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Abstract: The irrigation water requirements of different crops are becoming a pivotal driver for
the governance strategies of water allocation and management. This paper estimates the impact of
irrigation water requirements on economic value in terms of the yields and gross saleable production
of 13 different crops cultivated in the Emilia-Romagna region (Italy) over the 2010–2020 period by
exploiting a generalized propensity score matching approach. Results show that the overall irrigation
water requirements affect crops’ economic value. There is a causal effect of water irrigation on
economic value: positive only for high levels of water irrigation in the case of yields, while it reverses
and assumes a concave shape for gross saleable production. However, the effect is mediated by
the irrigation water requirements of different crops. In water scarcity conditions, the allocation of
water to arboreal crops, given the effect of water irrigation on gross saleable production, is also
positive for small quantities of water. This paper can help guide the design of more sustainable water
management strategies and agricultural development policies to face climate change.

Keywords: irrigation requirements; water allocation; territorial governance; FADN-RICA

1. Introduction

Climate change affects the agriculture and agri-food sector from different perspectives
and through different channels. Among them, a special role is played by water scarcity.
Indeed, the deep changes across the overall water cycle have brought about unconventional,
and extreme, drought and flood events which represent major climate stressors for crop
production [1]. These events affect the agriculture and agri-food sector, both in the short
and in the long term. For instance, while on the one hand, crops could be damaged by
floods, on the other, a drought extended over time can affect soil quality and its essential
role within the ecosystem. At the same time, crops are stressed by increasing temperatures,
as the ones experienced during 2022 and 2023, where rain deficits accumulated in the last
part of winter (Figure 1 for the EU scenario) went along with high temperatures in the
subsequent summer.

Agriculture is a water intensive sector, and actors (mainly farmers) are constantly
facing irrigation criticalities.
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Figure 1. JRC Bulletin for winter tail in 2022 [2] and 2023 [3]. Figure 1. JRC Bulletin for winter tail in 2022 [2] and 2023 [3].
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According to the Water Exploitation Index provided by the European Environmental
Agency, most EU countries account for water stress conditions, especially in the Mediter-
ranean basin [4]. Italy is no exception and indeed it displays the 5th highest value of
the Water Exploitation Index + [5] among European Union countries in 2019. The Water
Exploitation Index + correlates water consumption as a fraction of renewable freshwater
resources. Generally, values below 20% are considered to be good while values above 40%
testify to severe water stress. In 2019, Italy’s value was 57%. It is worth mentioning that
this ranking also remarks the stronger tie between irrigation and agriculture displayed by
countries in Southern Europe, whose water resources are thus inevitably more stressed [6].

According to the JRC Bulletin [7,8], some Italian regions, such as the Po valley, faced
the driest and hottest years ever recorded in 2022 and 2023. In this context, irrigation
is enriched by a mitigation strategy dimension to deal with climate change since (i) it
protects crops from climate variability and (ii) reduces crop temperatures, especially during
heatwaves [9,10]. However, the availability of water irrigation is itself linked to climate
dynamics. In particular, global warming and extreme events can affect crop production
through many channels, such as the increasing demand for water from farmers and produc-
ers, and the volume and geographical diffusion of water bodies suitable for irrigation [11].

According to the existing literature, irrigation water requirements assume a key value
for the agricultural, and agri-food sector, not only for agronomic reasons (i.e., the need for
water as an input), but also for the economic value that in the actual climate scenario has
been reached [12]. From the economic perspective, in fact, the economic value of water
irrigation is mainly shaped by supply scarcity, which converts water in the nature of both
an excludable club good (shared irrigation) as well as a rival common-pool good (natural
water basins). The management of water irrigation therefore becomes a complex issue that
countries and regional authorities organize in different ways.

In Italy, water issues are a regional policy concern, as established by the 2005 Consti-
tutional Reform. Within each region, but with variable forms, there are reclamation and
irrigation consortia, which are public law subjects that deal with the maintenance of land
reclamation infrastructures and agriculture [13,14].Within the specific Italian framework,
it is not mandatory to be part of a consortium, nor it is compulsory to buy the irrigation
services of one of them. Still, everyone which falls under the consortium administrative
area has to pay a fee since many of its activities in the field benefit heterogeneous subjects
(farmers, factories and citizens). Consortia set a collective irrigation network which, under
a regional policy point of view, allows for better water management. For example, the entire
administrative area of Emilia-Romagna is covered by the operations of many different
consortia, thus giving researchers the possibility to carry out analyses on a higher level.
According to the National board of consortia, slightly more than half the national territory
(59.47%) is covered.

In this context, the contribution of this paper is to investigate, for the first time in the
literature, the effect of irrigation water requirements on the economic value at the territorial
level by using quasi-experimental techniques for causal estimations, looking at the entire
agricultural sector of an entire region, and considering different outcome of economic value.
More specifically, the aim of the paper is to address the following research questions:

RQ1: Do irrigation water requirements affect crops’ economic values?
RQ2: If yes, to what extent does the impact of water irrigation on economic value

depend on water endowment?
RQ3: Does the impact change across crop production?
Building on the most recent existing literature [15], we answer these questions by

looking at the production of 13 crops in one of the EU’s Mediterranean regions where
the agricultural sector is most relevant and that has been one of the most stressed by
water crisis (Emilia-Romagna, Italy) and conducting the analysis at the NUTS3-crop level
over the 2010–2020 period (Table A1). The crops included in the sample are: Actinidia,
alfalfa, corn, grape, green bean, melon, onion, peach, pear, potato, soy, sugar beet and
tomato (processing).
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We use data from the Italian Farm Account Data Network European database (i.e.,
RICA), complemented by official territorial statistics (source: EUROSTAT) and agrometeo-
rological data (source: ISTAT).

Methodologically, the analysis exploits generalized propensity score matching (GPS)
methods for continuous treatment where the treatment is the irrigation water requirements
(in the rest of the paper we refer to irrigation water requirements as IWR) [16]. As far
as the economic outcome variables are concerned, we use yields and gross saleable pro-
duction. The gross saleable production includes the revenues strictly connected with the
agricultural activity.

This paper contributes to the strand of the literature about natural resource manage-
ment and sustainable agricultural production in several ways. First of all, to the best of
our knowledge, it is the first contribution that empirically estimates the relation between
water requirements and economic value and presents results that can be useful to design
sustainable development policies.

Secondly, our analysis provides results also at the crop level for different crops, rather
than for only the production of one crop or at an aggregate level (agriculture). Given the
heterogeneity across crops, and their agronomic requirements, it is particularly relevant
to conduct the analysis separately across crops. In fact, the findings can provide insights
for policy makers and practitioners to manage crop transition across territories in response
to the predicted climate change. In this paper we look at one specific agriculture system,
but the analysis can be easily replicated for other regions or at the national level to better
inform policy makers and institutions.

The rest of the paper is divided as follows: Section 2 provides a short presentation
of existing literature, describes data and the applied methodology; Section 3 presents the
results; and Section 4 concludes and offers some policy reflections.

2. Materials and Methods
2.1. Literature

Several studies exist that investigate the economic value of irrigation. Negri et al. [17]
study the impact of climate change events in the U.S, especially in temperature and precipi-
tation, on the decision to adopt irrigation by looking only at the production perspective.
They adopt a micro-founded multi output production model to simulate different climatic
scenarios and provide estimates of what would be happened with different farmer’s choices:
irrigation is indeed adopted as a response to variations in the tails of temperature and
precipitation distribution, but they are not the only explanatory variables as farm size and
soil condition have a role as well.

Da Cunha et al. [18] carry on a two-stage study in the Brazilian scenario by considering
(i) how climate influences irrigation adoption and (ii) how farmer adaptation to climate
affects land values. They highlight that socioeconomic and agronomic variables as well as
climatic ones are important in the decision process. Indeed, they show that, ceteris paribus,
small farms tend to irrigate less than big commercial ones, due to the highly heterogeneous
and relevant costs of irrigation, which are not so easy to manage for small farms.

By using the World Bank dataset for South America, Seo [19] investigates whether
public adaptation to climate change is different from the private one. The focus is on
irrigation and its dual nature, i.e., private or public schemes and finds that public schemes
are characterized by their lump-sum nature thus conducting either to too much or too little
water supply.

At the same time, a different strand of literature focuses on the offsetting effect of
irrigation against climate change. Among others, Tack et al. [20] look at the mitigating
effect of irrigation on wheat crops in severe high temperature conditions and they find
that irrigation could offset the estimated negative impact on wheat yields (−8%) of every
one-degree Celsius increase in temperature. Zaveri and Lobell [21] focus on India over
the 1970–2009-period and conclude that irrigation allowed the achievement of higher
wheat yields. By the construction of a counterfactually inspired scenario, they confront the
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observed output, i.e., the one with irrigation and the unobserved one, i.e., the one identified
by irrigation levels and weather of 1970, supposing they were steady throughout time. In
Li and Troy [22], a central part is dedicated to the impact of specific climatic variables on
the difference between irrigated and rainfed crop yields and concludes that irrigation’s
impact on it us variable but positive, and that for some crops (wheat), it is better not to
irrigate as the impact on water resources is stronger than the benefit from irrigation.

Finally, the role of irrigation in agriculture is assessed in [15]: the authors stress that
irrigation water has a relevant role in agriculture, but it seems not more important, less
relevant even, than the type of farming and variable costs borne by the farm.

Methodologically, the existing literature has mainly adopted three approaches, which
have, however, some criticalities and do not allow for the estimation of the causal impact.
First, some papers investigate water irrigation issues by adopting the so-called residual
value method, as described by Young and Loomis [23]: the value of production is decom-
posed by the value of each one of its inputs minus one, i.e., irrigation water, thus attributing
to the latter the full residual value. While the main advantage of this approach is that it is
straightforward and provides easily read results, the main disadvantage is that, accepting
the neoclassical framework, it also attributes all kinds of things that affect the production
function but that were not possible to detect to water value.

A different group of studies relies on the stated preferences approach [24]. The
value of the water irrigation is accounted here starting from what the sample of people
interviewed declare, i.e., their willingness to pay. This methodology has some limitations:
(i) the necessity of a well-selected sample, (ii) the construction of a structured survey; and
(iii) the nature of the analysis are a few of the main weaknesses of this approach. However,
they have been demonstrated to be quite useful when speaking of non-market benefits.
Lastly, some of the existing papers exploit the hedonic price approach [11,25]. However, the
assumption of perfect market competition, and thus that land prices are a perfect function
of its attributes is critical for the reliability of the analysis.

2.2. Data

To conduct the analysis, we rely on a dataset that we arrange from different sources
of data and that include a set of climatic, agronomic and socioeconomic variables at the
NUTS3-crop-year level over the 2010–2020 period.

Climatic data come from the Italian Agenzia regionale per la prevenzione, l’ambiente
e l’energia dell’Emilia-Romagna (Arpae) that provides daily records from 1961 to 2020
about precipitation and minimum and maximum temperatures [26] (Available at https:
//dati.arpae.it/dataset/erg5-eraclito. Last access on 1 April 2023). Starting with them,
we calculated the following agroclimatic indicators. First, we calculated the 90th per-
centile of the entire time series at NUTS3 level for minimum and maximum temperature
(IS_TNover90p and IS_TXover90p). We quantified the total amount of days with tem-
perature above the 90th percentile and defined a heatwave when there were at least
three consecutive days over the 90th percentile and the heatwave number (TN_HWN
and TX_HWN) as the total of the heatwaves across one year [27].As stated in [27], it is
possible to apply the abovementioned heatwave definition either in terms of maximum
temperature (TX) or minimum temperature (TN). For precipitation, we considered the
days with effective rainfall as the days with precipitation above 2.5 mm (0.1 inch) and
the days with heavy rainfall as the ones characterized by precipitation above 25 mm
(1 inch) [17] (IS_rainydays and IS_Heavyrainydays, respectively).We are aware of the
many existing linkages between the paucity of precipitation in winter and drought
problems in the subsequent summer, but we will not address this topic in this work. We
will focus mainly on what happens during the irrigation season (IS), which usually goes
from April to October. However, the evidence arising from the data drove us to define it
as the time span that goes from the first decade of March to the last decade of November.

Water and agronomic data were gathered from Consorzio di Bonifica per il Canale
Emiliano Romagnolo (CER), which is a second level consortium whose activities pertain to

https://dati.arpae.it/dataset/erg5-eraclito
https://dati.arpae.it/dataset/erg5-eraclito
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an important part of the region and consist in information on the irrigated dimension of
acreage and yields for the area of interest.

In particular, we collected IWR by the means of Irriframe [28], a digital platform
developed by CER whose utility to support better water management practices in Europe
has already been proved [29].

Data on gross saleable production and the characteristics of the local agricultural
sector come from the Italian Farm Accountancy Data Network database, i.e., RICA (FADN,
2022).The FADN is the most important source of annual micro-economic data for agri-
cultural holdings within EU. One of its greatest advantages lies in the harmonized and
standardized practice of its construction, which makes comparisons between countries pos-
sible. The Italian sample is made up of 10,764 farms. In extracting data from FADN, we used
the following criterion: we considered every fully irrigated crop as irrigated, i.e., when the
entire acreage dedicated to that particular crop was irrigated (see https://rica.crea.gov.it/
for more information, last access on 1 April 2023). Lastly, data from ISTAT was used to
cover possible observation gaps in the acreage and yields item, while data on per capita
GDP come from EUROSTAT.See Table 1 for source and descriptive statistics of the variables
we used while Table A2 for their definition.

Table 1. Variables used in our analysis and their source. Author’s elaboration.

Source Variable Obs Mean Std. Dev. Min Max

FADN Economic Dimension of Farms 609 3.289 0.329 2.327 4.389

Gross Saleable Production (EUR) 588 6427 4811 379.7 28,442

Arpae IS_TNover90p (number of days) 609 41.75 11.87 8 67

IS_TXover90p (number of days) 609 49.43 13.53 15 81

TN_HWN (number of heatwaves) 609 5.156 1.457 1 8

TX_HWN (number of heatwaves) 609 6.350 1.843 3 11

IS_rainydays (number of days) 609 56.99 12.89 33 85

IS_Heavyrainydays (number of days) 609 4.210 2.815 0 16

Cer-ISTAT Yields (quintals/ha) 609 301.6 214.6 22 850

Acreage (ha) 584 5919 10,055 32.96 133,905

Irriframe IWR (mm/ha) 609 33.95 12.48 8.048 74.47

Eurostat Percapita_GDP (million EUR) 609 32,942 4476 23,972 42,403

2.3. Research Scenario

The final sample is an unbalanced panel of 8 NUTS3 areas of the Emilia-Romagna
region and 13 different crops followed from 2010 to 2020 for a total of 609 observations.
The sample does not include the NUTS3 Rimini due to its inadequate data coverage.

Emilia-Romagna is one of the most productive regions in Italy for the agricultural
and agri-food sector. It accounted for approximately 9.16% of the national gross domestic
product in 2021 and for the 11.8% of the value of the national agricultural output in 2020).
Its geographical position allows for the existence of a high-quality and highly heterogenous
food industry, as proven by the 44 European protected denomination items. According
to 7th Agricultural Census data mentioned by Emilia-Romagna Region, within Emilia-
Romagna the utilized agricultural area (UAA) is equals to 1045 thousands of hectares, about
the 79% of the total agricultural area, in slightly decrease of 1.8% and 2.6%, respectively
from 2010.

The region has a milder climate compared to other Italian regions. Still, it has not been
immune to climate change. Figure 2 depicts anomalies only considering maximum and
minimum temperature: to this definition, it seems quite clear that 2014 has been the coolest
year of our time span of interest. Instead, to look at the hottest ones, we would have to at

https://rica.crea.gov.it/
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least simultaneously consider both temperature and precipitation: as described by Figure 3,
the 2012–2013 pair as well as 2017 emerge.
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Finally, we do not have data regarding the full stock of water available for irrigation
within every NUTS3 area. Instead, we have data on crop water requirements, defined as
IWRthat for its inherent characteristics we can consider as the crops’ minimum demand
for water or, roughly speaking, the inferior threshold of irrigation water. Given that the
IS generally goes from the first decade of March to the final decade of November, IWR is
calculated as the average water demand by crop j not over the entire IS, but only over the
exact period of its irrigation. We plotted the unitary heterogenous IWR across crops and
for time t at the NUTS3 level (Wit) and did the same for yields (Yit) in Figure 4.

On average, a decrease in demanded water emerges, with a particularly falling
movement for Bologna, Ferrara, Ravenna and Reggio Emilia. The same trend does not
hold for yields which do not follow a decreasing path, but rather a more irregular one.
According to the Emilia-Romagna Region (2021), the 2020/2010 delta of the yields for
the crops considered within our analysis was a decrease of 18% (see https://statistica.

https://statistica.regione.emilia-romagna.it/agricoltura/produzione-lorda-vendibile-a-prezzi-correnti
https://statistica.regione.emilia-romagna.it/agricoltura/produzione-lorda-vendibile-a-prezzi-correnti
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regione.emilia-romagna.it/agricoltura/produzione-lorda-vendibile-a-prezzi-correnti, last
access on 19 October 2023). It is interesting to note that three out of the four abovemen-
tioned areas are in the eastern part of the region, which lacks abundant water resources
and is strongly dependent on CER services.
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2.4. Methodology

According to Negri et al. [17], the farmer’s decision-making process can be defined
as follows:

πI(P, W, ω, N, θ) = maxX [PY − WX − ωTI ] : YϵY(X, θ, N, TI)
πD(P, W, N, θ) = maxX [PY − WX] : YϵY(X, θ, N, TD)

(1)

where I and D indicates irrigated and dryland, respectively; Y(.) are the production
possibilities set by constraints on technology, land (N), land quality ( θ), i.e., soil and climate
and irrigation capacity (T); P and W are the exogenous output and input prices; Y and X
are agricultural output and input, respectively; T represents the discrete choice whether to
adopt irrigation or not and ω is the irrigation cost.

Aimed at the achievement of the optimum possible profit level, each farmer will
decide whether to adopt irrigation. However, in our analysis, IWR is not directly linked
to profit, rather it is linked to gross saleable production generating endogeneity and self-
selection issues. To solve it, we rely on generalized propensity score matching (GPS) for
continuous treatment [16]. The GPS extends the binary treatment proposed by Rosenbaum
and Rubin [30] to continuous treatment scenarios with the aim of balancing the distribution
of covariates in the treated and control group [31]. Several papers recently used this
approach to evaluate agrifood policies, including [32,33]. In this paper, in fact, all NUTS3

https://statistica.regione.emilia-romagna.it/agricoltura/produzione-lorda-vendibile-a-prezzi-correnti
https://statistica.regione.emilia-romagna.it/agricoltura/produzione-lorda-vendibile-a-prezzi-correnti
https://statistica.regione.emilia-romagna.it/agricoltura/produzione-lorda-vendibile-a-prezzi-correnti
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crop observations are treated (irrigated), but with different levels of treatment. Thanks to
the GPS we are, therefore, capable of estimating how the impact changes for different levels
of treatment intensity.

From the empirical perspective, the GPS first assigns a score in terms of treatment
probability and second, it compares observations with the most similar score in order to
isolate the performance ascribable to the treatment. Then, it estimates the causal impact of
a unitary change in the treatment level by using the dose–response function approach. The
model produces two outcomes: the dose–response function (DRF) and the treatment effect
function (TEF).

In this paper, we considered IWR as the treatment and looked at the yields and gross
saleable production as proxies of economic values. Due to the absence of data on the exact
amount of supplied water, IWR can be considered a good proxy of the latter given that
irrigation water gravitates around IWR and is surely correlated with it. Operationally,
the GPS model, as illustrated in Hirano and Imbens [16] and Imbens [34] relies on the
assumption of weak confoundedness. If we define Yi(t) as the potential outcome of the
individual i when exposed to the treatment t, then we can formulate it as follows:

Y(t)⊥T|X ∀t ∈ T. (2)

It means that, given the covariates X for each individual, the potential outcome is
orthogonal with respect to the treatment assignment. This assumption derives directly
from Rosenbaum and Rubin [30] and in its original form, it involves the unbiasedness of
the difference between the treatment and control means as the average treatment effect. In
the GPS case, it is not necessary for this to hold, and indeed the weak unconfoundedness
only requires the conditional independence of each value of the treatment, not the joint
one [16].

One of the main utilities of GPS allows us to observe not only the average irrigation
effect on yields ( µ), but also the marginal one (m),

µ(t) = E[Yi(t)]m(t) = [Y(t + 1)− Y(t)]. (3)

In other words, we need to construct a function that allows us to operate the best
comparison among our units. This function is the propensity score and is a function of the
covariates of each unit. More precisely, it is the conditional probability of receiving the
treatment, given the covariates:

r(t, x) = fT|X(t|x) (4)

which, in turn, leads us to the define the GPS as R = r(t, x). Another trait of the methodol-
ogy is the balancing property, namely:

X⊥I(T = t)|r(t, x) (5)

where I(.) is the indicator function. Equation (5) states that within layers marked by the
same value of the propensity score, the probability that T = t is not dependent upon the
value of X.

At this point, the practical implementation of the GPS is divided into three parts [35].
The first requires the estimation of the propensity score r(t, x). Treatment is assumed

to be normally distributed, conditional on covariates. Since our treatment does not follow
this path, we use an ln transformation and then tested its normality by the skewness and
kurtosis test:

g(Ti)
∣∣∣Xi ∼ N

[
h(γ, Xi), σ2

]
(6)
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where g(.) is the transformation of our treatment and h(.) is function of covariates (Xi)
with linear and high order terms, dependent on a vector γ of parameters. To complete the
first step, we estimate the GPS as [35]:

R̂i =
1√

2πσ̂2
exp

[
− 1

2σ̂2 (g(Ti)− h(γ̂, Xi))

]
(7)

where σ̂2 and γ̂ are estimated from Equation (6). If Equation (5) holds, we can consider
observations within the same layer to be identical among them, orthogonally with respect
to the actual treatment level. The second part of the procedure deals with the conditional
expectation of the outcome given the treatment ( T) and GPS ( R) [35]. We estimate the
following:

φ[E(Yi|Ti, Ri)] = ϑ(Ti, Ri, α) = α0 + α1Ti + α2T2
i + α3Ri + α4R2

i + α5TiRi (8)

with α being a vector of parameter estimates whose meaning is not of particular relevance
to the selected model, setting aside their statistical significance [35].

Finally, we average the estimated regression function over the GPS at any level of the
treatment to obtain the DRF [35]. More precisely:

E ˆ[Y(t)] =
1
N

N

∑
i=1

β̂[t, r̂(t, Xi)] =
1
N

N

∑
i=1

φ−1[ϑ̂(t, r̂(t, Xi); α̂)
]
. (9)

3. Results
3.1. Main Results

Starting from our first research questions (RQ1), the aim was to estimate the impact
of IWR on the economic value (yields and gross saleable production) of crop production.
In addition, we were interested in evaluating whether this effect depends on treatment
(irrigation) endowment (RQ2).

Overall, IWR exerts a significant effect on yields as depicted by the DRF (Figure 5a)
(RQ1). The left-side panel of the figures reports the DRF providing graphical representations
of the relationship between WD and yields, while the right-side panel depicts the TEF, that
is, the first derivative of the respective DRF. The middle line refers to the function, while the
top and bottom lines represent 95% confidence intervals. See Table A3 for model validation.
This result is mainly in line with Tack et al. [16] that demonstrated how irrigation is an
effective tool to support yield, even if with extreme climate change conditions, and Zaveri
and Lobell [17] that concluded a positive increasing benefit of irrigation on wheat yields.

Some differences, however, emerge when we look at different treatment levels (RQ2).
The dose–response function has, in fact, a convex form (with the exception of treatment
levels between 0.2 and 0.4) suggesting that the positive effect of irrigation on yields emerges
only for a high level of treatment (irrigation). The TEF, which reports the outcome as
increasing due to the unitary increment of the treatment, confirms it: the effect increased
more for the last third of the treatment distribution.

The convex form of the DRF reversed and became concave when considering the
impact of irrigation on gross saleable production (Figure 5, Panel b). The former indeed
positively affects the latter, but following a decreasing path, as highlighted by the TEF:
once the maximum has been reached, to increase the treatment leads to a loss in gross
saleable production.

Overall, these results confirm the existing literature. Ruberto et al. [15] found that
irrigation is a determinant factor affecting crops’ economic values, but it is not more relevant
than other internal and external elements.
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Figure 5. GPS1-Effects of irrigation on yields (Panel a) and gross saleable production (Panel b). Full 
sample. Panel (a) yields. Notes: We used bootstrap methods to obtain the dose–response function 
standard errors and confidence intervals which are included in the figures as the lower and upper 
bounds [35]. Models have been estimated with the constant. Yields are expressed in quintals/ha. 

Some differences, however, emerge when we look at different treatment levels (RQ2). 
The dose–response function has, in fact, a convex form (with the exception of treatment 

Figure 5. GPS1-Effects of irrigation on yields (Panel a) and gross saleable production (Panel b). Full
sample. Panel (a) yields. Notes: We used bootstrap methods to obtain the dose–response function
standard errors and confidence intervals which are included in the figures as the lower and upper
bounds [35]. Models have been estimated with the constant. Yields are expressed in quintals/ha.
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3.2. Heterogeneity Analysis

The effect of irrigation can be influenced by the agronomic characteristics of different
crops and their higher or lower water intensity nature. This heterogeneity has been
underlined by Li and Troy [18] concluding that some crops are unsustainable given that
they need too much water.

Crop differences also emerged in this paper. By looking at the DRFs of Figure 5a:
some crops are characterized by high yield volumes yields and low IWR volumes (before
treatment level 0.4) while others by low yield volumes and high IWR volumes (between
0.4 and 1). Therefore, we decided to investigate this heterogeneity, especially whether the
effect of the treatment differs across crops (RQ3). Therefore, we replicated the analysis
by splitting the sample into two-subsamples according to the yield, above and below
350 quintal/ha. The first sample included lower water intensity crops, whereas the second
one included higher water intensity crops. Descriptives for the subsamples are provided
by Tables 2 and 3 and suggest that while crops included in the group above the turning
point are mainly non-arboreal crops, the other group is mainly composed by arboreal
crops which account for higher irrigation water requirements, but also for higher gross
saleable production.

Table 2. Descriptive statistics.

Lower Water Intensity Crops

Crop Freq. Percent Cum.

Alfalfa 13 6.070 6.070
Melon 1 0.470 6.540
Onion 36 16.82 23.36
Potato 32 14.95 38.32
Sugar beet 72 33.64 71.96
Tomato (Processing) 60 28.04 100

Total 214 100

Higher Water Intensity Crops

Actinidia 38 9.620 9.620
Alfalfa 23 5.820 15.44
Corn 72 18.23 33.67
Grapes 59 14.94 48.61
Green bean 24 6.080 54.68
Melon 23 5.820 60.51
Onion 2 0.510 61.01
Peach 53 13.42 74.43
Pear 50 12.66 87.09
Potato 6 1.520 88.61
Soy 45 11.39 100

Total 395 100

Table 3. Gross saleable production and IWR.

Lower Water Intensity Crops

Variable Obs Mean Std. Dev. Min Max

Gross Saleable
Production 210 5280 3214 624.5 20,537

IWR 214 29.25 11.09 8.048 72.95

Higher Water Intensity Crops

Gross Saleable
Production 378 7065 5401 379.7 28,442

IWR 395 36.49 12.47 8.933 74.47
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We separately re-estimated the model for the two subsamples (Figures 6 and 7).
Water 2024, 16, 77 14 of 22 
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Figure 6. GPS2-Effects of IWR on yields. Panel (a) Lower water intensity crop production. Notes: 
The middle line refers to the function, while the top and bottom lines represent 95% confidence 
intervals. We use bootstrap methods to obtain the dose–response function standard errors and 
confidence intervals which are included in the figures as lower and upper bounds [35]. Models have 
been estimated with the constant. Yields are expressed in quintals/ha and gross saleable production 
is considered at current prices. 

Figure 6. GPS2-Effects of IWR on yields. Panel (a) Lower water intensity crop production. Notes: The
middle line refers to the function, while the top and bottom lines represent 95% confidence intervals.
We use bootstrap methods to obtain the dose–response function standard errors and confidence
intervals which are included in the figures as lower and upper bounds [35]. Models have been
estimated with the constant. Yields are expressed in quintals/ha and gross saleable production is
considered at current prices.
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Figure 7. GPS3-Effects of irrigation water requirements on gross saleable production. Panel (a) 
Lower water intensity crop production. Notes: The middle line refers to the function, while the top 
and bottom lines represent 95% confidence intervals. We use bootstrap methods to obtain the dose–
response function standard errors and confidence intervals which are included in the figures as 
lower and upper bounds [35]. Models have been estimated with the constant. Yields are expressed 
in quintals/ha and gross saleable production is considered at current prices. 

Figure 7. GPS3-Effects of irrigation water requirements on gross saleable production. Panel (a) Lower
water intensity crop production. Notes: The middle line refers to the function, while the top and
bottom lines represent 95% confidence intervals. We use bootstrap methods to obtain the dose–response
function standard errors and confidence intervals which are included in the figures as lower and upper
bounds [35]. Models have been estimated with the constant. Yields are expressed in quintals/ha and
gross saleable production is considered at current prices.
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Starting from the effects on yields and lower water intensity crop production (Figure 6a),
the left-side panel of the figures reports the DRF providing graphical representations of the
relationship between IWR and gross saleable production (a) and yields (b); the right-side
panel depicts the TEF, that is, the first derivative of the respective DRF. The findings show that
the DRF is concave for both the lowest and highest levels of the treatment, while it assumes
a convex shape from 0.2 to 0.4. This evidence suggests that on average, there is a positive
effect for a medium level of water irrigation, meaning that the yields of lower water intensity
crops do not benefit from a low level of irrigation (as the treatment is not enough to increase
yields) or from the highest ones (due to the decreasing marginal productivity of the production
factors). Conversely, a medium level of treatment seems to be effective and generates positive
and increasing effects.

In the case of higher water intensity crops (Figure 6b), a clearer convex pattern emerges.
This suggests that water irrigation is effective in increasing yields only after a certain level
of treatment (around 0.5), but after that, it will always remain positive.

Moving to the gross saleable production estimations (Figure 7), lower water intensity
crops (Figure 7a) show a concave DRF along the 0.1–0.6 treatment span (the only significant
part of the estimations). In this case, in fact, the left-side panel of the figures also reports
the DRF providing graphical representations of the relationship between IWR and gross
saleable production (a) and yields (b); the right-side panel depicts the TEF, that is, the
first derivative of the respective DRF. The results suggest that, on average, while there is a
positive effect from the lower level of treatment, there is a negative effect from the highest
levels. For higher water intensity crops (Figure 7b), the impact follows a similar trend: no
significance before 0.1 and after 0.9, a positive impact corresponding to a lower level of
treatment, a null impact for a medium level of treatment, and a negative one for the higher
levels. This suggests that the economic value (i) noticeably benefits from obtaining the first
level of treatment (moving from around zero irrigation to a certain degree of it) with a sharp
increase in the gross saleable production and (ii) from a medium level of treatment, as they
guarantee a certain and constant level of gross saleable production. From the economic
perspective, treatment impact on gross saleable production follows the same logic as that
of decreasing marginal productivity, as depicted by the TEF: the gains in gross saleable
production decrease along the treatment increase, up to the point where they eventually
became negative. The clear relevance of the treatment (irrigation) is what we observe in
agronomic practices commonly implemented for arboreal crops, such as supplemental
irrigation for vineyards.

If we split the group of higher water intensity crops according to the median value of
the gross saleable production (Table 4), we find that the upper part is mostly made up of
arboreal crops (A), which from the agronomic perspective requires more water irrigation,
accounts for higher gross saleable production and maintains a constant economic value
over time in comparison with non-arboreal crops (H).

Table 4. Higher 50% gross saleable production.

Variable Obs Mean Std. Dev. Min Max

A_Gross Saleable
Production 159 11,552 4293 6471 28,442

H_Gross Saleable
Production 31 10,251 4141 6518 26,846

A_IWR 164 36.35 10.02 9.918 57.77
H_IWR 43 33.69 16.39 8.933 74.47
A_Yields 164 202.3 62.43 58 320
H_Yields 43 228.4 94.39 51.19 320

4. Discussion and Conclusions

Following the heated debate on water crises and irrigation requirements in a climate
change scenario, this study emphasizes the growing importance of irrigation water re-
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quirements in shaping governmental strategies for water allocation and management. The
research estimates the economic impact of irrigation water requirements on yields and
gross saleable production for 13 different crops in Italy over the 2010–2020 period by using
GPS methods. The findings indicate:

(i) a causal effect of irrigation water on economic value, with positive impacts observed
for high levels of water irrigation in terms of crop yields (RQ1)

(ii) in terms of yields, it is positive only for a high level of water irrigation, while gross
saleable production reacts sharply and positively to a low level of treatment and
negatively for a higher level of treatment; in the middle, it remains overall stable, but
reaches different values depending on the sample (RQ2)

(iii) the effect is mediated by the specific water requirements of different crops (RQ3).

We want to stress that we basically observed three types of crops: the first one (e.g.,
sugar beet) is characterized by high yield volumes, low water requirements but also low
gross saleable production (the decreasing part up to the turning point of the GPS1); the
second one is denoted by a lower yield volumes, but higher water requirements as well as
higher gross saleable production (e.g., corn); the last one displays mostly arboreal crops
which are extremely water demanding (e.g., Actinidia) and that, even though they are not
too different in terms of yield volumes form the second group, they show the highest gross
saleable production.

Therefore, in terms of water allocation strategies, our findings highlight the need for
tailored strategies. The results suggest that, when farmers face strong constraints on water
availability, the more efficient solution seems to be to allocate water to arboreal crops, as
the effect of water irrigation on gross saleable production is positive also if small quantities
of water are distributed. However, to maintain the highest economic values, a medium
level of water allocation is needed. This is in line with the core of efficiency criterion in
economics: as depicted in [36], it is better to allocate water to the production of crops for
which the productivity is higher. In our case, this has been demonstrated in the case of
arboreal crops, confirming what the literature has said while focusing on Norther Italian
regions [37].

Crops that need lower levels of water appear as the crops that farmers and policy
makers should look at not only due to their relevance to the final market (consumers), but
also due to their use as inputs in other agrifood production processes. This is the case
for alfalfa used in Parmigiano Reggiano PDO production, one of the main economically
successful agrifood products of Italy [37]. To what extent crops participate in food value
chains, both at the national and global level, should therefore be considered when designing
strategic water management strategies. It can have an effect not only on the sustainability
of local production systems, but also on their economic competitiveness.

From a policy perspective, this paper highlights how water resource management
and governance questions should be addressed by considering both yields and economic
value, rather than focusing only on the productivity [38]. Our contribution stresses that it
would be a mistake and economically damaging to consider only low water demanding
crops as feasible under water scarcity scenarios. This evidence, at least in part, supports
the mitigation strategies that have been supported by policy interventions and plans over
the last several years.

In addition, given that arboreal crops are crops in which unconventional water use
is allowed (i.e., direct and indirect use of wastewater), the importance of arboreal crops
in crop allocation becomes even more apparent [39]. Arboreal crops are, in fact, the only
type for which the use of wastewater is allowed. The reuse of wastewater is supported by
the EU in order to achieve a more sustainable agricultural system. However, its efficiency
depends on how policies and interventions are designed.

For example, in the EU, Regulation 2020/741/EU addresses water scarcity issues by
introducing a harmonized standard for wastewater reuse in agriculture. The achievement
of the best possible solution can be challenging, especially in countries which lack a
consistent normative system in regard to the second half of the water utilization cycle,
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i.e., the depuration and discharge of wastewater. Indeed, the lack of good territorial and
crop-tailored regulations is a major driver of the increase in soil and crop damage. With the
aim of maximizing the availability of water for farmers, policy makers and local actors have
to consider not only natural boundaries and water quality [40], but also economic factors,
such as infrastructure costs and the determination of water prices [41]. The provision of
high-quality water provided by so-called direct reuse may result in higher prices, which can
be unsustainable for farmers, especially those that cultivate low value-added crops. From
the economic perspective, the concept of “irrigation water consumption-yield-economic
value of crops” should be balanced by adopting a more inclusive and sustainable approach.
Even if the main issue remains the problem of maximum optimization between productivity,
economic values and physical constraints (water in this case), nowadays, the issue should
also be enriched by a more comprehensive sustainability strategy. This is particularly clear if
we look, for example, at the Sustainable Development Goals Agenda (SDGs) which attempts
to simultaneously achieve the protection, restoration and promotion of the sustainable use
of terrestrial ecosystems (SDG 15) and the sustainable management and provision of clean
water (SDG 6) with an increase in agriculture productivity (SDG 2). The result, therefore,
is a complex challenge of supporting agricultural productivity, with efficient high quality
water use, while providing long-term environmental, social and economic sustainability to
farmers and citizens. Therefore, to address this issue it is not sufficient to look at yields,
but we also need to consider the economic dimension of crops from a more integrated
point of view.

Our findings should be considered as explorative and further research needs to be
carried out. The estimation of the socio-economic effects of specific irrigation techniques
and, in particular, the adoption of wastewater reuse in agriculture is in our research agenda.
At the same time, we are interested in investigating how technological choices and socio-
cultural dynamics will produce patterns of water use and allocation.
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Appendix A

Table A1. Crops and NUTS3.

Crops Actinidia, Alfalfa, Corn, Grape, Green bean, Melon, Onion, Peach, Pear, Potato, Soy, Sugar beet, Tomato (Processing)

NUTS3-Provinces ITH51-Piacenza (PC), ITH52-Parma (PR), ITH53-Reggio Emilia (RE), ITH54-Modena (MO), ITH55-Bologna (BO),
ITH56-Ferrara (FE), ITH57-Ravenna (RA), ITH58-Forlì-Cesena (FC)

BO FC FE MO PC PR RA RE Total

Actinidia 10 11 6 0 0 0 11 0 38

Alfalfa 3 2 0 6 8 7 1 9 36

Corn 11 0 11 11 9 9 11 10 72

Grape 11 11 0 11 2 5 11 8 59
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Table A1. Cont.

Crops Actinidia, Alfalfa, Corn, Grape, Green bean, Melon, Onion, Peach, Pear, Potato, Soy, Sugar beet, Tomato (Processing)

NUTS3-Provinces ITH51-Piacenza (PC), ITH52-Parma (PR), ITH53-Reggio Emilia (RE), ITH54-Modena (MO), ITH55-Bologna (BO),
ITH56-Ferrara (FE), ITH57-Ravenna (RA), ITH58-Forlì-Cesena (FC)

BO FC FE MO PC PR RA RE Total

Green bean 0 8 0 0 6 0 10 0 24

Melon 8 0 11 5 0 0 0 0 24

Onion 11 8 0 0 9 0 10 0 38

Peach 11 11 11 9 0 0 11 0 53

Pear 11 0 11 10 0 0 11 7 50

Potato 11 9 7 0 0 0 11 0 38

Soy 7 0 8 8 8 0 7 7 45

Sugar beet 11 7 11 9 6 8 11 9 72

Tomato
(Processing) 8 5 10 0 11 9 11 6 60

Total 113 72 86 69 59 38 116 56 609

Table A2. Data definitions.

Source Variable Definition

Fadn Economic Dimension of Farms Average economic dimension of farms, by year and at NUTS3 level. Values from 1
(small) to 5 (big)

Gross Saleable Production Gross saleable production for irrigated crops (EUR), by year and crop, at NUTS3 level

Arpae IS_TNover90p Number of days during IS in which the minimum temperature went above the 90th
percentile of its 1961–2020 distribution.

IS_TXover90p Number of days during IS in which the maximum temperature went above the 90th
percentile of its 1961–2020 distribution.

TN_HWN Number of minimum temperature heatwaves during the IS.

TX_HWN Number of minimum temperature heatwaves during the IS.

IS_rainydays Number of days with effective rainfall during the IS.

IS_Heavyrainydays Number of days with heavy rainfall during the IS.

Cer Yields Yields of irrigated crops (quintals/ha), by year and crop, at NUTS3 level.

Acreage Acreage of irrigated crops (ha), by year and crop, at NUTS3 level.

Irriframe IWR Average irrigation water requirement over the exact period of its irrigation (mm/ha), by
year and crop, at NUTS3 level.

Eurostat Percapita_GDP Per capita Gross Domestic Product at current market prices (EUR), by year, at NUTS3
level.

Table A3. Estimation of the DRF.

GPS 1-Full Sample

IYields
(Quintals/Ha)

Gross Saleable Production
(EUR /Ha)

Variable Coefficients SE Coefficients SE

WD −865.569 599.9565 57,081.63 *** 14,732.31
WD (ˆ2) 656.8621 525.6152 −58,377.29 *** 13,250.4

GPS −175.9433 190.391 −3111.61 4472.597
GPSˆ2 285.0726 153.6744 −69.52433 3595.859

WD *GPS −154.2393 233.6022 −5216.351 5469.356

Observations 609 588



Water 2024, 16, 77 19 of 20

Table A3. Cont.

GPS2 Lower (a) and Higher (b) Water Intensity Crops

A-IYields
(Quintals/Ha)

B-IYields
(Quintals/Ha)

Variable Coefficients SE Coefficients SE

WD −894.4823 * 513.8982 −412.9934 341.7621
WD (ˆ2) 471.4249 472.1137 454.8758 288.6213

GPS −356.091 ** 167.6097 52.81079 101.4106
GPSˆ2 −29.08193 133.5734 −2.967697 78.13132

WD *GPS 1059.992 *** 224.9905 −46.00546 116.1592

Observations 214 395

GPS3- Lower (a) and Higher (b) Water Intensity Crops

A-Gross Saleable Production
(EUR/Ha)

B-Gross Saleable Production
(EUR/Ha)

Variable Coefficients SE Coefficients SE

WD 34,052.73 ** 14,480.93 69,529.67 *** 22,686.64
WD (ˆ2) −33,620.69 ** 13,692.91 −70,070.87 *** 19,574.33

GPS 6062.368 4580.525 −13,683.88 ** 6411.992
GPSˆ2 −697.1769 3628.13 7233.836 4917.609

WD *GPS −17,208.59 *** 6118.141 −2564.918 7392.32

Observations 210 378
Notes: *** p < 0.01, ** p < 0.05, * p < 0.1.
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