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Abstract: Due to the different design standards of urban drainage and water conservancy facilities,
numerous coordination and linkage issues arise when confronting extreme rainfall. In this paper,
three clustering methods were used to cluster rainfall events, and the results demonstrate that
the dynamic time warping-hierarchical clustering algorithm (DTW-HCA) effectively captures the
temporal similarity of time series. Then, the Pilgrim and Cordery rainfall distribution method was
utilized to extract the characteristics of eight clusters of rainfall events, and eight kinds of rainfall
patterns were obtained. Last, after importing the rainfall patterns into the MIKE model of Qingshan
Lake to conduct flood simulations, the impacts of different rainfall patterns on municipal systems
and water conservancy systems were assessed by the depth and area of urban waterlogging, as well
as the water levels and discharge of rivers. Based on this, three rainfall patterns are proposed as a
designed rainfall pattern (DRP), an extreme rainfall pattern for urban drainage facilities verification
(ERPUDFV) and an extreme rainfall pattern for water conservancy facilities verification (ERPWCFV),
which aim to provide a reference basis for designing region-specific extreme rainfall patterns, as well
as the verification of urban drainage and water conservancy facilities.

Keywords: extreme rainfall; urban flooding; dynamic time warping; clustering; flood simulation

1. Introduction

In the context of global climate change, the rise in extreme weather events has
caused significant damage and losses in socioeconomic systems, as well as to the lives
and properties of the general population [1–3]. Additionally, urban flooding disaster
caused by extreme rainfall demands immediate attention. From 17 to 23 July 2021, Henan
Province in China experienced an unprecedented extreme rainfall event, resulting in
severe flooding. The disaster affected 150 counties (cities and districts) and 14.786 million
people in Henan Province, with 398 deaths and missing persons reported. The direct
economic loss amounted to CNY 120 billion, with Zhengzhou City accounting for CNY
40.9 billion, representing 34.1% of the provincial total [4]. In July 2022, Kentucky in the
United States experienced consecutive days of extreme rainfall, resulting in devastating
flood disasters in the eastern part of the state, which caused at least 37 deaths and
displaced thousands of people [5]. From 29 July to 2 August 2023, Beijing, China, was
hit by an unprecedented extreme rainfall event caused by Typhoon Doksuri [6]. The
city experienced an average precipitation of 331 mm, which accounted for 60% of the
annual average precipitation within a span of 83 h. Moreover, the average precipitation
in the Mentougou District was 538.1 mm, and the average precipitation in the Fangshan
District was 598.7 mm. On 10 September 2023, Hurricane Daniel struck the eastern part
of Libya [7], with total rainfall reaching 400 mm in 24 h. As of September 12th, the death
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toll had exceeded 13,000, with at least 10,000 people missing and over 40,000 people
displaced. Flood disasters caused by extreme rainfall have already attracted widespread
attention from countries around the world.

As an important non-engineering measure in the prevention and control of urban
flood disasters, flood simulation plays a vital role in flood research due to its convenience,
effectiveness and strong reproducibility. Furthermore, with the recent advancement of
smart cities, flood simulation has been extensively implemented [8]. The main flood models
include the following: InfoWorks ICM, MIKE, SWMM and some other independently
developed models. For instance, Sidek, et al. [9] presented an urban flood simulation
using InfoWorks ICM hydrological−hydraulic modeling of the Damansara catchment as
a case study and generated flood hazard maps based on several average return periods
and uniform rainfall depths. Bisht, et al. [10] designed an efficient drainage system for a
small urbanized area in the West Bengal region of India using SWMM and MIKE URBAN.
Mustafa, et al. [11] developed an HEC-RAS 2-D flood dynamics model based on GIS, which
was applied to estimate flood susceptibility and vulnerability in Erbil, Iraq.

Although the development of flood models has provided efficient technical support
for urban flood management, it has also presented new demands and challenges [12].
In China, urban drainage belongs to the municipal system, while flood control belongs
to the water conservancy system. Each adheres to its own industry standards [13]. The
standards of different systems are not uniform, which leads to frequent issues with
coordination and linkage [14]. Municipal departments usually apply rainfall patterns
with a short duration and return period to design and build urban drainage facilities,
which include drainage networks, reservoirs, pumping stations and so on. In contrast,
water conservancy departments generally apply rainfall patterns with a long duration
and return period to assess the flood control capabilities of dikes, dams, sluices and
other water conservancy facilities. Therefore, this discrepancy creates conflicts or incon-
sistencies in urban planning and construction, leading to drainage systems being unable
to effectively cope with different rainfall patterns, consequently increasing the risk of
urban flooding disasters. Furthermore, rainfall patterning is a crucial input parameter
for flood design and simulation, with the differences in input directly influencing the
results of the simulation. Thus, it is crucial to take into account the rainfall patterns
that specifically affect municipal and water conservancy systems when designing or
verifying urban flood control and drainage systems.

There is a long history of research and development in designing rainfall patterns.
In as early as the 1940s, researchers in the former Soviet Union analyzed rainfall data in
Ukraine and established seven rainfall patterns [15]. In the 1960s, Keifer and Chu [16]
conducted a comprehensive study on the interrelationship among rainfall intensity,
duration and frequency, ultimately identifying an uneven rainfall pattern recognized
as the Chicago rainfall pattern. Subsequently, there are numerous rainfall patterns
that have emerged, including the Huff rainfall pattern [17], Pilgrim and Cordery rain-
fall pattern [18], triangular rainfall pattern [19] and so on. In recent years, numerous
scholars have conducted research on rainfall patterns by analyzing historical rainfall
data. Wang, et al. [20] analyzed rainfall events in Beijing using fuzzy recognition and
statistical analysis methods, identifying the main rainfall patterns and calculating the
values of extreme precipitation of different duration and return periods by using three
distribution functions. Xu, et al. [21] applied cumulative rainfall duration curves and
fuzzy recognition methods to identify rainfall patterns of heavy rainfall events and
analyzed peak characteristics of the heavy rainfall events of different durations after
clustering. Fu, et al. [22] used the dynamic time warping (DTW) algorithm to classify
rainfall patterns and establish four separate rainfall type classification models using four
different machine learning methods. The above-mentioned methods utilize clustering
algorithms to compare and classify each rainfall event with the classic seven patterns [15].
However, this kind of method is subjective and may not fully reflect the characteristics
of local rainfall patterns. Additionally, the K-means clustering algorithm measures the
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similarity between two rainfall events based on the difference in precipitation at the
same time, which leads to a bias towards similarity in precipitation at the same moment
and neglects the overall similarity of rainfall patterns along the time series.

In order to distinguish the impacts of different rainfall patterns on urban drainage
and water conservancy facilities, this paper is based on the historical hourly precipitation
data from meteorological stations in the urban area of Nanchang City, after extracting a
total of 428 rainfall events. The rainfall events were clustered by a DTW distance matrix
combined with the hierarchical clustering algorithm. Then, the Pilgrim and Cordery rainfall
distribution method was applied to extract characteristics from the clusters and obtain
the rainfall patterns. Based on the analysis of the effects of each rainfall pattern simulated
by the flood model on urban waterlogging, river level and discharge at different return
periods, this paper proposes three rainfall patterns, a designed rainfall pattern (DRP),
an extreme rainfall pattern for urban drainage facilities verification (ERPUDFV) and an
extreme rainfall pattern for water conservancy facilities verification (ERPWCFV), which
can serve as references for designing extreme rainfall patterns that better align with local
characteristics, as well as in the verification of urban drainage and water conservancy
facilities (Figure 1).
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2. Materials and Methods
2.1. Study Area and Data Sources
2.1.1. Study Area

Nanchang is the capital city of Jiangxi Province in China, which is located in the middle
reaches of the Ganjiang River, with abundant water resources (Figure 2). It is situated in
a subtropical monsoon region, experiencing plentiful rainfall. With the development of
urbanization, the flow production capacity of the city land has greatly increased. Limited
drainage capacity has been observed in the face of extreme rainfall events, leading to severe
urban waterlogging, primarily due to the combination of a lower elevation and shorter
design return period of the drainage network. In recent years, Nanchang has experienced
multiple extreme rain events, such as the “7.12” in 2019, “6.29” in 2020, “5.10” in 2021 and
“6.29” in 2022. These events caused significant economic losses due to severe flooding
in the urban area. Although the municipal departments have made efforts to improve
the construction of drainage systems and flood control projects, such as enhancing the
construction of drainage systems and flood control projects, strengthening meteorological
monitoring and early warning systems, urban flooding events continue to occur frequently
in the face of extreme rainfall.
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Figure 2. Study area.

The Qingshan Lake drainage area is located in the urban area of Nanchang City and is
characterized by flat and low-lying terrain, with a catchment area of 52 square kilometers.
The ground elevation ranges from 19 to 23 m, and the designed standard of drainage is
a 20-year return period. The incoming water of this drainage area is discharged into the
Yudai River through the urban drainage network, and then it passes through the Qingshan
Lake reservoir for regulation and storage, before finally being discharged into the Ganjiang
River either through the Qingshan Lake sluice gate or the Qingshan Lake electric discharge
station (Figure 2).

2.1.2. Data Sources

In this paper, hourly precipitation data from two national meteorological stations
(Nanchang Station and Xinjian Station), as well as data from 20 automatic meteorological
stations located in the urban area of Nanchang City, were adopted. The recorded period
for Nanchang Station is from 1961 to 2020, for Xinjian Station, from 1979 to 2020, and
for the meteorological stations, from 2009 to 2020. The distribution of these stations is
shown in Figure 2.
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It is common to consider rainfall with an hourly precipitation of greater than or equal
to 0.1 mm and rainfall intervals not exceeding 2 h as a single rainfall event. Furthermore,
precipitation exceeding 50 mm within a continuous 24 h period is referred to as a heavy
rainfall event [23]. Additionally, in order to effectively identify the characteristics of rainfall
events, it is necessary to normalize each rainfall event before clustering analysis.

2.2. Methods of Rainfall Clustering and Characteristic Extraction
2.2.1. Clustering Method of Rainfall Events

The DTW algorithm is a method used to measure the similarity between two time
series. It has been widely applied in fields such as speech recognition [24], handwriting
recognition [25] and motion capture [26]. The basic idea of the DTW algorithm is to
calculate the distance between each point in a time series and all points in another sequence
through dynamic programming and backtracking the optimal matching path (the path
with the minimum cumulative distance), so as to determine the similarity between the
two sequences. As shown in Figure 3a, the characteristic of point A in Line1 should be
similar to point A2 in Line2, rather than point A1. Euclidean distance presents the distance
between A and A1, while the DTW distance presents the distance between A and A2. The
distance between A and A2 is smaller than the distance between A and A1, indicating that
the DTW distance is a more effective method of measuring the distance between two time
series when considering time difference.
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When the DTW algorithm is applied to a rain pattern, the first step is to assume two
time series of rainfall, Line1 and Line2, with lengths m and n, respectively.

Line1 = (L11, L12, . . . , L1m) (1)

Line2 = (L21, L22, . . . , L2n) (2)

A matrix D of size m × n is used to represent the cumulative distance matrix
between two time series (Figure 3b). The element D(i, j) in the matrix represents the
cumulative distance between the i-th element L1i in Line1 and the j-th element L2j in
Line2 (Formula (3)). Find the optimal path from D(1, 1) to D(m, n) that minimizes the
cumulative distance along the path. This path corresponds to the optimal DTW path
between Line1 and Line2, and the value of D(m, n) at the end of this path represents
the DTW distance. In addition, to prevent path deviation, a constraint can be added
on the diagonal of the matrix, and we chose to constrain the path to three hours in this
paper, which means that the precipitation at a specific moment was calculated only with
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the adjacent three hours. Similarly, the DTW distance can be calculated for all pairs of
time series, enabling the construction of a DTW distance matrix that encompasses all
clustering elements.

D(m, n) =


|L1m − L2n|, m = 1 ∨ n = 1

|L1m − L2n|+ min


D(m − 1, n)
D(m, n − 1)
D(m − 1, n − 1)

, m > 1 ∧ n > 1
(3)

where D(m, n) represents the cumulative distance matrix between two time series, L1m
represents the m-th element in Line1 and L2n represents the n-th element in Line2.

To ensure that the clustered rain patterns align with local characteristics, a hierarchical
clustering method that did not require specifying the number of clusters in advance was
employed in this study. Additionally, the DTW distance matrix was utilized to cluster
rainfall events, providing strong visualization and interpretability.

2.2.2. Characteristic Extraction Method of Rainfall Time Series

The commonly used method for characteristic extraction from clustering clusters is
the mean method or directly using the cluster centers, but for rainfall patterns, calculating
the mean of the clustering clusters with a large number of samples may lead to a decrease
in peak values, thereby weakening the extracted features. The Pilgrim and Cordery rainfall
distribution method positions the rainfall peak at the most probable occurrence, and the
proportion of the rainfall peak period in the total precipitation is calculated as the average
of the proportions of rainfall peaks in each rainfall event. The positions and proportions of
other rainfall periods are also determined using the same method. Therefore, this rainfall
pattern exhibits a relatively high resemblance to the actual rainfall event [27]. The specific
methods are as follows.

(1) Each hour of rainfall is numbered by precipitation, with large precipitation corre-
sponding to a small number and small precipitation corresponding to a large number. For
example, the time period with the highest precipitation was assigned the number 1, and
the time period with the lowest precipitation was assigned the number 24.

Ti = (ti1, ti2, . . . , ti24) (4)

Ni = (ni1, ni2, . . . , ni24) (5)

where Ti represents the i-th rainfall event; tij represents the precipitation in the j-th time
interval of the i-th rainfall event, 1 ≤ tij ≤ 24; Ni represents the sequence of numbers of
the i-th rainfall event; and nij represents the number in the j-th time interval of the i-th
rainfall event.

(2) Calculate the average number for the same time period of all rainfall events.

Na = (
N

∑
i=1

ni1
N

,
N

∑
i=1

ni2
N

, . . . ,
N

∑
i=1

ni24

N
) (6)

where Na represents the mean of the sequence of numbers assigned to N rainfall events.
(3) Calculate the ratio of hourly precipitation to the total precipitation for each

rainfall event.
Tri = (

ti1
24
∑

j=1
tij

,
ti2

24
∑

j=1
tij

, . . . ,
ti24

24
∑

j=1
tij

) (7)

where Tri represents the ratio of precipitation in each time period of the i-th rainfall event
to the total precipitation.
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(4) Calculate the mean value of Tri in the same time period of all rainfall events.

Tar = (
N

∑
i=1

ti1
24
∑

j=1
tij

/N,
N

∑
i=1

ti2
24
∑

j=1
tij

/N, . . . ,
N

∑
i=1

ti24
24
∑

j=1
tij

/N) (8)

where Tar represents the mean value of Tri in the same time period of all rainfall events.
(5) Place the elements in Tar in descending order at the positions of the elements in

Na in ascending order. For example, place the largest value in Tar at the position of the
smallest value in Na, place the second largest value in Tar at the position of the second
smallest value in Na and so on, to obtain the rainfall pattern.

2.3. Method of Constructing a Designed Rainfall Pattern and Rainfall Pattern for Verification
2.3.1. Construction of a Flood Model

The MIKE model includes a complete set of urban water simulation modules, making
it suitable for building and managing drainage pipe system models of various urban
scales, as well as for urban flood control planning [28]. Therefore, in this study, the MIKE+
2022 developed by the Danish Hydraulic Institute (DHI) was chosen to conduct flood
simulation. The MIKE model of Qingshan Lake was constructed by collecting the data
on its drainage network, river network and topography (Figure 4). The rationality of the
parameters set in the coupled model was validated through the actual measured data,
including rainfall intensity, river water levels, discharge from pumping stations, water
depths and waterlogged areas. Since the Qingshan Lake MIKE model we constructed has
already been applied in similar fields, this paper will not go into further detail about its
construction [29].

Water 2024, 16, 65 8 of 21 
 

 

 
Figure 4. Qingshan Lake drainage area. 

2.3.3. Method of Constructing Rainfall Patterns for Verification 
(1) Method of Constructing an ERPUDFV 

In an urban flood simulation, indicators such as the area of urban waterlogging and 
water levels directly reflect the impact of floods on the city [31,32], making them a focal 
point for municipal departments. Additionally, from the perspective of municipal man-
agement, they are particularly concerned about short-duration heavy rainfall because a 
large amount of rainfall in a short period can overload the city’s drainage system, leading 
to a higher risk of flooding [27]. By simulating and analyzing the impacts of various rain-
fall patterns on urban flooding areas and water levels under a once-in-100-year return pe-
riod, the most influential rainfall pattern was identified. The selected rainfall pattern was 
further refined using the Chicago rainfall pattern to characterize the maximum one-hour 
rainfall process to obtain the ERPUDFV. This approach allows for testing the capacity of 
drainage facilities from the perspective of long-duration rainfall and evaluating the capa-
bility of the drainage pipe network for short-duration rainfall. It can effectively assess the 
capacities of both municipal drainage and watershed drainage systems [33]. 
(2) Method of Constructing an ERPWCFV 

Compared to municipal authorities, who focus on the impact of heavy rainfall on 
urban flooding, a water conservancy department pays more attention to its effects on the 
water levels and flow rates of rivers and lakes within a city [34]. Therefore, two monitoring 
points, labeled as “a” and “b”, were established at the main channel and the confluence of 
the three tributaries (the southern, western and eastern branches) of the Yudai River to 
measure water levels and discharge. By analyzing the influence of various types of rainfall 
on the water levels and discharge in the river, the most hazardous rainfall pattern was 
determined as the ERPWCFV. 

  

Figure 4. Qingshan Lake drainage area.



Water 2024, 16, 65 8 of 20

2.3.2. Methods of Constructing a Designed Rainfall Pattern

The DRP is the most representative rainfall pattern selected based on extensive statis-
tical analysis of rainfall data [30]. Currently, there are two main methods for designing a
DRP. One method involves directly using existing rainfall patterns, such as the Chicago
rainfall pattern, PC rainfall pattern, Huff rainfall pattern and so on. The other method
involves constructing rainfall patterns using measured precipitation data. Rainfall patterns
constructed using this method can reflect local rainfall characteristics and provide more
reasonable references for local urban and water conservancy projects. The impact of various
rainfall patterns on municipal and water conservancy systems under a once-in-20-year
precipitation was simulated in this paper and the most prevalent rainfall pattern was
selected as the DRP.

2.3.3. Method of Constructing Rainfall Patterns for Verification

(1) Method of Constructing an ERPUDFV

In an urban flood simulation, indicators such as the area of urban waterlogging
and water levels directly reflect the impact of floods on the city [31,32], making them a
focal point for municipal departments. Additionally, from the perspective of municipal
management, they are particularly concerned about short-duration heavy rainfall because
a large amount of rainfall in a short period can overload the city’s drainage system, leading
to a higher risk of flooding [27]. By simulating and analyzing the impacts of various rainfall
patterns on urban flooding areas and water levels under a once-in-100-year return period,
the most influential rainfall pattern was identified. The selected rainfall pattern was further
refined using the Chicago rainfall pattern to characterize the maximum one-hour rainfall
process to obtain the ERPUDFV. This approach allows for testing the capacity of drainage
facilities from the perspective of long-duration rainfall and evaluating the capability of the
drainage pipe network for short-duration rainfall. It can effectively assess the capacities of
both municipal drainage and watershed drainage systems [33].

(2) Method of Constructing an ERPWCFV

Compared to municipal authorities, who focus on the impact of heavy rainfall on
urban flooding, a water conservancy department pays more attention to its effects on the
water levels and flow rates of rivers and lakes within a city [34]. Therefore, two monitoring
points, labeled as “a” and “b”, were established at the main channel and the confluence
of the three tributaries (the southern, western and eastern branches) of the Yudai River to
measure water levels and discharge. By analyzing the influence of various types of rainfall
on the water levels and discharge in the river, the most hazardous rainfall pattern was
determined as the ERPWCFV.

3. Results and Discussion
3.1. Results of Rainfall Clustering and Characteristic Extraction
3.1.1. Results of Rainfall Clustering

The hourly precipitation data used were from two national meteorological stations
and 20 automatic meteorological stations in the urban area of Nanchang City. In order to
identify the heavy rainfall event, a classification criterion was applied, considering 24 h of
precipitation equal to or greater than 50.0 mm and rainfall intervals not exceeding 2 h as a
heavy rainfall event. Thus, a total of 428 rainfall events were identified, with 133 events
categorized as severe rainfall with 24 h of rainfall exceeding 100 mm, accounting for 28.8%
of the total heavy rainfall events.

DTW-HCA, the K-means clustering algorithm and the hierarchical clustering algo-
rithm were applied to cluster 428 rainfall events, respectively. After comparing the results
of the different clusters, the optimal number of clusters was determined to be eight. The
clustering results are presented in Figure 5.
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The results of the DTW-HCA (Figure 5a) indicate that each cluster possessed its own
characteristics. In addition, Cluster I had the highest proportion of rainfall events, account-
ing for 73.1% of the total. Cluster III and Cluster V had the second highest proportions,
representing uniform and multi-peak rainfall patterns, respectively. Cluster II had an
advanced peak, while Clusters IV, VI and VIII had later peaks, and Cluster VII exhibited a
double-peak rainfall pattern.

The results of the K-means clustering algorithm (Figure 5b) revealed that Cluster III
and Cluster IV only differed in terms of temporal distribution, and they both actually
belonged to the rainfall pattern with a peak in the early period. Furthermore, the
K-means clustering algorithm only identified one type of extreme rainfall pattern b (VIII)
and classified the other extreme double-peak rainfall pattern a (VIII) into b (V).

The results of the hierarchical clustering algorithm (Figure 5c) indicated that both
Cluster II and Cluster VII exhibited the same characteristic of a double peak from the 5th to
the 10th hour and were classified as the same rainfall pattern. Cluster III and Cluster VI
belonged to rainfall with an advanced peak, where Cluster VI had a complete rain peak,
while Cluster III described the entire rainfall event starting from the peak of the rainfall
peak. Therefore, they were recognized as the same rainfall pattern.

In general, The K-means clustering algorithm and hierarchical clustering algo-
rithm exhibited limitations in effectively capturing the temporal similarity of time
series and identifying extreme rainfall patterns. The clustering results obtained by
using the DTW-HCA demonstrated significant differences in the characteristics of
the rainfall events. This method successfully distinguishes the most frequent rainfall
events and typical extreme rainfall events with higher peaks. Meanwhile, it also indi-
cates that relying solely on a single rainfall pattern input is far from adequate when
conducting urban flood simulations. It is crucial to consider the various stages and
intensities of rainfall peaks that may occur.

3.1.2. Results of Characteristic Extraction

The characteristics of each cluster were extracted by using the Pilgrim and Cordery
rainfall distribution method, and the results are shown in Figure 6. The rainfall pattern
of Class I represents rainfall events with peaks concentrated in the early–middle period.
Class II is characterized by a concentrated peak in the early period, with the precipitation
ratio in the first 8 h accounting for 72.8% of a total rainfall event. Class III exhibited a
uniform rainfall pattern, with a difference of 11.8% between the maximum and minimum
hourly precipitation. Class IV comprises rainfall events with peaks concentrated in the
later period, and the precipitation ratio from the 15th to 22nd hour accounts for 94.4%.
Class V represents multi-peak rainfall patterns, with the sum of the precipitation ratio
at the 6th, 10th and 15th hours accounting for 58.1%. Class VI is characterized by a
double-peak rainfall pattern with a peak in the later period, where the precipitation
of the first peak was smaller than that of the second peak, but the maximum hourly
precipitation of the first peak was larger than that of the second peak. Class VII also
exhibited a double-peak rainfall pattern, with the maximum rainfall occurring within
the three consecutive hours accounting for 82.1%. The rain peak of Class VIII occurred
later and had the highest hourly precipitation ratio, accounting for 39.5%.

3.2. Flood Simulation and Construction of Rainfall Patterns
3.2.1. Analysis of the Simulation Results and Construction of a Designed Rainfall Pattern

The MIKE model was used to simulate eight rainfall patterns combined with a
once-in-20-year precipitation (223.6 mm). The simulation results of urban waterlogging
are shown in Figure 7. The Class II and III rainfall patterns resulted in the smallest
waterlogged areas and depths. This is because the rainfall peak of Class II occurred
earlier, discharging most of the stormwater before the convergence process. The Class III
rainfall pattern was relatively uniform, allowing stormwater to penetrate into the soil
easily, without rapidly accumulating on the surface as runoff, resulting in a smaller
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waterlogged area. Additionally, the Class VIII rainfall pattern mainly occurred in the
later period, with approximately 40% of the total precipitation within one hour. As a
result, it caused the widest flooded area and the deepest water accumulation.
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of waterlogging for eight rainfall patterns).

According to Figure 8 and Table 1, the water level and discharge exhibited similar
trends. Among them, the Class III rainfall pattern shows a relatively uniform pattern, which
allowed stormwater to flow and discharge more steadily in river channels and drainage
systems, resulting in the lowest maximum water level and maximum discharge. On the
other hand, the Class VII rainfall pattern, characterized by a double-peak pattern, saturated
the soil after the first intense rainfall, and the subsequent heavy rainfall accelerated surface
runoff, leading to the maximum values of maximum water level and maximum discharge
out of the eight rainfall patterns.



Water 2024, 16, 65 13 of 20
Water 2024, 16, 65 14 of 21 
 

 

 
Figure 8. The water level and discharge variation at the monitoring points (once in 20 years). (I to 
VIII represent the simulation results of the water level and discharge for eight rainfall patterns). 

Figure 8. The water level and discharge variation at the monitoring points (once in 20 years). (I to
VIII represent the simulation results of the water level and discharge for eight rainfall patterns).



Water 2024, 16, 65 14 of 20

Table 1. Simulated data (once in 20 years).

Precipitation Monitoring Point Evaluation Index
Rainfall Patterns

I II III IV V VI VII VIII

233.6 mm

Maximum waterlogged
areas (km2) 0.19 0.16 0.07 0.76 1.12 0.21 2.77 4.33

Maximum waterlogged
depth (m) 1.76 1.70 1.95 2.09 2.32 1.91 2.53 3.01

a Max water level (m) 16.97 16.69 16.64 17.69 17.16 16.92 18.18 17.58
Max discharge (m3/s) 118.98 68.91 45.03 188.84 140.16 82.67 252.50 183.39

b
Max water level (m) 17.39 16.95 16.79 18.13 17.71 17.18 18.70 18.14

Max discharge (m3/s) 70.95 61.02 44.89 116.75 116.61 65.18 161.34 158.44

Furthermore, the comprehensive rainfall pattern (once in 20 years) (Figure 9)
deduced by Nanchang’s water conservancy department [35] was input into the MIKE
model for simulation, and the results are the following: the maximum waterlogged area
was 3.61 km2 and the maximum waterlogged depth was 2.63 m. At monitoring point a,
the maximum water level reached 18.13 m and the maximum discharge was 246 m3.
At monitoring point b, the highest water level reached 18.66 m and the maximum
discharge was 159.9 m3. These results indicate that the comprehensive rainfall pattern
caused a smaller waterlogged area and depth compared to the Class VIII rainfall
pattern. The water level and discharge were also lower compared to the Class VII
rainfall pattern, which demonstrates the testing capability of the comprehensive rainfall
pattern on urban drainage and water conservancy facilities. However, similar to the
Class IV and VIII rainfall patterns, the comprehensive rainfall pattern is characterized
by a single peak occurring later in the rainfall event, which accounted for only 2.6%
of all rainfall events. As the designed rainfall pattern for Nanchang City, it lacks
representativeness. On the other hand, the Class I rainfall pattern accounted for the
highest proportion, 73.12%, which could represent the majority of rainfall scenarios.
Therefore, it was chosen as the DRP.
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3.2.2. Analysis of the Simulation Results and Construction of a Rainfall Pattern for Verification

(1) The Construction of an ERPUDFV

The MIKE model was used to simulate eight rainfall patterns combined with a once-
in-100-year precipitation (287.4 mm). The simulation results of urban waterlogging are
shown in Figure 10 and Table 2, indicating that the Class II and III rainfall patterns still
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resulted in the smallest waterlogged depth and areas. However, the Class VII rainfall
pattern now caused the maximum water depth. This might have been due to the extremely
high rainfall in the last two hours of Class VII’s rainfall pattern, leading to deeper water
accumulation in certain areas. Nevertheless, based on the overall picture in Figure 8, the
areas with significant water accumulation depth are not prominent. Therefore, the area of
urban waterlogging was chosen as the primary criterion for constructing the ERPUDFV.
Additionally, for Class IV’s rainfall pattern, due to the concentrated rainfall in the last eight
hours, which accounted for 94.4% of the total rainfall, the water level in Qingshan Lake
increased rapidly, reducing its storage capacity and resulting in severe waterlogging in the
western underground tunnel.
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Table 2. Maximum waterlogged areas and depths (once in 100 year).

Precipitation Evaluation Index
Rainfall Patterns

I II III IV V VI VII VIII

287.4 mm

Maximum waterlogged
areas (km2) 0.518 0.39 0.201 3.151 2.996 0.741 6.439 8.215

Maximum waterlogged
depth (m) 1.888 1.789 2.144 4.13 2.665 2.15 4.67 3.194

The maximum one-hour rainfall process of Class VIII’s rainfall pattern and the com-
prehensive rainfall pattern were refined by using the Chicago rainfall pattern, so as to
obtain the ERPUDFV and composite rainfall pattern (Figures 11 and 12). The simulation
results indicated that under the ERPUDFV, the maximum water depth in the city increased
to 3.65 m and the waterlogged area was 17.8 km2. For the composite rainfall pattern, the
maximum water depth was 3.93 m and the waterlogged area was 16.33 km2. Among
them, the areas with water depths below 0.32 m for the ERPUDFV and the composite
rainfall pattern were 16.7 km2 and 15.4 km2, accounting for 93.8% and 94.2% of the total
waterlogged area, respectively. Overall, the ERPUDFV exhibited stronger drainage capacity
for urban drainage facilities. Therefore, when dealing with drainage issues in Nanchang
City, it is advisable to consider rainfall patterns with a delayed peak, as this often leads to
severe waterlogging problems.
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(2) The Construction of an ERPWCFV

The simulation results of water level and discharge are shown in Figure 13 and
Table 3, indicating that the rainfall pattern of Class III demonstrated a relatively uniform
distribution, which allowed for the smooth and consistent discharge of rainwater in the
drainage network and resulted in minimal impacts on river discharge and water levels. The
rainfall pattern of Class II exhibited concentration in the early stage, as the soil moisture
content was relatively low during this period and possessed strong permeability, which
allowed for the rapid absorption of rainfall, reducing the surface water retention time and
consequently minimizing its impact on river discharge and water levels. On the other hand,
the rainfall pattern of Class I was more concentrated in the middle phase, with a slightly
earlier peak. Although the water level caused by Class I was not significantly different from
the two patterns mentioned earlier, the maximum observed discharge was much higher.
The Class IV, VII and VIII rainfall patterns exhibited concentrated peaks in the later period,
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characterized by intense rainfall occurring when the soil moisture was close to saturation,
which led to runoff and complex drainage flow, resulting in a significant increase in river
and lake water levels. Among them, Class VII’s rainfall pattern had the greatest impact
on water levels and discharge in rivers. Although the rainfall pattern of Class VI was
concentrated in the later phase as for Class IV, it is a multi-peak rainfall pattern, which
provides some buffering time for the drainage system. Therefore, it had a slightly weaker
impact on the water levels and discharge of rivers.
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Table 3. The water levels and discharge of the monitoring points (once in 100 years).

Precipitation Monitoring Point Evaluation Index
Rainfall Patterns

I II III IV V VI VII VIII

287.4 mm

a Max water level (m) 17.79 17.09 17.413 18.309 17.523 17.144 18.479 18.142
Max discharge (m3/s) 185.538 120.886 157.103 248.522 177.49 115.412 288.899 247.549

b
Max water level (m) 18.11 17.486 17.862 18.654 18.071 17.483 19.014 18.714

Max discharge (m3/s) 113.639 91.558 94.76 160.345 148.81 99.22 195.336 202.675

In conclusion, due to the extreme water levels and discharge simulated by Class VII’s
rainfall pattern, it is considered as the ERPWCFV. Therefore, when dealing with watershed
drainage issues in Nanchang City, it is recommended to consider bimodal rainfall patterns
(one peak in the middle period and another peak in the later period), which can lead to
rivers or lakes reaching their alert water levels and discharge.
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Figure 13. The water level and discharge variation at the monitoring points (once in 100 years). (I to
VIII represent the simulation results of the water level and discharge for eight rainfall patterns).
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4. Conclusions

For this paper, we obtained eight rainfall patterns based on the DTW-HCA and the
Pilgrim and Cordery rainfall distribution method and simulated the impacts of each rainfall
pattern on a municipal system and water conservancy system using the MIKE model. The
main conclusions are the following:

1. The DTW-HCA, K-means algorithm and hierarchical clustering algorithm were used
to cluster 428 rainfall events in the urban area of Nanchang City. The results indicate
that the DTW-HCA outperformed the other two algorithms in identifying temporal
similarities among time series.

2. A designed rainfall pattern (DRP) and two rainfall patterns for verification
(ERPUDFV and ERPWCFV) are proposed by flood simulation. Among them,
the DRP had the highest proportion, accounting for 73.1% of the total, which
could provide a reference for the design of municipal and water conservancy fa-
cilities. The ERPUDFV caused the most serious urban waterlogging, which could
provide a reference for the verification of municipal facilities. The ERPWCFV
resulted in the highest water levels and discharge at monitoring points, posing
significant risks to water conservancy infrastructures, which could provide a
reference for the verification of water conservancy facilities.

In summary, this paper introduces a more region-specific method for constructing
rainfall patterns. Although using this method requires rebuilding flood models to adapt
to different study areas, which can be cumbersome, and the accuracy of the final results
is limited by the precision of the models, this method is still universal. The results can
serve as a reference for designing extreme rainfall patterns and provide guidance for the
coordination of urban drainage and water infrastructure development.
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