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Abstract: Triops longicaudatus is a crustacean typically inhabiting temporary freshwater bodies in
regions with a Mediterranean climate. These crustaceans are easily maintained in the laboratory
and show a set of biological features that make them good candidates for diagnosing environmental
quality and health. However, information about their responses to environmental contamination is
scarce. This study characterised the locomotor responses of juvenile and adult/mature T. longicaudatus
to low concentrations of five model toxicants upon a very short 1.5 h exposure: tributyltin, mercury,
lindane, sodium hypochlorite and formaldehyde. A video-tracking system was used to record the
locomotor behaviour. The data were analysed with an artificial neural network to identify distinct
behaviours, followed by Chi-square and Correspondence analysis to characterise the response to each
toxicant. The results showed that T. longicaudatus is sensitive to aquatic contamination, particularly
sodium hypochlorite. Six behaviour types were defined, which allowed for the characterisation and
discrimination of the test toxicants. The results support the need for more investigation into this
species and its behaviour types as an alternative to animal testing and the more apical and often
invasive endpoints commonly recommended in standard guidelines.

Keywords: priority contaminants; metals; biomarkers; freshwater crustacean; artificial neural
networks; linking exposure and effects

1. Introduction

Tadpole shrimps or triops (Triops spp.) are worldwide-distributed notostracan crus-
taceans typically inhabiting temporary freshwater bodies [1,2]. Their morphology has
remained basically unchanged since the late Cretaceous period (more than 70 million
years) [3], with numerous scientific reports focusing on their living-fossil status [4,5]. At
the juvenile and adult stages, they are benthic, with a very active locomotor behaviour, and
omnivorous, digging through the sediment in search of detritus and small organisms for
food [6,7]. The predation of mosquito larvae by triops has drawn special attention, since
triops species are seen as important biological control agents of mosquito populations in
ephemeral bodies of water and rice paddies [8,9] and potential vectors of a wide variety
of diseases. In general, triops can display multiple reproductive strategies [10,11], includ-
ing sexual reproduction (gonochoric populations), hermaphroditism and parthenogenesis
(female-dominated populations). Eggs are held in egg sacs (in females and hermaphrodites)
until oviposition, with the embryos developing over the following 2 or 3 days [12]. In order
to survive the dry phase, a determinant stage of temporary ponds, embryo-bearing eggs
are preconditioned, becoming resistant to desiccation and heat [13]. These eggs remain in a

Water 2024, 16, 126. https://doi.org/10.3390/w16010126

https://www.mdpi.com/journal /water


https://doi.org/10.3390/w16010126
https://doi.org/10.3390/w16010126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-3360-3783
https://orcid.org/0000-0002-1663-939X
https://orcid.org/0000-0003-3395-273X
https://orcid.org/0000-0002-6733-5425
https://orcid.org/0000-0001-9402-8327
https://orcid.org/0000-0003-2584-1482
https://doi.org/10.3390/w16010126
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16010126?type=check_update&version=1

Water 2024, 16, 126

20f11

quiescent state for extended periods of time, then called resting/dormant eggs or cysts, and
are capable of hatching in future flooding periods when environmental conditions become
favourable [14]. The dried cysts of some species, such as T. longicaudatus, are commercially
available; these cysts hatch about 24 h after hydration in aged tap water, making it very
easy to start cultures of these organisms in the laboratory. Triops hatch as nauplii and pass
through a total of five fast, mostly planktonic, larval instars, reaching the adult-like benthic
juvenile stage less than 48 h after the hydration of the cysts [6,15]; maturation/oviposition
in T. longicaudatus is reached on average at about 10 to 19 days post-hydration and with
a carapace length of around 10 to 11 mm as temperature decreases from 30 to 20 °C [16],
although it can occur as early as 7 days under optimal conditions [16,17]. Substantial
differences in T. longicaudatus fecundity have been reported depending on the environmen-
tal conditions [16,18], with individuals capable of laying up to 1000 or even more eggs
over their lifetime [12,17], with hatching rates reaching 80% [16,19]. The lifespan of triops
is short and also dependent on environmental conditions, ranging from approximately
12 days (at a high temperature of 30 °C) to about 30 days (at moderate temperatures and
good feeding conditions) in laboratory-reared T. longicaudatus [16,17], although some indi-
viduals may survive much longer. In summary, T. longicaudatus presents a set of biological
features, such as (i) a full life cycle adaptation to laboratory conditions, (ii) the possibility of
parthenogenetic reproduction, allowing clones to be obtained, (iii) the production of cysts
that can be kept viable for long periods of time, (iv) a short life cycle/generation time, and
(v) high fecundity and hatching rates, which make this species easy and cost-effective for
mass rearing in the laboratory and interesting to explore as an experimental freshwater
model in ecotoxicological studies. However, despite their potential, triops have seldom
been used in ecotoxicity testing. Furthermore, the few available studies are limited to the
context of triops (1) as biological control agents for mosquito populations, focusing on
the side effects of the chemicals used as mosquito larvicides on triops populations [20,21],
or (2) as pests, due to the damage they cause to seeds and plants in rice fields, with an
emphasis on the effectiveness of chemicals in controlling their populations [22,23]. Thus,
our study aimed at exploring the potential of T. longicaudatus as a model in ecotoxicological
assays, in particular by investigating the suitability and sensitivity of its active swimming
behaviour to assess exposure to aquatic contamination. Over the past decades, toxico-
logical endpoints based on swimming or locomotor behaviour have been developed for
various aquatic species [24-30]. Among other factors, this is due to the potential greater
sensitivity of behaviour to environmental contaminants compared to other endpoints; for
example, 10 to 1000 times greater than mortality [26,31]. Swimming/locomotion is of great
ecological relevance, as it is at the basis of many other vital animal behaviours, such as prey
finding, predator escaping or mating. Moreover, behaviour evaluations are non-invasive,
allowing for assessments over time. For all of this, the swimming /locomotor behaviour is
of significant importance to anticipating a loss of ecosystem quality in time to elaborate
prevention or mitigation actions aiming at the maintenance of the good ecological status of
affected ecosystems. The use of automated video-tracking systems [27,32-34] is particularly
useful to evaluate swimming/locomotor behaviours, allowing us to gather high amounts
of data amenable to analysis by sensitive statistical methods, including Artificial Neural
Networks. Such analysis can provide clear identification of behaviour profiles elicited by
different toxicants and has thus been used in the development of Biological Early Warning
Systems (BEWS) for the diagnosis of water quality and ecosystem health [26,35]. There-
fore, this work was based on a video-tracking analysis of the swimming behaviour of T.
longicaudatus following short-term exposure (1.5 h) to priority and legacy toxicants widely
detected in aquatic systems, namely, tributyltin, lindane, mercury, sodium hypochlorite
and formaldehyde.
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2. Materials and Methods
2.1. Triop Rearing

Triops (T. longicaudatus) were hatched from commercial cysts (Triops King, Germany),
and reared for up to seven days (juveniles) and fourteen days (adults, mature animals)
according to the general procedures described in [16]. Briefly, the animals were cultivated
in 30 L aquariums containing fine sand and dechlorinated water, at a temperature of
25 £ 1 °C, and with continuous aeration; the food consisted of a granulate for aquarium
fish composed of a mixture of three algae (3-Algae Granulat, Tropical), supplied daily.

2.2. Chemicals

Sodium hypochlorite (NaOCl-5%, CAS 7681-52-9) was acquired from PanReac Ap-
pliChem. Tributyltin (TBTO, CAS 56-35-9), formaldehyde (HCHO, CAS 50-00-0), mer-
cury chloride (HgCl,, CAS 7487-94-7) and lindane (y-BHC, CAS 58-89-9) were obtained
from Sigma-Aldrich (St. Louis, MI, USA).

2.3. The Video-Tracking System and Exposure Experiments

The swimming behaviour was evaluated using a custom-made video-tracking system
for capture and recording, followed by analysis with an adapted algorithm. Four recording
video vigilance cameras (Flow Electronic 540L IR camara, with CCD 1/ 3" Sony sensor,
resolution 795 x 596 PAL, model CACO008, connected to a Camtronics DVR 38 AHD Plus
capture device) were placed in an isolated temperature- and light-controlled recording
chamber. Each camera filmed 12 circular arenas, in a total of 48 arenas per recording.
Each set of 12 arenas contained two randomly distributed replicates of the control and
the five toxicants. At seven and fourteen days old, the animals were exposed to the test
toxicants. For this, the animals were randomly transferred into the recording arenas (one
per arena) and allowed a non-recording exposure period of 1 h. The recording started from
this point onward and lasted for 30 min, for a total assay period of one and a half hours.
The recording procedure was repeated six times throughout the study with animals aged
seven and fourteen days. The exposures were carried out in circular arenas suited for video
recording, filled with 100 mL of either control medium (culture medium) or a toxic solution
of sodium hypochlorite (0.5 mg/L), tributyltin (0.243 ug/L), formaldehyde (3.69 mg/L),
mercury chloride (4.5 ug/L) or lindane (10 ug/L). For comparative purposes, the toxicant
concentrations were the same as those previously tested in investigations of the locomotor
behaviour in the zebrafish, in a similar system [35]. The test solutions were prepared by
dilution in the culture medium of the respective stock solutions in ultrapure water.

The algorithm multiwellTracker [36] was adapted by the team for the analysis of the
behaviour videos recorded with the above video-tracking system. The adaptation included
the automatic detection of the circular arenas, tracking and analysis of the trajectories, as
well as validation and extraction of nine behaviour parameters: distance covered (derived
from the Y and X coordinates, i.e., the position of the organism in the Y and X axes); mean
velocity (mm/s); mean angular velocity (degrees/s); the degree formed by movement
vectors; instantaneous velocity (mm/s); the square root of the standard deviations of X
and Y (dispersion measure); and the mean meander (degrees/mm) and instantaneous
acceleration (mm/s?). The adapted algorithm ran through three phases, each responsible
for different but equally important steps in making the video easier to analyse. It worked by
differential brightness between the organism of interest and the background i.e., it followed
a dark object in a bright background. The first phase (pre-processing) corrected various
aspects of the provided video. Here, possible fishbowl effects were removed, diminishing
the distortion observed in the extremities. Furthermore, the contrast between the object
and background was increased, making it an almost black-and-white image. The second
phase was the detection of the trajectory, where the algorithm detected the number of
circular arenas, delimited them and then detected the trajectories created by the moving
organisms. This tracking was done through the variation in colour intensity in each frame.
This approach requires a stable zoom and camera position while recording, and a suitable
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lighting orientation to ensure the best possible contrast between the background and the
organism. The last phase was post-processing. Here, the detected trajectories were analysed
and the behaviour parameters were derived from them. The obtained data were exported
as Excel files. Additionally, a verification file was created, which allowed us to check the
detection of the arenas and trajectories for the validation of the data obtained (Figure 1).

Figure 1. Final output example of one of the videos created for validation of the data obtained from
the animal tracking. Such videos were used to verify the automated tracking and perform a first
inspection of the overall behaviour of the recorded animals.

2.4. Data Analysis

A Cluster Analysis, using an artificial neuronal network (ANN) algorithm as indicated
in [26], was performed to describe the six main behavioural patterns recorded. One-way
Analysis of Variance with the Tukey HSD was used to characterise the behavioural types
defined. A Chi-square analysis with behaviour types and toxicants as independent factors
was then carried out for each exposure age (seven and fourteen days old) to investigate
possible differences among test substances in the frequency of the behaviour types. A
residual analysis was then carried out to investigate specific differences among treatments;
the statistical significance of each residual was determined by comparing the respective
Chi-square contribution (i.e., partial Chi-square value) against the critical distribution value
determined with the Bonferroni correction for the total number of cells. All statistical
analyses were performed using Statistica 14.0.0.15v (TIBCO Statistica, StatSoft GmbH,
Germany). Correspondence analysis further depicted the pattern of behavioural responses
to short-term exposures.

3. Results and Discussion

Six swimming behaviour types (A to F) were defined by the Cluster Analysis based
on the ANN, each exhibiting different average values of relevant movement variables
(Figure 2, top); the remaining variables were found to be redundant or to have a meagre
contribution to the behaviour types defined. All movement data were used in the analysis,
irrespective of the experimental condition or age of the animals. The behaviour types
represented a gradient of variation to which the measured variables showed different
contributions (Figure 2, bottom). The mean velocity and distance to the centre of the arena
were the variables showing the highest contribution to the behavioural types (Figure 2,
bottom). Each behavioural type thus showed its typical locomotion, though they shared
some similarities (as indicated by a Cluster Analysis) in terms of velocity; slow swimming
in behaviour types A, D and C, versus fast swimming in behaviour types B, E and F. For
instance, when exhibiting behaviour type B, animals tended to swim fast, rotate quickly
and wander, mostly in the centre of the arena. When exhibiting behaviour type C, animals
tended to swim slowly and mostly in the periphery of the arena. In behaviour type F, the
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animals tended to change much their swimming velocity as indicated by the instantaneous
acceleration and swim in the periphery of the arena.

Behaviour A D c B =
type

F
Instantaneous
oy =316 b -4.41 a -2.38 c 3.06 e 204 d -

Instantaneous
velocity 354 a 68 ¢ 541 b 274 e 205 d

Mean —
velocity 733 a 102 b 767 a 157 ¢ 19.1 d
Mean angular -
velocity 337 a 686 d --48.8 b 574 ¢
Mean

meander 498 a 614 d 752 e 532 b 570 c
Distance to the | 1

centre i26-8 d 200 a -21.9 b 254 c
Behaviour A D c B = m
type

Instantaneous

acceleration 0.45 0.41 0.45 0.54 0.50 0.61
Instantaneous

e 003 014 008 038 031 050
Mean
velocity
Meanangular 49 043 050 055 030 035

velocity

Mean

meander 0.39 0.40 0.41 0.46 0.39 0.40

Distance to the |

centre l0.73 0.61 0.73 0.61 0.69 0.69

Figure 2. Characteristics of the behaviour types defined by the Cluster Analysis based on the
Artificial Neural Network. (Top) Mean values in each behaviour type of the most relevant movement
parameters. Significant differences among types were identified for the parameters investigated;
homogenous subsets identified through the Scheffé test are indicated by small letters (different
letters indicate significant differences at p < 0.05). (Bottom) Contribution (weight) of each movement
parameter to the different behaviour types. The darker the green shade, the stronger the contribution.
The results are grouped according to similarities in behavioural types across toxicants as found
through cluster analysis.

The Chi-square analysis identified significant differences among the experimental
conditions in the exposure of both juveniles (Chi2 = 3753, df =25, p < 0.0001) and mature
animals (Chi? = 4453, df = 25, p < 0.0001). Figure 3 shows the residuals of the analysis
and their statistical significance as determined by comparing each partial Chi-square value
with the critical distribution value corresponding to a 0.05 significance level corrected
by the Bonferroni method. From these results, behavioural profiles can be drawn for
each experimental condition and used to distinguish the toxicants from the control, as
indicated also by a Correspondence Analysis (Figure 4). Juvenile controls (7-d-old triops)
tended to exhibit mostly the behaviour type B (swimming fast, with quick rotations, in the
centre of the arena) (Figures 3 and 4). Mature controls (14-d-old triops) tended to show
a lower frequency of behaviour C and increased frequencies of behaviour types E and F
(intermediate mean velocity and swimming away from the centre of the arena). As for
the toxicants, triops were sensitive to all toxicants and two main responses were found;
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toxicants with increased frequencies of behaviour types C and D (lindane and bleach) and
toxicants with increased frequencies of behaviour types E and F (mercury, formaldehyde
and tributyltin). Sodium hypochlorite elicited the strongest changes, suggesting triops
were particularly sensitive to it, as found previously for other species [26,35]. Juvenile and
mature triops responded in a fairly similar way to NaOCl. At 7 d of age, the exposure
tended to markedly increase the frequency of behaviours A, D and C, and decrease the
frequency of behaviour types B, E and F, compared to expected values and the remaining
treatments. At 14 d of age, the exposure tended to decrease the frequency of behaviour
types A, B, E and F and increase the frequency of behaviour types C and D. Globally,
triops exposed to bleach were the slowest and less erratic (as indicated by the instantaneous
acceleration) swimmers, as observed in zebrafish [26,35]. This tendency for slow wandering
swimming may be related to the cellular depletion of ATP (adenosine triphosphate) elicited
by the exposure [37], which may limit the energy available for locomotion. Exposure to
lindane also tended to slow down the animals, at both 7 and 14 days of age, as reflected
by the significant increase in the frequency of behaviour types D and C (Figures 3 and 4)
and decrease in behaviours B, E and F. Lindane is known to be neurotoxic through its
interaction with glycine receptors, which are major inhibitory receptors in the spinal cord
and the brain stem [38]. In contrast, TBTO tended to elicit fast swimming responses.
The exposure caused marked differences from the control profile, notably decreasing the
frequency of behaviour types A, D and C and increasing the frequency of behaviour types
B and E in 7 d-old triops and B and F in 14 d-old animals; the latter are the behaviours
showing a higher mean velocity. Tributyltin is a ligand of retinoid X (RXR) and the
ecdysteroid (EcR) receptors, which, in arthropods, act as homologs of RXR. Furthermore, it
is a well-recognised endocrine disrupter that causes neurotoxicity and physiological stress
in exposed animals [39]. While little is known about the mechanistic effects of tributyltin in
T. longicaudatus, the recent protein-ligand modelling of EcR revealed the great evolutionary
conservation of the protein across species when comparing the interaction amino acids
(ascribed to RXR in Homo sapiens), with little conformational variation in the interaction
pocket [40]. Exposure to formaldehyde tended to increase the frequency of behaviours
B and E in 7 d-old triops, and A, E and F in 14 d-old triops, although at more moderate
levels, and in opposition to the changes observed in the bleach group. Globally, the animals
tended to show very irregular swimming in the periphery, with interspersed periods of
lower and higher mean velocity, particularly at 14 d of age (Figures 3 and 4). Formaldehyde
was previously found to alter the behaviour and respiration (time-dependent decrease in
oxygen consumption) of zebrafish, with the detection of abnormal swimming movements,
reduced opercular beats and increased mucus secretion that may be lethal [41]. These
alterations were linked to increased metabolic costs due to damage in the gills, impairing
movement ability. The response to mercury chloride was very similar to that observed in
the formaldehyde-exposed group, except for behaviour type F, which also tended to be
increased in frequency in juvenile triops. Mercury is a known neurotoxicant affecting the
brain, but also possibly the central and peripheral nervous system [42].

Overall, the results showed that T. longicaudatus is sensitive to very low concentrations
of hazardous contaminants in a very short exposure period (1.5 h). Using an ANN analysis,
the species was useful in discriminating the toxicants from the control group. Both the
juvenile and the mature animals showed high sensitivity and the ability to discriminate
among the toxicants. The best-discriminated toxicants were bleach, lindane and tributyltin
at 14 d of age. The use of mature animals in testing may be an advantage for the possibility
of combining behavioural with reproductive endpoints. The results presented herein are
comparable to those previously reported for zebrafish, using an analogous video-tracking
system, the same toxicants and test concentrations, though the duration of the exposure
was slightly shorter (45 min) [35]. In zebrafish, alterations in the swimming parameters
(e.g., instantaneous and angular velocity, meander) were also found, producing a spectrum
of sensitivities discriminating the contaminants.
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Behaviour A D c B E F
type

Control -9.7 14

HgCl, -4.6 -7.8 L7/ 8.4 7.0

HCHO -4.4 =12 -4.6 9.3 9.7

TBTO -4.2 =7/ -33 3.7 9.3

y-BHC -44 93 40 -53

NaOCl 20 Eg.z --—8.1
t?{(;t;aviour A D c B E F
Control -4.3 =2 5.1 9.6 9.6
HgCl, -13 8.7 12
HCHO 8.8 =647 =il -6.3 7.8 8.0
TBTO -6.9 -4.7 =710 18 5.6
y-BHC 117/ -8.4 -4.5 -12

NaOCl -37 20 Es -5.8 --

Figure 3. Results of the residual analysis conducted to identify significant differences among treat-
ments (control; formaldehyde, HCHO; tributyltin, TBTO; mercury, HgCl,; lindane, y-BHC; sodium
hypochlorite, NaOCl) in juvenile (top) and mature (bottom) triops. Only the significant residuals are
shown,; the statistical significance of each residual was determined by comparing the respective partial
Chi-square value against the critical distribution value estimated with the Bonferroni correction for a
significance level of 0.05.

The present results point out the interest in triops as a suitable model for developing
biological early warning systems (BEWS) to diagnose environmental contamination. Histor-
ically, BEWS were thought to fill the gap and complement the traditionally available water
quality testing [43]. Behavioural types of mostly fish, the first model employed, but also
crustaceans and mussels, were used to develop real-time monitoring. Toxicant-induced
behavioural manifestations or types often preceded endpoints at the physiological, devel-
opmental or reproductive level, which are indicative of detrimental effects on the exposed
populations [43]. Though BEWS based on behavioural analysis are usually non-specific, the
approach taken here provides a strategy to develop exposure profiles to different toxicants
and a suitable alternative species under the ethical legislation of animal experimentation
and welfare. A crucial actual challenge in environmental toxicology is to move from the cur-
rent paradigm of animal testing, based to a high extent on mortality and vertebrate species.
A biological effects assessment is unavoidable for diagnosing environmental quality and
mixture effects in systems with complex mixtures of contaminants, i.e., comprising many
unknown chemicals, chemicals for which no analytical methods are yet available or that are
below the limits of detection and unrecognised transformation products of many parental
toxicants. There is, thus, a need to develop more sensitive alternatives, based on less
invasive endpoints and reducing the number of animals employed, useful for anticipating
potentially detrimental impacts before the systems attain the tipping point or threshold
beyond which unstoppable detrimental effects take place and any intended protection
or recovery action will not be effective. Triops appear to be a model of high interest for
such an approach. They are easy to maintain in the lab and are accessible for follow-ups,
owing to their colourful shell. They show a suitable size for video-tracking but are still
small enough to allow for the development of easily operating and affordable testing
systems. Most importantly, triops exhibit very active swimming, with naturally different
behavioural types and types specifically elicited by distinct toxicants, which is useful for
profiling. Lastly, they are also amenable to complementary molecular investigations that
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can bring knowledge on the modes of action of chemicals on exposed animals [40,44,45].
In particular, compared with the well-established freshwater model Daphnia magna, triops
are about ten times bigger, which facilitates carrying out analyses in individuals, such as
the determination of biochemical and other molecular biomarkers. The video-tracking of
swimming behaviours becomes easier because of the size of the animals and their intense
movement. The lab maintenance is comparatively simpler, as they can be cultured in
dechlorinated water and fed with commercially available food, in contrast to daphnids,
which need a specific culture medium with nutritional supplements and nourish well only
on freshly cultured microalgae. Adding to this, triops’ cysts are commonly dehydrated
and can be stored for long periods, up to the moment they are required for the assays, in
the same way artemia is used. Lastly, they cover an important need in freshwater eco-
toxicology as they are primarily benthic, spending most of their time digging and sifting
through bottom substrate of ponds and pools in search of food. Further testing with this
species should focus on evaluating other toxicants (with similar and dissimilar modes of
action), singularly and in mixtures. This should be combined with resilience and diagnostic
stress tests, including sensitivity and accuracy determinations for diagnosis quality (false
positives and false negatives in diagnosis tests).
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Figure 4. Behavioural types (A to F) exhibited by triops exposed for a short-term period (1.5 h) to
formaldehyde (HCHO), tributyltin (TBTO), mercury (HgCl,), lindane (y-BHC) or sodium hypochlo-
rite (NaOCl), as indicated by a Correspondence Analysis.
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4. Conclusions

As revealed by the statistical pipeline refined herein (artificial neural network analysis
followed by Correspondence analysis), the present work is a first approach to the investiga-
tion of triops as a potentially sensitive model to detect and assess low levels of detrimental
aquatic pollutants in very short exposures, as an alternative to animal testing. Behavioural
patterns observed in control and toxicant groups were identified. Based on previous studies
employing a similar approach, the results were in the sensitive range of adult zebrafish.
Exposure of mature animals appeared to provide a slightly better discrimination of all
toxicants. Future work should focus on investigating the sensitivity of this model and
behavioural tools of other contaminants, singularly and in mixture, and validate its po-
tential for development as a biological early warning system. Combining the results with
the evaluation of molecular and biochemical biomarkers in this species, as well as health
indicators, will further bring insight into the modes of action and molecular initiating and
secondary events linked to the toxicant response. This will help to streamline the condi-
tions for application to environmental diagnoses and monitoring, and their implications
for ecosystem health. The model species and behavioural analysis can be easily applied
to these goals and others (e.g., evaluating remediation actions and ecosystem recovery),
under the common frameworks and guidance available, including before/after designs
and site-specific risk assessments.
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