulent mixing and diffusion in the water column, we
utilized the level-2.5 turbulence-closure scheme of Mellor and Yamada (1982) [29]. The
model incorporates atmospheric forcing including wind, heat flux, and precipitation,
provided by the ERA5 atmospheric reanalysis data from the European Center for Medium-
Range Weather Forecasts (ECMWF). River discharge data were provided by the Ministry
of Water Resources of China. Along the open boundary, the model was nested with
the Hybrid Coordinate Ocean Model and the Navy Coupled Ocean Data Assimilation
(HYCOM + NCODA) global 1/12◦ analysis (GLBv0.08; https://www.hycom.org/), with a
3-hourly temporal interval. We imposed nine major constituents of the semidiurnal (i.e., M2,
S2, K2, and N2) and diurnal (i.e., K1, O1, P1, and Q1) tides, as well as one of the M4 tide from
the nonlinearity of the M2. These harmonic constants were inverted from remotely sensed
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long-term sea-level anomaly (SLA) variations using the Oregon Tide Inverse Software
(Egbert & Erofeeva, 2002; https://www.tpxo.net/otps) [30] of T. T. Zu et al. (2008) [31].
This modeling system has been previously validated for its efficacy in exploring climate
influences and the interannual variability of shelf currents in the NSCS [32]. In this study,
the daily results of velocity (u, v, w) and the diffusion coefficient (k) between 1994–2018
were saved to conduct the adjoint simulation under complex hydrodynamic conditions,
detailed in the following contents.
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Figure 1. Topography (m) and diagrammatic sketch of circulation in the NSCS. The black
solid/dashed arrow over the shelf indicates the summer/winter current. The black solid lines
and 200 m isobath define the region of ω in the calculation of exposure time.

2.2. Exposure Time Model and Lagrangian Particle Tracking

To examine the water exchange capacity, the exposure time (θ) [33], which was defined
as the time required for the released substance to leave the domain of interest (ω) was used
as it showed high-resolution temporal and spatial variations. To resolve the dependence of
θ on the initial release location and release time, the adjoint method [34,35] was used.

∂θ

∂t
+ δω +

→
v · ∇θ +∇

(
k · ∇θ

)
= 0 (1)

where θ is the exposure time,
→
v is the three-dimensional velocity vector and k is the

turbulent diffusion coefficient obtained from the hydrodynamic model, and δω is the

characteristic function of the domain of interest ω that δω =

{
1 (x, y, z) ∈ ω
0 (x, y, z) /∈ ω

.

In this study, ω covers the region from Beibu Gulf to the Taiwan Strait. It is bounded
by the 200-m isobath (Figure 1). In this study, the saved daily results of velocity (u, v, w)
and the diffusion coefficient (k) were used to calculate the θ offline. In the calculation, the
initial value of θ is set to zero in the computational domain and it was integrated backward
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in time (from the present to the past) with the reversed flow [35,36]. Along the boundary of
simulation domain, the θ was set as zero, which indicates that after leaving the simulation
domain, the water does not come back.

Besides using the θ, to reveal the transport pattern, the Lagrangian TRANSport
model (LTRANS v.2b), which is a popular off-line three-dimensional particle tracking
module [37–39] was used to track the motion of water parcels in a Lagrangian manner to
identify the areas where water parcels gather. The fourth-order Runge–Kutta scheme was
applied for particle advection and reflective boundary conditions were used to treat the
particles that hit the solid boundaries. The effects of vertical and horizontal turbulence
are considered by the random displacement model using the diffusivity coefficient from
the hydrodynamic simulation [40,41]. Particles were released on each computational grid
every 5 days during the simulation.

3. Results and Discussion
3.1. Shelf Circulation

In order to gain a comprehensive understanding of the hydrodynamic factors influenc-
ing water exchanges, we first examined the circulation patterns within the computational
domain, focusing on climatologically averaged conditions for the distinct periods of sum-
mer and winter (Figure 2). The hydrodynamic variations between these seasons are pivotal
for interpreting the mechanisms driving water exchange.

The circulation patterns in the NSCS shelf exhibit marked seasonal variations, closely
linked to monsoonal influences and regional geomorphological features (Figure 2), mean-
while the Kuroshio intrusion through the Luzon Strait fosters a cyclonic slope current that
serves as the dynamic boundary delineating the shelf circulation [42]. During the summer,
the shelf current is directed northeastward under the influences of the southwesterly mon-
soon. Along the Yuexi coast that to the west of PRE, the northwestward coastal current to
the west of PRE was largely reduced under the influence of the westward expanded plume
from PRE. The river plume that comes from the PRE is mainly affected by the winds that
drive currents along the coast. Additionally, the natural buoyancy within the plume plays
a crucial role in altering the circulation of water both along the shore and across the shelf,
especially in the upper layers of the water column. At the estuary mouth, the interaction of
Pearl River Plume and shelf current induced the intrusion of shelf current [43,44]. It is also
noticed that, during summer, the cyclonic slope current intruded into the shelf through
the region to the southeast of Hainan Island and joined the shelf current (Figure 2a). On
the surface, the complicated cross-isobath transport patterns occur around Hainan Island,
but the bottom onshore intrusion prevails over the shelf due to the flow-topography in-
teraction [10,45] (Figure 2c,d). Conversely, during winter, the shelf current intensifies and
assumes a southwestward flow. Associated with the intensified northeast wind, the surface
water mainly features the onshore intrusion, while the strong bottom offshore transport
covers the whole shelf (Figure 2e,f), particularly to the southeast of Hainan Island. The
cross-shelf velocities are instrumental in establishing the dynamic connection between the
shelf current and the basin-wide circulation [26,46], and these velocities, combined with
the observed seasonal circulation patterns, emphasize the complex interplay between shelf
and basin dynamics in the region.

The Beibu Gulf, linked to the broader shelf via the Qiongzhou Strait, presents a
less clear picture. The majority of evidence suggests a predominance of cyclonic and
anticyclonic gyres controlling the circulation within the gulf [47,48]. However, during
summer, currents weaken considerably, leading to a reduced water exchange capacity
within the Beibu Gulf, contrasting with the well-defined gyres of winter. The complexity of
these seasonal circulation patterns underscores the need for nuanced understanding when
considering hydrodynamic impacts on water exchanges in the NSCS.
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Figure 2. (a) Horizontal map of the depth-averaged shelf current in summer. (b) Same as (a), but
for winter. (c,d) Summer cross isobath velocity (m/s) in surface and bottom, respectively, positive
and negative values indicate the onshore and offshore motions, respectively. (e,f) Same as (c,d) but
for winter.

3.2. Seasonal Variability of the θ

The Figure 3a depicts the spatial pattern of the annual mean θ in the NSCS. Generally,
the longest θ with the magnitude of ~300 days is observed in the nearshore areas of the
Beibu Gulf and the Yuexi shelf, where the circulation is relatively weaker (Figure 2a,b). Then
it gradually decreases towards the outer shelf which correlates inversely with water depth
and decreases northeastwardly from Beibu Gulf towards the Yuedong regions. In order
to comprehensively examine the variability of θ, we conducted an Empirical Orthogonal
Function (EOF) analysis. The dominant mode (Figure 3b), referred to as EOF-01, emerges as
particularly significant, accounting for a substantial portion (47.5%) of the overall variance.
In contrast, the subsequent modes each make relatively modest contributions, with each of
them accounting for less than 15% of the total variance.
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The magnitude of θ anomalies exhibit an increasing trend, transitioning from the outer
shelf towards the inner shelf and coastal areas, particularly in the Beibu Gulf. It is also
noted that a positive anomaly appears in the northeast corner of the Beibu Gulf, mirroring
the anomaly observed in the coastal region of the shelf. This suggests a potential connection
of circulations between the Beibu Gulf and the broader shelf region. Temporally, the time
coefficient associated with EOF-01 exhibits clear seasonal fluctuations on an annual scale
(Figure 3c). Compared with the time coefficient of the EOF-01 of sea level in NSCS, there
is minimal time lag, indicating an almost immediate response of the water exchange rate
to the hydrodynamic conditions. Seasonal variations in θ are marked by lower values
during the summer, in line with decreased sea levels, and higher values during the winter,
corresponding with elevated sea levels.

To check the seasonality of the θ in the NSCS, it was averaged in the summer and winter
time during the simulation period. During the summer months, the robust northeastward
shelf current initiates an active water exchange (Figure 2a), the substance released in the
northeast shelf can leave the NSCS rapidly through the Taiwan Strait, thus diminishing θ
values along the northeast shelf. From the Taiwan Strait, there is a notable southwestward
increase to approximately 200 days near Qiongzhou Strait (Figure 4a). The Beibu Gulf
experiences complex interactions between anti-cyclonic circulation in its southern reaches
and cyclonic circulation in the north (Figure 2a), causing θ values to rise from the mouth of
the bay toward the gulf’s northeast and reach the largest exceeding 300 days. Meanwhile,
the water motion is relatively weak, and induces the larger values θ at the top of the
Beibu Gulf.

In contrast, during winter, the distribution of θ exhibits roughly opposite patterns
(Figure 4b). The southwestward coastal current carries water into the Beibu Gulf via
the Qiongzhou Strait (Figure 2b), resulting in a zonal distribution along the coastline of
Guangdong Province. In the Beibu Gulf, a gulf-scale cyclonic circulation that is nested with
a cyclonic gyre in the southern gulf emerges in winter [49]. The southwestward shelf current
formed a strong jet at the southeast of Hainan Island and flow westward, then, it enters
the Beibu gulf from the southwest side of Hainan Island and exits through the southern
coastal region of Vietnam (Figure 2b), consequently, this circulation leads to low values of θ
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along the eastern coast of Vietnam. Furthermore, the gulf-scale cyclonic gyre, extending
northeastward, facilitates the transport of substances released in the northwest coast region
of Hainan Island to the northern Gulf, where they may persist for an extended period.
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The cross-isobath transport plays a pivotal role in establishing hydrodynamic connec-
tions between the open ocean and coastal regions, which shows quite significant vertical
changes in coastal regions (Figure 2c–f), thus may have different contribution to the wa-
ter/mass cycle vertically. The θVD (θbottom − θsur f ace) serves as a more direct and effective
indicator for illustrating the cumulative effects of vertically varying cross-shore motions
and displays the clear seasonality.

During summer with prevailing southwest wind forcing, the coastal region experiences
substantial surface offshore transport and bottom onshore intrusion (Figure 2c,d). While,
despite the prevalence of strong vertically contrasting cross-isobath transport over the shelf,
most locally intensified cross-isobath motions do not lead to significant changes in the
water exchange rate in the water column. Mainly over the region to the east of Hainan
Island and the mouth of Beibu Gulf, the bottom intrusion induces the net increase of the θ
(Figure 5a). Over those regions, the bottom water spends approximately 50 days longer
time in the NSCS than surface water.
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In contrast, during winter with northeast wind forcing and intensified southwest shelf
current, it mainly features the surface onshore intrusion and bottom offshore transport, par-
ticularly over the southeast of Hainan Island and shelf out of PRE. Thus, the downwelling
results in the exchange rate of the bottom water being slightly faster than the surface water
with the negative θVD over the whole shelf NSCS (Figure 5b). However, although the
magnitude of the cross-isobath transport is stronger in comparison with the summer, the
magnitude of the negative θVD is much smaller. The large θVD is only observed near the
200 m isobath and southeast side of Hainan Island.
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3.3. Transport Pattern Inferred from θi

To further check how water moves in the entire NSCS, we examined the time spent in
various subdomains before the water finally leaves the NSCS. Based on the topographic
and hydrodynamic features, the NSCS was divided into four regions: The Beibu Gulf
region (Region A), the semi-closed gulf separated from the vast shelf by Hainan Island.
Yuexi region (Region B), the hydrodynamic structure is largely influenced by interaction
of the monsoon and Pearl River Plume. PRE region (Region C), where the Pearl River
pours fresh water into the NSCS. Yuedong region (Region D), with widen shelf and active
Yuedong upwelling (Figure 6). Then, θA − θD, which represents the time of water spent
in the four subdomains, was calculated based on Equation (1) by setting δω to 1 in each
subdomain [50].
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As shown in Figure 6, in the semi-closed Beibu Gulf, the water motions are limited
and water exchange rate are relatively low, thus lead to a pronounced increase of θA, which
indicates the time of water stayed in Beibu Gulf is relatively long than the other regions.
The θA increases from 50 days at the mouth of the gulf to exceed 300 days in the northeast
(Figure 6a,b) in both summer and winter, and it has larger contribution to the total θ.
Outside the Beibu Gulf, in summer, there is an extension of θA (~50 days) towards the
PRE, potentially indicates a southwestward movement along the coast that against summer
wind. Another branch of extension of θA expanded along the 100 isobath, indicates the
westward transport due to the stable slope current. In winter, high values of θA could
spread to the coastal areas of Region D, which suggests that, by overriding the shelf current,
waters from distant coastal region can arrive the Beibu Gulf.

In Region B-D, the magnitude of the θB ∼ θD is generally shorter than 50 days which
represent a much stronger exchanging rate with the open ocean. Spatially, they exhibit a
similar pattern, with their magnitudes progressively escalating from the outer shelf towards
the inner shelf, and the highest values primarily concentrated along the coastal areas. There
is also notably seasonality of θi that under the influence of the northeasterly/southwesterly
monsoon during summer/winter, non-zero regions of the θB ∼ θD appear in the upstream
regions. Besides, it is also noted that during summertime, the θB and θC have high values
on the vicinity of the 100-m isobath line on the outer shelf, although there are quite close to
the boundary of NSCS. It suggests a notable onshore exchange of water between the outer
shelf and the coastal zones in region B and C during summertime.

Based on the values of θi in regions A–D, we could examine the contribution of each
θi to the overall θ (Figure 7). The x axis and y axis of the bar charts in Figure 7 indicates the
different subdomain and the various θi, respectively. During summer (Figure 7a), generally,
it shows substantial contribution of the initial release locations, which means the substance
released on the shelf trends to stay in the initial release locations for longer time. Such as
the contribution of θA exceeds 80% in region A itself. The large contribute of θA in Region
B and C illustrates a quite strong westward transport, contrary to the prevailing wind and
shelf current direction. Even under the northeastward wind forcing and shelf current, the
θA accounts for approximately 30% and 20% in regions B and C, respectively. In winter
(Figure 7b), the strong southwestward shelf current significantly influences the distribution.
The θA which means the time stay inside the Beibu Gulf, has a significant contribution to
all the subdomains, with ratios exceeding 50% in regions B and C and. Even in the region
D that quite away from Beibu Gulf, contributions from θA reaches 50%. This illustrates the
extensive interaction facilitated by shelf circulation, suggesting that the Beibu Gulf marine
environment could be affected by the entire NSCS shelf regions.
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To confirm the westward transport against the wind during summer, we checked the
detailed distribution of summer θA over the shelf of NSCS. Two branches of extension
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of θA can be identified (Figure 8a): the first branch extends from the Qiongzhou Strait
and eventually reaches to the PRE under the influence of plume, and the second branch
expands roughly along100–200 m isobaths which shows the influences of slope current.
The Lagrangian tracking provides an alternative perspective for observing the transport
structure and connectivity within the NSCS, particularly the westward transport during
summer. Figure 8b shows the examples of the summertime trajectories that were released
in PRE regions. Along the coast, the expansion of the Pearl River Plume could carry the
particles westward, passing through the Yuexi region and finally entering the Beibu Gulf
through the Qiongzhou Strait even under the southwest summer wind. Simultaneously,
parts of particles released on the vast shelf flow southwestward carried by the slope current
(Figure 2a). However, as they approach Hainan Island, some of these particles change
direction, move shoreward and eventually become entrapped by the plume. Those particles
entered the Beibu Gulf through the Qiongzhou Strait. The remaining particles continue
their westward trajectory along the cyclonic slope current and enter the Beibu Gulf from the
southern side of Hainan Island. As shown in the previous studies, the ADCP observation
and the drifter derived velocity illustrate the southwestward velocity over slope during
summer [51,52], which give indirect evidence of this westward transport.
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Figure 8. (a) Depth-averaged θA in summer but ignored the values in Beibu Gulf. (b) The trajectories
of particles released in the summer. The blue triangles and red stars denote the locations of particles
on the 0, 60 days after their release, respectively. (c,d) Distribution of the particles that released from
different regions during summer and winter.
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Utilizing the outcomes from Lagrangian tracking, we conducted a statistical analysis
of the distribution of particles initially released in different regions (Figure 8c,d). Similar
as that obtained from θi (Figure 7), during summer with a northeastward shelf current,
the particles tend to accumulate in their original release regions and downstream areas.
Notably, some particles from Regions B and C ultimately migrate and settle in the Beibu
Gulf, following the westward transport pathways depicted in Figure 8b. During the winter,
Lagrangian tracking similarly indicates that the majority of particles in the NSCS eventually
move to the Beibu Gulf. The distributions of released particles (Figure 8c,d) differ somewhat
from the contributions of θi (Figure 7) in each subdomain. However, they exhibit a quite
similar pattern, suggesting that the results based on exchange times can effectively reveal
the predominant transport structures under complicated hydrodynamical processes.

4. Conclusions

In this study, we investigated the spatio-temporal variability of three-dimensional
water exchanges under the complex hydrodynamic conditions in NSCS and explored the
connectivity among the shelf. Spatially, the annual mean exposure time θ increased from
~30 days over the 200 m isobath to more than 150 days in the coastal region (<50 m), with
the largest values occurring at the north of the Beibu Gulf. Seasonally, the water exchange
rate shows an immediate response to hydrodynamic conditions. Driven by the monsoon,
the strong shelf current triggered a vigorous exchange of water on the northwestern shelf,
the horizontal distribution of θ on the board shelf except Beibu Gulf during winter and
summer. The distribution of θ in the Beibu Gulf was affected by the seasonally varying
cyclonic circulation in the Gulf. However, the largest values in the northeast of the Beibu
Gulf were maintained despite of the seasons due to its semi-enclosed nature and restricted
water motions. This contrasts with the regions outside the gulf where the water exchange
rate is higher, with lower θ suggesting a more dynamic interaction with the open ocean.
Vertically, the local vertical contrasting cross-isobath transport did not induce strong vertical
changes in net water exchanges, except in several particular regions. Summer months
are dominated by substantial surface offshore transport against a counteracting bottom
onshore intrusion, while significant positive θVD (~50 days) mainly occurs east of Hainan
Island and at the Beibu Gulf’s mouth. During winter, however, the dynamic reverses under
the influence of the northeast winds and the intensified southwest shelf current, promoting
slightly faster bottom water exchange rates.

Both in summer and winter, the contribution ratio of θ in Beibu Gulf to the NSCS shelf
is conspicuous. This area significantly affects adjacent regions, hinting at westward move-
ment against typical currents in summer. Notably, the westward transport is important
for water exchange throughout the NSCS, contributing to more than 20% of the time of
water exchange over almost the entire shelf, which illustrates the potential influence of the
westward spreading of the Pearl River freshwater conjunction with the stable slope current.
In winter, the Gulf’s influence extends across all regions, with its retention characteristics
contributing up to 50% even to distant areas, showing its broad impact on the NSCS’s water
dynamics throughout the year. It should be noted that the exposure time is a measure of the
overall effect of water movement processes, and the research would benefit from including
actual measurements. It would enhance our understanding of water exchange rates and
transport patterns.
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