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Abstract: Effectively simulating the variation in suspended sediment concentration (SSC) in estuaries
during typhoons is significant for the water quality and ecological conditions of estuarine shoal
wetlands and their adjacent coastal waters. During typhoons, SSC undergoes large variations due to
the significant changes in meteorological and hydrological factors such as waves, wind speed, and
precipitation, which increases the difficulty in simulating SSC. Therefore, in this study, we use an
optimized Principal Component Analysis Long Short-Term Memory (PCA-LSTM) framework with
an attention mechanism to simulate the SSC in the Yangtze Estuary during Typhoon In-Fa. First, we
integrate data from different sources into a multi-source dataset. Second, we use the PCA to reduce
the dimensionality of the multi-source data and eliminate redundant variables in the feature data.
Third, we introduce an attention mechanism to optimize the long and short-term memory (LSTM)
model. Finally, we use the differential evolution (DE) algorithm for hyperparameter selection and
merge the feature data with the SSC data as the input of the optimized LSTM network to simulate
SSC. The results showed that SSC’s fitting coefficients (R2) at four hydrological stations improved
by 7.5%, 6.1%, 7.4%, and 7.8%, respectively, using the attention-based PCA-LSTM compared to the
PCA-LSTM. Moreover, compared to the traditional LSTM model, the R2 was improved by 33.8%,
30.5%, 32.0%, and 28.6%, respectively, using the attention-based PCA-LSTM framework. The study
indicates that the selection of input variables can affect the model results. Introducing an attention
mechanism can effectively optimize the PCA-LSTM framework and improve the simulation accuracy,
which helps simulate the non-linear process of SSC variation occurring during Typhoon In-Fa.

Keywords: typhoon; Yangtze Estuary; attention mechanism; PCA-LSTM; simulation of SSC

1. Introduction

Suspended sediment concentration (SSC) is a crucial indicator of water quality. Its
changes play a vital role in the water quality and ecology of coastal waters. They have
an essential impact on bed erosion and sedimentation, primary biological productivity,
and land resource protection [1]. As one of the most frequent natural phenomena in
estuaries and adjacent coastal areas, typhoons significantly impact the SSC in estuaries and
coastal areas [2,3]. In estuaries and coastal areas, typhoons can cause changes in seabed
topography and coastal geomorphology, leading to tidal flat accumulation, erosion, and
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shoreline movement [3]. Therefore, monitoring and simulating SSC changes in estuary
areas during typhoons is significant for ecological protection and aquatic and agricultural
production [4].

With the development of artificial intelligence (AI) technology, deep learning has be-
come more accurate and effective in predicting and simulating complex nonlinear data [5].
Advanced deep learning (DL) methods, such as long short-term memory (LSTM), enable
algorithms consisting of multiple processing layers to discover underlying patterns in
data [6–10]. In the field of hydrological modeling, Keivan Kaveh et al. [6] used the LSTM
model to predict SSC, and the R2 of the model output reached 0.8161, indicating that the
LSTM model can predict SSC well. Previous studies have used the traditional LSTM model
to predict and simulate SSC in calm weather. The traditional LSTM network can effectively
extract the autoregressive dependencies of data, but it has poor processing ability for redun-
dant data [5,11]. The LSTM model for simulating SSC changes during typhoons involves a
large amount of high-dimensional and redundant data [12,13], which will affect the effect
of LSTM models for simulating SSC changes during typhoons. Therefore, it is essential
to reduce redundancy in feature data while improving the accuracy of LSTM models. A
recent study proposed a machine learning classification technique based on principal com-
ponent analysis (PCA) [14]. The PCA is currently one of the most commonly used feature
dimensionality reduction methods. It reconstructs the main k-dimensional features based
on the original n-dimensional features through deep learning [15], thereby reducing the
dimensionality of the original multi-dimensional data and eliminating redundant variables
in the feature data.

Previous studies [16] have employed the PCA-LSTM model to forecast wind speed,
and the results showed that PCA effectively eliminates redundant variables in the feature
data. Inputting reduced data into the LSTM model can improve the accuracy of wind
speed prediction. However, compared with ordinary weather conditions, the change of
SSC during a typhoon is more severe and complex. There is a nonlinear relationship with
its influencing factors, and the attention mechanism has unique advantages in dealing
with nonlinear relationships. It focuses on the essential features in the data, improves the
model’s ability to model nonlinear relationships, and reduces the dependence on irrelevant
features, thereby optimizing the performance and generalization ability of the model. And,
the attention mechanism can continuously optimize the way weights are allocated through
adaptive learning, enabling the model to better adapt to the spatiotemporal variations of
different typhoon events, thereby enhancing the adaptability of the model. Therefore, this
study aims to optimize the PCA-LSTM framework by incorporating an attention layer into
the LSTM network. Specifically, the PCA-reduced feature data will be fed into the LSTM
model with the added attention layer. The differential evolution (DE) algorithm was used
to select the LSTM model’s hyperparameters to achieve the best performance in simulating
the SSC.

The primary purpose of this study is to introduce attention mechanisms to optimize
PCA-LSTM and utilize the attention-based PCA-LSTM model to simulate the changes
in SSC during typhoons, thereby verifying its effectiveness and accuracy. The results
demonstrate that the attention-based PCA-LSTM can effectively simulate the changes in
SSC during typhoons. Its simulation performance is significantly improved compared
to the unoptimized PCA-LSTM and traditional LSTM networks. Therefore, this study
selects the Yangtze Estuary as the study area and uses the attention-based PCA-LSTM to
simulate the changes in SSC during Typhoon In-Fa. By simulating the changes in SSC
during typhoons in estuaries, it is possible to gain early insights into the trends of SSC
variations, hydrological conditions, and meteorological features. This allows for timely
implementation of protective measures to mitigate potential impacts on water quality and
ecosystems during typhoon events. Furthermore, it facilitates the development of more
effective water quality management strategies. It is essential to emphasize that this study
involves the simulation of past SSC data rather than the prediction of future occurrences.
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This distinction arises from the fact that the underlying physical mechanisms governing
SSC in estuaries have not been improved in the scope of this research.

2. Study Area

The study area is the Yangtze River Estuary area at 31–32◦ north latitude and 121–123◦

east longitude (Figure 1), one of the main areas where typhoons frequently land all year
round. The Yangtze River Estuary is a typical branched estuary with moderate and strong
tides [17]. It is divided into three levels of the branched estuary by Chongming Island,
Changxing Island, Hengsha Island, and Jiuduansha from below Xuliujing, with four outlets
entering the sea. The distribution of suspended sediment in the Yangtze River Estuary is
quite different. The erosion and deposition conditions are extremely complicated due to
terrain, runoff, tidal currents, and waves. More than 95% of the sediment in the Yangtze
River Basin is discharged into the sea through the three outlets of the South Branch. At the
mouth of the Yangtze River, the average tidal range is about 2.7 m, but rises to nearly 4 m
during spring tides [3]. The waves are dominated by wind, and the average wave height
at the estuary is about 1.0 m. There is a maximum turbid zone at the lower mouth of the
estuary. The high SSC is mainly due to the resuspension at the bottom, forming a turbid
zone with a longitudinal distance of 25–46 km outside the estuary.
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Figure 1. Map of the study area.

3. Materials and Methods
3.1. Data Sources

The significant wave height, mean wave period, and wind field data are from the
fifth-generation global atmospheric reanalysis product (ERA-5) that the European Centre
for Medium-Range Weather Prediction (ECMWF) provided [3]. The Copernicus Climate
Data Store (CDS) website (https://cds.climate.copernicus.eu/ (accessed on 11 December

https://cds.climate.copernicus.eu/
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2022)) offers a download method for the ERA-5 dataset. The ERA-5 adopts an advanced
assimilation model, which significantly improves the spatial and temporal resolution
and optimizes and updates the typhoon data set. The spatial resolution of precipitation,
significant wave height (SWH), and mean wave period (MWP) is 0.5◦, and the spatial
resolution of wind vector data at 10 m above the sea surface is 0.25◦. The observation
data of the hydrological stations of East China Normal University include SSC, water
temperature, salinity, pressure, and water velocity. The four hydrological stations of the
observation data are distributed in the estuary area of the Yangtze River (Figure 1). The
tidal range data is from Shanghai Maritime Safety Administration. To capture the temporal
characteristics of typhoon events, we selected continuous time periods that include the
typhoon impact period and used hourly data as the model input. This can ensure the
integrity and continuity of the data, as well as reflect the changes and impacts of the
typhoon. Hourly data from 4–14 August 2019, 1–12 August 2020, and 18–29 July 2021, are
used as the data of the Yangtze River Estuary during Typhoons Lekima, Hagupit, and In-Fa.

3.2. Method
3.2.1. Principal Component Analysis

The applicability of PCA is not limited to specific data distribution types. Its strength
lies in its ability to identify the main directional features in the data, and this is not
strictly constrained by the distribution of the data. This is one of the reasons why PCA
is considered in this study. PCA has excellent variance explanatory power, which makes
the principal components relatively good in interpretability, effectively capturing the most
significant features in the data. Through dimensionality reduction technology, the principal
component analysis method reduces linear combinations of multiple indicators with specific
correlations in the original variables into a few comprehensive indicators [18]. It makes
the new variables reflect as much as possible on the premise that they are unrelated. The
information on the original variable is widely used in indicator synthesis. The first principal
component is the direction of the most significant data variation. Only taking the first
principal component is an extreme method of forcibly discarding dimensionality reduction.
The premise is that the variance contribution rate of the first principal component is large
enough. The specific steps of PCA are as follows:

First, establish the autocorrelation matrix R, and calculate its eigenvalues λ1 ≥ λ2 ≥ . . . λm
and eigenvectors µ1, µ2, . . . , µm, namely,

R =
XTX∗

(N − 1)
(1)

In the formula: X* is the normalized data matrix [19].
Then determine the number of principal components, variance contribution rate ηi

and cumulative variance contribution rate η∑(P), which are respectively [20]:

ηi =
100%λi

m
∑
i

λi

(2)

η∑(p) =
p

∑
i

ηi (3)

When the cumulative variance contribution rate is between 75% and 95%, the principal com-
ponents with eigenvalues greater than 1 contain the information of m original input data,
and the number of principal components is P [21]. Then the eigenvectors corresponding to
the P principal components are:

Um×p =
[
µ1, µ2, · · · µp

]
(4)
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Then the matrix of P principal components of n features is:

ZN×P = X∗
N×mUm×P (5)

This paper collects data on as many as 12 characteristics related to SSC changes. The PCA algo-
rithm can reduce the original feature data’s dimension and eliminate redundancy’s influence.

3.2.2. Long and Short-Term Memory Neural Network (LSTM)

The LSTM is a type of time-recurrent neural network that inherits most of the char-
acteristics of the Recurrent Neural Network (RNN) model. Simultaneously, it solves the
problem of gradient disappearance. Based on RNN, LSTM adds a “memory cell structure”
for judging whether the information is valid or not, that is, a cell. We use the LSTM cell
described in Figure 2 [6], which slightly simplifies the cell described by Graves et al. [22]. i, f,
o, c, and g are vectors of input gates, acquisition gates, output gates, and cell activation and
input modulation gates, respectively. Each cell includes an input gate, a forget gate, and
an output gate. Each piece of data entering the LSTM network can be judged on whether
it will be helpful for training [23]. Only useful information is retained, and information
judged useless will be discarded through the forget gate [23]. This work proves effective
for data exhibiting challenges related to long-term serial dependencies [24].

it = σ(Wxi + Whit−1 + bi) (6)

it = σ(Wxi + Whit−1 + bi) (7)

ot = σ(Wxo + Whoht−1 + bo) (8)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wxcxt + Whcht−1 + bc) (9)

ht = ot ⊙ tanh(ct) (10)

Wherein: ⊙ refers to the point multiplication of matrix by element; bγ is the deviation
vector of each layer output; σ(x) is the activation function; Wαβ is the weight matrix of the
corresponding layer; ct is used to update cell status; Input gate it controls information flow
into memory cell ct; Output gate ot controls information in memory cell; ct at the current
time can flow into the currently hidden ht [23].
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3.2.3. Attention Mechanism

A model based on an attention mechanism [25] can quickly capture key regions in
global information and focus on these regions to extract more helpful information. Adding
an attention mechanism layer to LSTM enables the adaptive computation of attention
weights based on the input sequence at each time step, facilitating better processing of
long sequence inputs. At each time step, by computing the weight of each input, LSTM
can better remember and utilize essential information in the feature data. The calculation
formula for this is as follows:

ut = tanh(Wt ht) (11)

αt =
exp(ut

TVt)

∑
t

exp(utTVt)
(12)

s = ∑
t

αtht (13)

where Wt and Vt are parameters of the self-attention layer, ht is the hidden state output
at time step t, ut is the attention score of the hidden state at time step t, αt is the attention
weight of the hidden state at time step t, and s is the final output of the self-attention
layer [26].

3.2.4. Select Hyperparameters

Choosing appropriate hyperparameters for training LSTM is crucial. The differential
evolution (DE) algorithm is an optimization algorithm that searches for optimization in the
parameter space to determine the most suitable combination of hyperparameters [27]. The
selected hyperparameters mainly include the learning rate, number of units in hidden lay-
ers, and batch size [16]. In order to improve the performance and computational efficiency,
this paper uses the DE algorithm to determine the hyperparameters in the attention-based
PCA-LSTM, PCA-LSTM, and LSTM models. The differential evolution algorithm is rela-
tively robust when dealing with a small number of samples and high-dimensional problems
because it does not require gradient calculations and conducts searches through differ-
ential operations and parameter variations. The differential evolution algorithm exhibits
adaptability, allowing it to dynamically adjust based on the nature of the search space and
adapt to the characteristics of different problems. This adaptability enables the differential
evolution algorithm to perform well in various types of hyperparameter selection problems.
The performance of LSTM networks is influenced by the choice of hyperparameters, and
the differential evolution algorithm can search across the entire hyperparameter space,
aiding in finding the optimal hyperparameter combination for performance.

3.2.5. Optimizing the PCA-LSTM Framework

(1) Constructing a Multi-Source Dataset

Merging data from multiple sources into a single dataset can be achieved through
techniques such as time stamp alignment and matching of common keywords. Data from
different sources may exhibit format differences, time disparities, or other inconsisten-
cies. When merging data, these disparities can be addressed through techniques such
as timestamp alignment and matching keywords, improving the consistency and quality
of the data. This process of data cleaning and integration helps ensure that analyses are
based on high-quality, consistent information. The high-precision meteorological data from
ERA-5 provide critical information about meteorological conditions during typhoons. The
observational data from the four hydrological stations at East China Normal University
offer directly measured hydrological and water quality information, serving as an essential
source for understanding the hydrological conditions in the estuarine region. Tidal range
data from the Shanghai Maritime Safety Administration is of significant importance in
comprehending the impact of tides and the transport of suspended sediments. By inte-
grating data from these diverse sources, we gain a comprehensive understanding of the
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environmental conditions in the Yangtze River Estuary during typhoons, allowing for a
thorough exploration of the variations in SSC and its relationship with meteorological and
hydrological conditions.

(2) Dealing with Non-Zero Missing Values

We addressed non-zero missing values in the multi-source dataset. Due to sensor
malfunctions and data transmission issues during typhoons, missing values are inevitable,
with the range of missing values within 5%. The linear interpolation method is employed to
handle the missing values to avoid the impact of missing values on simulation SSC results.

Linear interpolation is a simple and efficient interpolation method. Despite the nonlin-
ear trends in data, there exists local linearity between adjacent data points. In such cases,
linear interpolation can sufficiently approximate the primary features of the data without
introducing the additional complexity of higher-order interpolation.

Linear interpolation is calculated using the following formula:

Y = Yt−1 +
(Xt − Xt−1)

Xt+1 − Xt−1
× (Yt+1 − Yt−1) (14)

Yt is the estimate for a missing value, where Yt−1 and Yt+1 are adjacent known
data points, and Xt is the position corresponding to the missing value. For each missing
value, we first determine its temporal or spatial position Xt. Subsequently, we use the
aforementioned linear interpolation formula to calculate the estimated value Yt. This
involves acquiring neighboring known data points, computing their rate of change, and
using this information for interpolation. The calculated estimated value Yt is then used to
replace the missing value in the original dataset.

(3) Normalization process

In order to accelerate the gradient descent process of the model, data normalization is
performed. The formula for normalization is:

m = (x − xmin)/(xmax − xmin) (15)

In the formula, m represents the normalized value, x represents the original data, and xmin
and xmax represent the minimum and maximum values of the original data sequence.

(4) Data dimensionality reduction

Due to the raw data having a dimensionality of 12, using the raw data as input for
the model directly would reduce the simulation effectiveness of the model and make it
difficult to obtain satisfactory results within a reasonable training time. Therefore, reducing
the dimensionality of the feature data is necessary to eliminate redundant information.
PCA can transform multiple indicators into several comprehensive indicators (principal
components) through orthogonal transformation, thereby reducing the interference of
redundant data.

(5) Add attention mechanism layer

Adding an attention mechanism layer in the LSTM network allows for the allocation of
weights to different parts of the input sequence, improving the ability to focus on important
information (Figure 3). The dimensionality-reduced data is fed into the LSTM layer, and
the hidden state ht is output for each time step. Unlike the unoptimized LSTM that uses the
last hidden state to calculate the prediction, the attention-based LSTM inputs the hidden
state for each time step into a self-attention layer. Through an attention scoring function,
the self-attention layer calculates the attention distribution α, and then combines the ht for
each time step to calculate the final prediction, taking into account the ht of the time step.

(6) Parameter tuning and results output

In this paper, we use the DE algorithm to determine the hyperparameters of the LSTM
network. The feature data reduced by the PCA method is used as the input variable for the
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model. The maximum training time is 100 with a training accuracy of 0.001, a learning rate
of 0.01, a batch size of 5, 3 hidden layers with 9 hidden nodes, and the output variable is
SSC. The model is trained using these settings to obtain the simulated SSC results.
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3.2.6. Random Forest Model

This study employed a Random Forest model [28] to calculate the contribution rates of
different influencing factors on SSC during typhoons. A higher contribution rate indicates a
greater impact on SSC. The Random Forest algorithm calculates the contribution rate of each
feature by measuring its splitting contribution when constructing decision trees. During the
training process, each time a split is made, the algorithm records the splitting contributions
of each feature and then averages these contributions across the entire forest. Feature
importance is a relative measure, with larger values indicating a greater contribution of the
feature to the model. Sorting by importance allows for the identification of variables that
play a crucial role in the model.

3.2.7. Evaluating Indicator

Determination coefficient (R2), root mean square error (RMSE), mean square er-
ror (MSE), and mean absolute error (MAE) are used to evaluate the accuracy of the
model. By evaluating these indicators for each research model, performance and accuracy
are compared.

R2 = (
∑ XY√

∑ X2∑ Y2
)

2
(16)

RMSE = [
∑ (X − Y)2

N
]

0.5

(17)

MSE =
∑ (X − Y)2

N
(18)

MAE =
1
n

n

∑
i=1

|X − Y| (19)

X and Y are measured data and predicted values, respectively.
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4. Results
4.1. Data Preprocessin

The data from four hydrological stations and meteorological data from the time
of Typhoons Lekima, Hagupit, and In-Fa from 2019 to 2021 were used as the original
data. Meteorological data from ECMWF, actual measured data from four East China
Normal University hydrological stations, and tidal data from Shanghai Maritime Safety
Administration were fused to construct a multi-source dataset. In data preprocessing, linear
interpolation replaces non-zero missing values, normalization is performed, and then PCA
is used for dimensionality reduction. The hourly data from Typhoon Lekima were used as
the training set, the hourly data from Typhoon Hagupit were used as the validation set,
and the hourly data from Typhoon In-Fa were used as the test set. Selecting hourly data
from typhoon events and aligning it with the time of typhoon occurrences allows for the
observation and capture of temporal changes in the characteristics of typhoon events. The
PCA method used SPSS 25.0, and the DE algorithm and LSTM model were implemented
using Python 3.7 and TensorFlow 2.0.

4.2. The Result of Data Dimensionality Reduction

The PCA was used to calculate each component and cumulative contribution rates.
This helps to illustrate the contribution of each principal component to the total variance,
aiding in identifying which principal components contain the most crucial information.
The magnitude of the eigenvalues reflects the degree of variability in the data. Achieving a
high cumulative contribution rate, principal components typically reflect the main features
within the data. These principal components are crucial for identifying key information and
potential trends in the data. By selecting eigenvectors corresponding to larger eigenvalues,
the primary components of the data can be obtained. During the three typhoons, among
the variables affecting the SSC of the HS1 hydrological station, the cumulative contribution
value of the first seven principal components reached 92.68% (Table 1). Among the variables
that affected the SSC of the HS2 hydrological station, the cumulative contribution value
of the first six principal components reached 92.30% (Table 1). Among the variables that
affected the SSC of the HS3 hydrological station, the cumulative contribution value of the
first seven principal components reached 90.24% (Table 2). Among the variables affecting
the SSC of the HS4 hydrological station, the cumulative contribution value of the first seven
principal components reached 90.05% (Table 2). As the number of features increases, the
correlation becomes more apparent, which means that not all feature quantities need to be
calculated. Therefore, HS1 and HS3 select the first seven principal components and SSC as
the input of the LSTM model, and HS2 and HS4 select the first six principal components
and SSC as the input of the LSTM model. The similarities and differences of the principal
component matrices of the four hydrological stations show that the PCA method can extract
the data characteristics of different hydrological stations, and the principal components of
different hydrological stations are significantly different (Tables 3–6).

4.3. Parameter Setting

The setting of hyperparameters is primarily achieved through the DE algorithm, which
calculates and selects the optimal hyperparameters. In this study, the best hyperparameter
set is chosen by comparing the optimal simulation results of the SSC corresponding to
models with different hyperparameter values generated during training. Different pa-
rameter configurations can significantly impact the performance of the model, as altering
hyperparameters such as population size, number of iterations, scaling factor, and crossover
factor can affect the model’s search space and generalization ability. The hyperparameters
are set at: population size NP = 10, iteration number G = 20, scaling factor F = 0.6, and
crossover factor CR = 0.8 [16]. For LSTM networks, the learning rate is specified in the
range [0, 1], the number of hidden layer units is specified in the range [1, 100], and the batch
size is specified in the range [1, 100]. The hyperparameter settings of LSTM are shown in
Table 7. For LSTM networks, the learning rate is specified in the range [0, 1], the number
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of hidden layer units is in the range [1, 100], and the range of batches varies. Each model
was run independently five times, and finally, their average value was taken as the training
result. The parameters were made with the same settings to ensure that the parameters
did not affect the simulation results of the attention-based PCA-LSTM, PCA-LSTM, and
LSTM models.

Table 1. Calculation results of each principal component (HS1 & HS2).

HS1 HS2

Principal Component Eigenvalue Percentage Variance Cumulative Eigenvalue Percentage Variance Cumulative

1 4.75 39.62 39.62 4.73 39.4 39.4
2 2.06 17.14 56.76 2.04 17.02 56.41
3 1.55 12.90 69.66 1.42 11.80 68.22
4 0.89 7.40 77.06 1.35 11.26 79.47
5 0.71 5.94 83.00 0.93 7.75 87.23
6 0.64 5.33 88.34 0.61 5.08 92.3
7 0.52 4.31 92.68 0.32 2.63 94.93
8 0.32 2.68 95.36 0.2 1.62 96.56
9 0.28 2.30 97.66 0.17 1.44 98.00
10 0.19 1.58 99.23 0.13 1.11 99.1
11 0.08 0.69 99.92 0.07 0.60 99.7
12 0.01 0.08 100 0.04 0.30 100

Table 2. Calculation results of each principal component (HS3 & HS4).

HS3 HS4

Principal Component Eigenvalue Percentage Variance Cumulative Eigenvalue Percentage Variance Cumulative

1 4.23 35.23 35.23 4.21 35.04 35.04
2 2.00 16.69 51.92 2.54 21.17 56.22
3 1.34 11.19 63.12 1.86 15.48 71.70
4 1.10 9.18 72.30 0.98 8.17 79.87
5 1.00 7.92 80.22 0.72 6.00 85.87
6 0.72 6.02 86.24 0.50 4.18 90.05
7 0.48 4.01 90.24 0.44 3.70 93.75
8 0.45 3.77 94.02 0.31 2.57 96.32
9 0.38 3.12 97.14 0.19 1.55 97.87
10 0.27 2.21 99.35 0.15 1.21 99.07
11 0.07 0.57 99.91 0.08 0.70 99.77
12 0.01 0.09 100 0.03 0.23 100

Table 3. Principal component matrix (HS1).

PC1 PC2 PC3 PC4 PC5 PC6 PC7

MWP 0.835 0.297 −0.376 −0.022 −0.035 −0.074 0.013
SWH 0.955 0.123 −0.159 −0.016 −0.071 −0.053 −0.027

Wind speed 0.935 0.115 −0.171 0.003 −0.086 −0.057 −0.014
Wind direction −0.124 −0.449 0.773 0.051 0.003 0.057 −0.08

Water temperature −0.587 0.658 −0.062 0.192 −0.13 0.046 −0.116
Pressure −0.615 0.108 −0.376 0.174 0.303 −0.154 0.461
Salinity 0.332 −0.766 −0.164 −0.159 0.29 0.066 0.248

SSC 0.777 0.03 0.352 −0.215 0.021 −0.031 0.463
Water velocity 0.426 0.206 0.444 0.496 −0.268 0.104 −0.062

Tidal range 0.004 −0.524 −0.482 0.278 −0.275 0.551 0.096
Flow direction 0.089 0.615 0.16 −0.334 0.323 0.595 −0.282

Rainfall 0.477 0.032 0.071 0.615 0.55 0.017 0.103
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Table 4. Principal component matrix (HS2).

PC1 PC2 PC3 PC4 PC5 PC6

MWP 0.957 0.01 0.067 −0.057 0.025 −0.141
SWH 0.942 −0.036 0.029 0.002 0.044 −0.202

Wind speed 0.959 −0.006 0.093 0.021 0.025 −0.099
Wind direction −0.865 −0.023 −0.177 0.334 0.124 0.004

Water temperature −0.49 −0.24 0.753 0.084 0.15 −0.061
Pressure 0.771 −0.083 −0.242 0.463 0.01 −0.044
Salinity −0.037 −0.525 −0.493 −0.546 −0.164 0.192

SSC 0.46 −0.251 0.166 0.51 −0.314 0.571
Water velocity 0.358 −0.233 −0.028 −0.222 0.81 0.315

Tidal range 0.028 0.838 −0.434 −0.093 −0.018 0.11
Flow direction 0.024 0.868 0.131 0.173 0.199 0.152

Rainfall 0.283 0.357 0.518 −0.606 −0.258 0.188

Table 5. Principal component matrix (HS3).

PC1 PC2 PC3 PC4 PC5 PC6 PC7

MWP −0.098 −0.098 −0.098 −0.098 −0.098 −0.098 −0.098
SWH −0.169 −0.169 −0.169 −0.169 −0.169 −0.169 −0.169

Wind speed −0.205 −0.205 −0.205 −0.205 −0.205 −0.205 −0.205
Wind direction 0.066 0.066 0.066 0.066 0.066 0.066 0.066

Water temperature −0.115 −0.115 −0.115 −0.115 −0.115 −0.115 −0.115
Pressure −0.122 −0.122 −0.122 −0.122 −0.122 −0.122 −0.122
Salinity 0.006 0.006 0.006 0.006 0.006 0.006 0.006

SSC 0.09 0.09 0.09 0.09 0.09 0.09 0.09
Water velocity 0.41 0.41 0.41 0.41 0.41 0.41 0.41

Tidal range −0.099 −0.099 −0.099 −0.099 −0.099 −0.099 −0.099
Flow direction 0.297 0.297 0.297 0.297 0.297 0.297 0.297

Rainfall 0.307 0.307 0.307 0.307 0.307 0.307 0.307

Table 6. Principal component matrix (HS4).

PC1 PC2 PC3 PC4 PC5 PC6

MWP 0.928 0.248 0.017 0.026 −0.074 −0.112
SWH 0.955 0.106 −0.08 0.002 −0.103 −0.016

Wind speed 0.915 −0.059 −0.09 −0.096 −0.171 0.189
Wind direction 0.79 0.348 0.339 −0.135 −0.102 0.083

Water temperature −0.33 0.361 0.712 −0.038 −0.039 −0.251
Pressure −0.203 −0.247 0.78 0.262 0.04 0.373
Salinity 0.066 0.667 0.151 0.558 0.032 −0.297

SSC 0.754 −0.389 −0.056 0.277 0.27 −0.118
Water velocity 0.377 −0.659 0.373 0.384 0.089 0.041

Tidal range −0.163 0.751 −0.098 0.295 −0.363 0.29
Flow direction 0.039 0.631 −0.338 0.125 0.609 0.237

Rainfall 0.279 0.399 0.568 −0.495 0.275 0.016

Table 7. Parameter settings.

Model Parameters Value Reason

Attention-based
PCA-LSTM
PCA-LSTM

LSTM

Learning rate 0.0038 Obtained by DE
Hidden unit 34 Obtained by DE

Batch size 14 Obtained by DE
Epochs of training 500 Converged
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4.4. Simulation Results
4.4.1. Simulation Results of Attention-Based PCA-LSTM

As shown in Figure 4, the simulation results of attention-based PCA-LSTM exhibit
a good fitting performance with the observed SSC data for the four hydrological stations
in the Yangtze River Estuary, regardless of the peaks or the lows. There is a high level of
consistency between the actual SSC and the simulation results. Moreover, the fitting R2

coefficients of the SSC simulation results for the HS1, HS2, HS3, and HS4 hydrological
stations are 0.876, 0.875, 0.866, and 0.856, respectively, and all R2 are higher than 0.85. This
indicates that the simulation results based on the attention-based PCA-LSTM framework
have an excellent fitting effect with the actual SSC. The relevant results of each hydrological
station are relatively stable with little difference. In addition, the superiority of the simula-
tion results is evident in their excellent matching with peaks and troughs. This means that
the model, while simulating SSC, can accurately capture the observed peaks and troughs at
hydrological stations. It provides a reliable simulation of crucial events in actual hydrology.
The robust performance in these aspects further enhances the credibility of attention-based
PCA-LSTM in simulating SSC.

4.4.2. Simulation Results of PCA-LSTM

In the results of the PCA-LSTM model, as shown in Figure 5, the fitting R2 coefficients
of the simulated SSC of the hydrological stations HS1, HS2, HS3, and HS4 are 0.801, 0.814,
0.792, and 0.778, respectively. The fitting R2 coefficients of HS3 and HS4 are below 0.8,
indicating that the PCA-LSTM model performs better in simulating the SSC of HS1 and
HS2. At the same time, the simulation of SSC for HS3 and HS4 did not achieve the expected
results. Overall, there is poor consistency between the actual SSC and the simulation results.

4.4.3. Simulation Results of the Traditional LSTM Model

The results are shown in Figure 6. The traditional LSTM model almost overestimates
the peak values of SSC at the four hydrological stations. There is also a significant overes-
timation of the minimum values of SSC at the four hydrological stations. The agreement
between the actual SSC and the simulation results is poor. Furthermore, in the LSTM model
results, the R2 of SSC simulation results for hydrological stations HS1, HS2, HS3, and HS4
are 0.538, 0.557, 0.546, and 0.57, respectively. It can be seen that the simulation results of the
traditional LSTM model do not fit well with the actual SSC.
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5. Discussion
5.1. Improvement of PCA-LSTM Simulation Results with the Introduction of the
Attention Mechanism

This study explores the influence of integrating an attention mechanism into the
PCA-LSTM framework on the simulated SSC results from the Yangtze River Estuary
during Typhoon In-Fa. Furthermore, a comparison between the attention-based PCA-
LSTM framework and the original PCA-LSTM framework was conducted. The results
indicate that the attention-based PCA-LSTM outperforms the original PCA-LSTM regarding
simulation accuracy. The attention mechanism enables the LSTM to focus more on the
essential features that affect the SSC, resulting in lower RMSE of the simulation results.
The attention-based PCA-LSTM produces lower RMSE values for the simulated SSC at
the four hydrological stations in the Yangtze River Estuary, with values of 0.188, 0.209,
0.149, and 0.172, respectively, which are lower than those obtained with the original PCA-
LSTM (Tables 8 and 9). Specifically, the attention mechanism allows the LSTM model to
assign weights to different input features at each time step, emphasizing the most relevant
features to the SSC at the current time step. The attention mechanism possesses adaptability,
allowing it to adjust weights based on the importance of input data. When dealing with
heterogeneous data from different sources, the attention mechanism can effectively modify
its focus, ensuring a more targeted capture of crucial information related to SSC during
typhoon events. Adding an attention mechanism layer to the PCA-LSTM allows the model
to effectively capture the nonlinear relationship between the essential features and the SSC
under typhoon weather conditions, resulting in more accurate simulations. The attention
mechanism adaptively adjusts the weights of the input features based on their relevance
to the current time step, allowing the model to effectively capture the temporal variations
of the feature data and improve the model’s generalization capability, resulting in more
accurate simulations.

Table 8. Error statistics (Attention-based PCA-LSTM).

Hydrological Station RMSE MSE MAE

HS1 0.188 0.035 0.114
HS2 0.209 0.044 0.139
HS3 0.149 0.022 0.101
HS4 0.172 0.029 0.122

Table 9. Error statistics (PCA-LSTM).

Hydrological Station RMSE MSE MAE

HS1 0.218 0.048 0.136
HS2 0.232 0.054 0.151
HS3 0.215 0.046 0.138
HS4 0.221 0.049 0.148

The changes in meteorological and hydrological factors exhibit different characteristics
during different time intervals in typhoons. When simulating SSC during typhoons, certain
time steps may be more critical for the variation of SSC. When dealing with the uncertainty
of meteorological and hydrological factors, the attention mechanism enables the model to
adaptively focus on crucial moments of SSC changes and key features, thereby selectively
enhancing its perception of SSC changes during different periods in typhoons. PCA typi-
cally assumes that the principal components are orthogonal, while in practical situations,
there may be correlations among different meteorological and hydrological features. At-
tention mechanisms can assist the model in better balancing the importance of features
when dealing with highly correlated features, enhancing sensitivity to feature correlations
in the input data. In the PCA-LSTM framework, principal component analysis (PCA) is
introduced for dimensionality reduction, but certain principal components may contribute
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more to SSC prediction. Through attention mechanisms, the model can automatically learn
the weights of each principal component, adjusting their impact on predictions to better
align with real-world scenarios.

5.2. Effect of Input Variables on Model

The dynamical processes of typhoons can lead to the resuspension of seafloor sedi-
ments, with a significant increase in the volumetric concentration of suspended material
and the increase in land-sourced material due to the high-intensity rainfall accompanying
typhoons [29]. Previous studies have found that many factors caused by typhoons, among
others, can significantly influence the changes in SSC [30]. Therefore, the PCA method can
calculate the input variables significantly correlated with the SSC changes during Typhoon
In-Fa. This study clearly shows that the appropriate input variables enable the model to
effectively simulate the changes in SSC during Typhoon In-Fa. Compared with the tradi-
tional LSTM model, the magnitude of the PCA-LSTM framework is closer to the observed
values for low, medium, and high SSC simulations. The PCA-LSTM framework is better
than the traditional LSTM model for SSC simulations during Typhoon In-Fa. In addition,
the R2 of the four hydrological stations at the Yangtze Estuary reached 0.801, 0.814, 0.792,
and 0.778 using the PCA-LSTM to simulate the SSC of each. Compared with the traditional
LSTM model, estimates improved by 26.3%, 25.7%, 24.6%, and 20.0%, respectively. Since
PCA reduces the dimensionality of the training data and selects the main input variables of
the LSTM model during typhoons, it improves the output accuracy of the model results.
The traditional LSTM model is unable to effectively calculate the primary components in-
fluencing the variation of SSC in the data, and the high dimensionality of input data results
in lower accuracy for some outcomes. This limitation stems from the inherent constraints of
the LSTM model in handling high-dimensional data. The PCA-LSTM framework can solve
the above problems. Comparing the two models shows that the choice of variable inputs is
indispensable for deep learning methods. This shows that PCA can orthogonally transform
multiple indicators into multiple composite indicators (principal components) with less
missing data, avoid redundant interference, and use the feature data after eliminating
redundancy in the input of the LSTM model to improve the accuracy of SSC simulation.

To validate the contributions of different variables to the nonlinear changes in SSC
during typhoons, this study employed a Random Forest model to rank the importance
of the 11 variables. The top four variables in terms of contribution rates were SWH,
Wind direction, MWP, and Rainfall, with contribution rates of 45.8%, 21.55%, 14.8%, and
11.25%, respectively (Figure 7). Their combined contribution reached 93.35%, significantly
surpassing other factors. These results indicate that SWH, Wind direction, MWP, and
Rainfall play pivotal roles in simulating the nonlinear changes in SSC during typhoons.
Specifically, SWH reflects the energy of ocean waves, Wind direction indicates the direction
of wind influencing the transport of suspended sediments, MWP may be related to the
periodic changes in ocean waves, and Rainfall could potentially affect SSC variations
through runoff triggered by precipitation. The high contribution rates of these factors
underscore their importance in influencing the performance and accuracy of the model.

5.3. Validity of the Attention-Based PCA-LSTM Framework

RMSE [31], MSE, and MAE have been widely used as evaluation metrics to evaluate
models’ effectiveness in numerous deep learning studies [32–36]. In this study, in order
to verify the effectiveness of the attention-based PCA-LSTM framework in simulating
the SSC during Typhoon In-Fa, we used different evaluation indicators such as RMSE,
MSE, and MAE for evaluation. We compare it with the PCA-LSTM framework without
introducing the attention mechanism and the traditional LSTM model. The more significant
the difference between RMSE and MAE, the more significant the variance of individual
errors in the sample [37]. If RMSE is equal to MAE, then all errors are equally significant.
Table 9 shows that the attention-based PCA-LSTM framework has the slightest difference
between RMSE and MAE, which are 0.074, 0.070, 0.048, and 0.050, respectively. In contrast,
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the difference in RMSE and MAE between PCA-LSTM and LSTM is more significant
than that of attention-based PCA-LSTM, indicating that the attention-based PCA-LSTM
has better stability than the PCA-LSTM and traditional LSTM models (Tables 9 and 10).
Figure 8 shows the simulation error ranges of [−0.848, 0.617], [−0.703, 0.683], [−0.665,
0.533], and [−0.562, 0.661] for the four hydrological stations using the attention-based
PCA-LSTM. Figure 9 shows the simulation error ranges of [−0.614, 0.616], [−0.769, 0.686],
[−0.668, 0.740], and [−0.735, 0.561] for the four hydrological stations using the PCA-LSTM.
Figure 10 shows the simulation error ranges of [−1.329, 2.103], [−1.869, 1.966], [−1.518,
1.864], and [−1.355,1.635] for the four hydrological stations using the traditional LSTM
model. It can be seen that the attention-based PCA-LSTM has a smaller error interval on
the whole. The RMSE, MSE, and MAE of the attention-based PCA-LSTM during Typhoon
In-Fa were better than those of the PCA-LSTM and traditional LSTM models. The overall
error was slightly lower than that of the PCA-LSTM and significantly lower than that of the
traditional LSTM model. This indicates that the simulation results of the attention-based
PCA-LSTM work better within an acceptable error range. Therefore, the attention-based
PCA-LSTM has better stability in the simulation results of SSC during Typhoon In-Fa, and
the error accuracy of the attention-based PCA-LSTM is better than that for the PCA-LSTM
and traditional LSTM model in the simulation of SSC, which proves the effectiveness of the
attention-based PCA-LSTM framework.

Water 2024, 16, 146 19 of 25 
 

 

 

Figure 7. Contribution rates of different variables to SSC. 

5.3. Validity of the Attention-Based PCA-LSTM Framework  

RMSE [31], MSE, and MAE have been widely used as evaluation metrics to evaluate 

models’ effectiveness in numerous deep learning studies [32–36]. In this study, in order to 

verify the effectiveness of the attention-based PCA-LSTM framework in simulating the 

SSC during Typhoon In-Fa, we used different evaluation indicators such as RMSE, MSE, 

and MAE for evaluation. We compare it with the PCA-LSTM framework without intro-

ducing the attention mechanism and the traditional LSTM model. The more significant 

the difference between RMSE and MAE, the more significant the variance of individual 

errors in the sample [37]. If RMSE is equal to MAE, then all errors are equally significant. 

Table 9 shows that the attention-based PCA-LSTM framework has the slightest difference 

between RMSE and MAE, which are 0.074, 0.070, 0.048, and 0.050, respectively. In contrast, 

the difference in RMSE and MAE between PCA-LSTM and LSTM is more significant than 

that of attention-based PCA-LSTM, indicating that the attention-based PCA-LSTM has 

better stability than the PCA-LSTM and traditional LSTM models (Tables 9 and 10). Figure 

8 shows the simulation error ranges of [−0.848, 0.617], [−0.703, 0.683], [−0.665, 0.533], and 

[−0.562, 0.661] for the four hydrological stations using the attention-based PCA-LSTM. 

Figure 9 shows the simulation error ranges of [−0.614, 0.616], [−0.769, 0.686], [−0.668, 0.740], 

and [−0.735, 0.561] for the four hydrological stations using the PCA-LSTM. Figure 10 

shows the simulation error ranges of [−1.329, 2.103], [−1.869, 1.966], [−1.518, 1.864], and 

[−1.355,1.635] for the four hydrological stations using the traditional LSTM model. It can 

be seen that the attention-based PCA-LSTM has a smaller error interval on the whole. The 

RMSE, MSE, and MAE of the attention-based PCA-LSTM during Typhoon In-Fa were bet-

ter than those of the PCA-LSTM and traditional LSTM models. The overall error was 

slightly lower than that of the PCA-LSTM and significantly lower than that of the tradi-

tional LSTM model. This indicates that the simulation results of the attention-based PCA-

LSTM work better within an acceptable error range. Therefore, the attention-based PCA-

LSTM has better stability in the simulation results of SSC during Typhoon In-Fa, and the 

error accuracy of the attention-based PCA-LSTM is better than that for the PCA-LSTM 

and traditional LSTM model in the simulation of SSC, which proves the effectiveness of 

the attention-based PCA-LSTM framework. 

  

Figure 7. Contribution rates of different variables to SSC.

Table 10. Error statistics (LSTM).

Hydrological Station RMSE MSE MAE

HS1 0.572 0.327 0.417
HS2 0.543 0.295 0.325
HS3 0.330 0.109 0.161
HS4 0.435 0.189 0.245

Water 2024, 16, 146 20 of 25 
 

 

Table 10. Error statistics (LSTM). 

Hydrological Station RMSE MSE MAE 
HS1 0.572 0.327 0.417 
HS2 0.543 0.295 0.325 
HS3 0.330 0.109 0.161 
HS4 0.435 0.189 0.245 

 
Figure 8. Test Set Prediction Error (Attention-based PCA-LSTM). 

Figure 8. Cont.



Water 2024, 16, 146 18 of 22

Water 2024, 16, 146 20 of 25 
 

 

Table 10. Error statistics (LSTM). 

Hydrological Station RMSE MSE MAE 
HS1 0.572 0.327 0.417 
HS2 0.543 0.295 0.325 
HS3 0.330 0.109 0.161 
HS4 0.435 0.189 0.245 

 
Figure 8. Test Set Prediction Error (Attention-based PCA-LSTM). 

Figure 8. Test Set Prediction Error (Attention-based PCA-LSTM).

Water 2024, 16, 146 21 of 25 
 

 

 
Figure 9. Test Set Prediction Error (PCA-LSTM). 

Figure 9. Cont.



Water 2024, 16, 146 19 of 22

Water 2024, 16, 146 21 of 25 
 

 

 
Figure 9. Test Set Prediction Error (PCA-LSTM). 

Figure 9. Test Set Prediction Error (PCA-LSTM).

Water 2024, 16, 146 22 of 25 
 

 

 
Figure 10. Test Set Simulation Error (LSTM). 

6. Conclusions 
To evaluate the simulation performance of the attention-based PCA-LSTM frame-

work on the SSC during Typhoon In-Fa, the R2 metric was used to assess the simulation 
accuracy, while the RMSE, MSE, and MAE metrics were employed to quantify the preci-
sion of the model error. The following key conclusions can be drawn: 

Figure 10. Cont.



Water 2024, 16, 146 20 of 22

Water 2024, 16, 146 22 of 25 
 

 

 
Figure 10. Test Set Simulation Error (LSTM). 

6. Conclusions 
To evaluate the simulation performance of the attention-based PCA-LSTM frame-

work on the SSC during Typhoon In-Fa, the R2 metric was used to assess the simulation 
accuracy, while the RMSE, MSE, and MAE metrics were employed to quantify the preci-
sion of the model error. The following key conclusions can be drawn: 

Figure 10. Test Set Simulation Error (LSTM).

6. Conclusions

To evaluate the simulation performance of the attention-based PCA-LSTM framework
on the SSC during Typhoon In-Fa, the R2 metric was used to assess the simulation accuracy,
while the RMSE, MSE, and MAE metrics were employed to quantify the precision of the
model error. The following key conclusions can be drawn:

(1) The attention-based PCA-LSTM framework showed significant optimization in all
evaluation metrics. Compared with the original PCA-LSTM framework and tra-
ditional LSTM models, the attention-based PCA-LSTM framework demonstrated
improved performance and generalization ability on the same dataset, with higher
accuracy and a lower overall error rate.

(2) The input variables have a significant impact on improving the model’s accuracy.
The PCA-LSTM framework with feature data input that has been dimension-reduced
achieved higher accuracy in the SSC simulation than traditional LSTM models. The
PCA method effectively eliminates the interference of redundant data on the model,
thus improving the accuracy of simulating SSC.

(3) The simulation performance of the attention-based PCA-LSTM framework is superior
to that of the original PCA-LSTM framework and traditional LSTM models. Although
deep neural networks have demonstrated exemplary performance in hydrology and
we obtained satisfactory results, the black-box nature of deep neural networks remains
a challenging problem to overcome.

The geographical environments and climatic conditions differed among the various
estuarine systems, leading to distinct meteorological and hydrological conditions. Due to
certain constraints, this study could only obtain SSC data from the Yangtze Estuary. In fu-
ture research, we plan to apply the attention-based PCA-LSTM model to different estuarine
systems, incorporating hydrological, meteorological, and tidal data from diverse estuar-
ine regions into the model for cross-regional validation. This approach aims to enhance
the model’s applicability across varied geographical environments and meteorological
conditions. Challenges faced by this study and subsequent research include balancing
data quality, model complexity, and computational costs, as well as understanding the
long-term impacts of extreme weather events. Our future research will focus on addressing
these challenges to improve the practicality of the model. Furthermore, given the sub-
stantial contribution of swh to SSC, water depth is also recognized as a crucial parameter,
especially in estuarine research. However, due to limitations in the instrumentation of
hydrological stations, water depth data were not acquired. In subsequent research, we plan
to incorporate water depth data into the multi-source dataset and use it as an input for
the model.

Author Contributions: Z.R. performed the data analysis and wrote the manuscript; H.C. contributed
to the conception of this work; C.L., Y.O., P.Z. and H.F. contributed significantly to the modification
and expression of the manuscript; X.Z., L.T., M.T. and F.Z. gave support on the design of in-situ
observation and data collection. All authors have read and agreed to the published version of
the manuscript.



Water 2024, 16, 146 21 of 22

Funding: This work was supported by the National Natural Science Foundation of China (No. 42271009),
China Geological Survey (No. DD20221728), and the Hydrological and Water Resources Survey
Bureau of the Changjiang River Estuary, Yangtze River Hydrology Bureau, under the commissioned
project “Formation Process and Risk Analysis of Typical Nearshore Erosional Landforms in the
Changjiang River Estuary”.

Data Availability Statement: The data related to this article included significant wave height,
mean wave period, and wind field data which can be downloaded from the European Centre for
Medium-Range Weather Prediction (https://cds.climate.copernicus.eu/#!/home (accessed on 11
December 2022)). The field observation data including suspended sediment concentration (SSC),
water temperature, salinity, pressure, and water velocity are owned by East China Normal University
and are not publicly available. The data can be available from the corresponding authors (Heqin
Cheng: hqch@sklec.ecnu.edu.cn) upon reasonable request.

Acknowledgments: The authors are grateful to the associate editor and three anonymous reviewers
for their valuable feedback and suggestions, which were important and helpful in improving the
quality of this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Schoellhamer, D.H.; Mumley, T.E.; Leatherbarrow, J.E. Suspended sediment and sediment-associated contaminants in San

Francisco Bay. Environ. Res. 2007, 105, 119–131. [CrossRef] [PubMed]
2. Wang, H.; Yang, S.; Yang, H. A study of the surficial suspended sediment concentration in response to typhoons in the Yangtze

Estuary. J. East China Norm. Univ. (Nat. Sci.) 2019, 2019, 195.
3. Tang, R.; Shen, F.; Ge, J.; Yang, S.; Gao, W. Investigating typhoon impact on SSC through hourly satellite and real-time field

observations: A case study of the Yangtze Estuary. Cont. Shelf Res. 2021, 224, 104475. [CrossRef]
4. Dang, T.D.; Cochrane, T.A.; Arias, M.E. Quantifying suspended sediment dynamics in mega deltas using remote sensing data: A

case study of the Mekong floodplains. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 105–115. [CrossRef]
5. Nourani, V.; Behfar, N. Multi-station runoff-sediment modeling using seasonal LSTM models. J. Hydrol. 2021, 601, 126672.

[CrossRef]
6. Kaveh, K.; Kaveh, H.; Bui, M.D.; Rutschmann, P. Long short-term memory for predicting daily suspended sediment concentration.

Eng. Comput. 2021, 37, 2013–2027. [CrossRef]
7. Huang, C.C.; Chang, M.J.; Lin, G.F.; Wu, M.C.; Wang, P.H. Real-time forecasting of suspended sediment concentrations reservoirs

by the optimal integration of multiple machine learning techniques. J. Hydrol. Reg. Stud. 2021, 34, 100804. [CrossRef]
8. Le, X.H.; Ho, H.V.; Lee, G.; Jung, S. Application of long short-term memory (LSTM) neural network for flood forecasting. Water

2019, 11, 1387. [CrossRef]
9. Gao, S.; Huang, Y.; Zhang, S.; Han, J.; Wang, G.; Zhang, M.; Lin, Q. Short-term runoff prediction with GRU and LSTM networks

without requiring time step optimization during sample generation. J. Hydrol. 2020, 589, 125188. [CrossRef]
10. Zhang, Y.; Zhang, C.; Zhao, Y.; Gao, S. Wind speed prediction with RBF neural network based on PCA and ICA. J. Electr. Eng.

2018, 69, 148–155. [CrossRef]
11. Yang, D.; Chen, K.; Yang, M.; Zhao, X. Urban rail transit passenger flow forecast based on LSTM with enhanced long-term

features. IET Intell. Transp. Syst. 2019, 13, 1475–1482. [CrossRef]
12. Zhang, J.; Zhu, Y.; Zhang, X.; Ye, M.; Yang, J. Developing a Long Short-Term Memory (LSTM) based model for predicting water

table depth in agricultural areas. J. Hydrol. 2018, 561, 918–929. [CrossRef]
13. Zhang, Y.; Chen, B.; Pan, G.; Zhao, Y. A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term

wind speed forecasting. Energy Convers. Manag. 2019, 195, 180–197. [CrossRef]
14. Sarker, I.H.; Abushark, Y.B.; Khan, A.I. Contextpca: Predicting context-aware smartphone apps usage based on machine learning

techniques. Symmetry 2020, 12, 499. [CrossRef]
15. Yang, K.; Yuan, J.L.; Xiong, T.; Wang, B.; Fan, S.D. A novel principal component analysis integrating long short-term memory

network and its application in productivity prediction of cutter suction dredgers. Appl. Sci. 2021, 11, 8159. [CrossRef]
16. Geng, D.; Zhang, H.; Wu, H. Short-term wind speed prediction based on principal component analysis and LSTM. Appl. Sci. 2020,

10, 4416. [CrossRef]
17. Huang, M.H.; Zhang, Q.L.; Guan, J.Y. A cellular automata model for population expansion of spartina alterniflora at jiuduansha

shoals, shanghai, china. Estuar. Coast. Shelf Sci. 2008, 77, 47–55. [CrossRef]
18. Ma, J.; Yuan, Y. Dimension reduction of image deep feature using PCA. J. Vis. Commun. Image Represent. 2019, 63, 102578.

[CrossRef]
19. Liu, B.; Yang, R. A novel method based on PCA and LS-SVM for power load forecasting. In Proceedings of the 2008 Third

International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjing, China, 6–9 April
2008; IEEE: Piscataway Township, NJ, USA, 2008.

https://cds.climate.copernicus.eu/#!/home
https://doi.org/10.1016/j.envres.2007.02.002
https://www.ncbi.nlm.nih.gov/pubmed/17408611
https://doi.org/10.1016/j.csr.2021.104475
https://doi.org/10.1016/j.jag.2018.02.008
https://doi.org/10.1016/j.jhydrol.2021.126672
https://doi.org/10.1007/s00366-019-00921-y
https://doi.org/10.1016/j.ejrh.2021.100804
https://doi.org/10.3390/w11071387
https://doi.org/10.1016/j.jhydrol.2020.125188
https://doi.org/10.2478/jee-2018-0018
https://doi.org/10.1049/iet-its.2018.5511
https://doi.org/10.1016/j.jhydrol.2018.04.065
https://doi.org/10.1016/j.enconman.2019.05.005
https://doi.org/10.3390/sym12040499
https://doi.org/10.3390/app11178159
https://doi.org/10.3390/app10134416
https://doi.org/10.1016/j.ecss.2007.09.003
https://doi.org/10.1016/j.jvcir.2019.102578


Water 2024, 16, 146 22 of 22

20. Chi, L.; Huang, Y.; Liu, C.; Wang, Y.; Liang, Z. Research on Evaluation Method of Renewable Energy Accommodation Capability
Based on LSTM. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing,
China, 20–22 October 2018; IEEE: Piscataway Township, NJ, USA, 2018.

21. Zheng, Y.; Wu, X.L.; Zhao, D.; Xu, Y.W.; Li, X. Data-driven fault diagnosis method for the safe and stable operation of solid oxide
fuel cells system. J. Power Sources 2021, 490, 229561. [CrossRef]

22. Graves, A.; Jaitly, N. Towards end-to-end speech recognition with recurrent neural networks. In International Conference on
Machine Learning; PMLR: London, UK, 2014; pp. 1764–1772.

23. Yu, Z.; Yang, K.; Luo, Y.; Shang, C. Spatial-temporal process simulation and prediction of chlorophyll-a concentration in dianchi
lake based on wavelet analysis and long-short term memory network. J. Hydrol. 2020, 582, 124488. [CrossRef]

24. Memory, L.S.T. Long Short-Term. Long short-term memory. Neural Comput. 2010, 9, 1735–1780.
25. Laghrissi, F.E.; Douzi, S.; Douzi, K.; Hssina, B. Ids-attention: An efficient algorithm for intrusion detection systems using attention

mechanism. J. Big Data 2021, 8, 149. [CrossRef]
26. Ma, T.; Xiang, G.; Shi, Y.; Liu, Y. Horizontal in situ stresses prediction using a cnn-bilstm-attention hybrid neural network.

Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 152. [CrossRef]
27. Wang, L.; Zeng, Y.; Chen, T. Back propagation neural network with adaptive differential evolution algorithm for time series

forecasting. Expert Syst. Appl. 2015, 42, 855–863. [CrossRef]
28. Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [CrossRef]
29. Li, Y.; Li, D.; Fang, J.; Yin, X.; Li, H.; Hu, W.; Chen, J. Impact of Typhoon Morakot on suspended matter size distributions on the

East China Sea inner shelf. Cont. Shelf Res. 2015, 101, 47–58. [CrossRef]
30. Zhang, Z.; Song, Z.; Lu, F. A numerical study on storm surge and sediment Resuspending in Modaomen Estuary during Typhoon

Hagupit. In International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers: New
York, NY, USA, 2013.

31. Sun, W.; Zhou, S.; Yang, J.; Gao, X.; Ji, J.; Dong, C. Artificial Intelligence Forecasting of Marine Heatwaves in the South China Sea
Using a Combined U-Net and ConvLSTM System. Remote Sens. 2023, 15, 4068. [CrossRef]

32. Mehri, Y.; Nasrabadi, M.; Omid, M.H. Prediction of suspended sediment distributions using data mining algorithms. Ain Shams
Eng. J. 2021, 12, 3439–3450. [CrossRef]

33. Shamaei, E.; Kaedi, M. Suspended sediment concentration estimation by stacking the genetic programming and neuro-fuzzy
predictions. Appl. Soft Comput. 2016, 45, 187–196. [CrossRef]

34. Li, S.; Xie, Q.; Yang, J. Daily suspended sediment forecast by an integrated dynamic neural network. J. Hydrol. 2022, 604, 127258.
[CrossRef]

35. Zhang, X.; Yang, Y. Suspended sediment concentration forecast based on CEEMDAN-GRU model. Water Supply 2020, 20,
1787–1798. [CrossRef]

36. Rezaei, K.; Pradhan, B.; Vadiati, M.; Nadiri, A.A. Suspended sediment load prediction using artificial intelligence techniques:
Comparison between four state-of-the-art artificial neural network techniques. Arab. J. Geosci. 2021, 14, 215. [CrossRef]

37. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the
literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jpowsour.2021.229561
https://doi.org/10.1016/j.jhydrol.2019.124488
https://doi.org/10.1186/s40537-021-00544-5
https://doi.org/10.1007/s40948-022-00467-2
https://doi.org/10.1016/j.eswa.2014.08.018
https://doi.org/10.17849/insm-47-01-31-39.1
https://doi.org/10.1016/j.csr.2015.04.007
https://doi.org/10.3390/rs15164068
https://doi.org/10.1016/j.asej.2021.02.034
https://doi.org/10.1016/j.asoc.2016.03.009
https://doi.org/10.1016/j.jhydrol.2021.127258
https://doi.org/10.2166/ws.2020.087
https://doi.org/10.1007/s12517-020-06408-1
https://doi.org/10.5194/gmd-7-1247-2014

	Introduction 
	Study Area 
	Materials and Methods 
	Data Sources 
	Method 
	Principal Component Analysis 
	Long and Short-Term Memory Neural Network (LSTM) 
	Attention Mechanism 
	Select Hyperparameters 
	Optimizing the PCA-LSTM Framework 
	Random Forest Model 
	Evaluating Indicator 


	Results 
	Data Preprocessin 
	The Result of Data Dimensionality Reduction 
	Parameter Setting 
	Simulation Results 
	Simulation Results of Attention-Based PCA-LSTM 
	Simulation Results of PCA-LSTM 
	Simulation Results of the Traditional LSTM Model 


	Discussion 
	Improvement of PCA-LSTM Simulation Results with the Introduction of the Attention Mechanism 
	Effect of Input Variables on Model 
	Validity of the Attention-Based PCA-LSTM Framework 

	Conclusions 
	References

