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Abstract: Groundwater-influenced ecosystems (GIEs) are increasingly vulnerable due to groundwater
extraction, land-use practices, and climate change. These ecosystems receive groundwater inflow as
a portion of their baseflow or water budget, which can maintain water levels, water temperature,
and chemistry necessary to sustain the biodiversity that they support. In some systems (e.g., springs,
seeps, fens), this connection with groundwater is central to the system’s integrity and persistence.
Groundwater management decisions for human use often do not consider the ecological effects of
those actions on GIEs. This disparity can be attributed, in part, to a lack of information regarding the
physical relationships these systems have with the surrounding landscape and climate, which may
influence the environmental conditions and associated biodiversity. We estimate the vulnerability of
areas predicted to be highly suitable for the presence of GIEs based on watershed (U.S. Geological
Survey Hydrologic Unit Code 12 watersheds: 24–100 km2) and pixel (30 m × 30 m pixels) resolution
in the Atlantic Highlands and Mixed Wood Plains EPA Level II Ecoregions in the northeastern
United States. We represent vulnerability with variables describing adaptive capacity (topographic
wetness index, hydric soil, physiographic diversity), exposure (climatic niche), and sensitivity (aquatic
barriers, proportion urbanized or agriculture). Vulnerability scores indicate that ~26% of GIEs were
within 30 m of areas with moderate vulnerability. Within these GIEs, climate exposure is an important
contributor to vulnerability of 40% of the areas, followed by land use (19%, agriculture or urbanized).
There are few areas predicted to be suitable for GIEs that are also predicted to be highly vulnerable,
and of those, climate exposure is the most important contributor to their vulnerability. Persistence of
GIEs in the northeastern United States may be challenged as changes in the amount and timing of
precipitation and increasing air temperatures attributed to climate change affect the groundwater
that sustains these systems.

Keywords: adaptive capacity; sensitivity; exposure; landscape; wetland; conservation

1. Introduction

Practices that promote ecosystem integrity and persistence are at the forefront of natu-
ral resource management in the face of climate change and anthropogenic activity [1–3].
Ecosystem modifications or loss have contributed to the recent worldwide species decline,
described as the sixth great mass extinction event [4,5]. Consequently, efforts to mitigate
loss of ecosystems and the species they support have been prioritized [6,7]. Freshwater
ecosystems are some of the most threatened systems in the world, owing to anthropogenic
effects on water quantity and quality [8–10]. Threats to these systems are diverse and
occur at various spatial scales, which make their conservation and management especially
challenging [11]. Frameworks that can help identify where freshwater ecosystems are threat-
ened, and that consider groundwater connectivity, could inform proactive management
and mitigation to enhance the resilience of these systems.
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Freshwater ecosystems directly influenced by groundwater contributions (hereafter
termed groundwater-influenced ecosystems or GIEs) can occur in a wide variety of forms
(e.g., fens, springs, rivers, lakes). The environmental conditions in these ecosystems reflect
their geological setting, climate conditions, and landscape position [12,13]. GIEs can stay
saturated during times of drought [14] and can act as carbon capture or carbon runoff
zones [15,16]. Additionally, groundwater-influenced systems can improve water quality in
surface water systems by providing summertime cold water habitats for aquatic species,
cooling summer water temperatures, supporting micro-fauna that promote the breakdown
of contaminants [17], and by regulating nutrient cycling and decomposition of organic
matter [18].

Shallow groundwater systems are inherently vulnerable to a variety of human prac-
tices, such as land use (e.g., farming, urbanization), which can create pollution that degrades
ecosystems (e.g., contaminated runoff) and can result in excessive water use (e.g., irriga-
tion, [19]). Disruptions in groundwater flow timing, volume, temperature, and composition
can affect the integrity and persistence of GIEs [20–22]. For example, concentrated ground-
water extraction from private and municipal wells in Oregon threatened >18% of GIE
clusters (watersheds containing two or more types of groundwater-dependent ecosystems),
while 70% of GIE clusters were threatened by groundwater contamination [21]. Addi-
tionally, GIEs are vulnerable to reduced precipitation and increased evapotranspiration
attributed to climate change, leading to reduced groundwater recharge and increased
groundwater withdrawals [22–24]. GIEs are connected to groundwater by local and re-
gional flow paths that determine the sources of water that discharge to a GIE [19,25,26].
Local groundwater flow paths are more sensitive to changes in climate (i.e., precipitation,
air temperature, evapotranspiration) than regional groundwater flow paths [27]. Addi-
tionally, upslope groundwater recharge areas connect GIEs to the surrounding landscape
and watershed processes and affect the duration and amount of groundwater received by
GIEs [25].

Groundwater extraction for anthropogenic needs is expected to increase with increas-
ing human populations in the northeastern United States (U.S.) [28]. As one of the most
densely populated areas of the U.S., the region’s landscapes are intensively modified with
agriculture and urbanization [29], which may amplify effects of climate change by increas-
ing surface temperatures [30,31]. These increased temperatures may affect groundwater
recharge and water table depth [22], which could affect the occurrence, distribution, and
condition of GIEs. Further, coastal aquifers are particularly vulnerable to groundwater ex-
traction [28]. The northeastern U.S. includes >28,000 km of coastline where coastal aquifers
and their associated GIEs may be at risk from this extraction [28]. A growing human
population can further lead to increases in pollution, which can alter water chemistry,
creating additional threats to a region’s GIEs [32].

Vulnerability can be defined as the degree to which a system is susceptible to, and
unable to cope with, the combined effects of climate change and anthropogenic modifica-
tions [33]. Magness et al. [34] calculated vulnerability by combining estimates of exposure,
system sensitivity, and the adaptive capacity of the system. Exposure is estimated by
quantifying factors attributable to climate change, such as changes in air temperature and
precipitation [34,35]. Factors that affect a system’s survival, persistence, fitness, or regener-
ation, such as land use, provide an aggregated estimate of sensitivity. Factors that promote
adaptation responses, such as protected areas managed for conservation that can sustain
ecosystem integrity, provide an aggregated estimate of adaptive capacity [34]. Within this
framework, system vulnerability is estimated spatially by summing data layers represent-
ing the variables contributing to exposure, adaptive capacity, and sensitivity into a relative
vulnerability score. This approach to estimating vulnerability provides a systematic and
hypothesis-driven framework to examine factors influencing GIEs’ potential vulnerability.

We conducted a vulnerability assessment of areas predicted in the northeastern U.S.
to be highly suitable for GIEs [36], using the Magness et al. [34] framework to identify
vulnerable GIEs and watersheds. We estimated vulnerability at two spatial scales: 30 m pix-
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els and U.S. Geological Survey Hydrologic Unit Code (HUC) 12 watersheds (24–100 km2).
We identified areas predicted to be highly suitable for GIE occurrence [36] that also were
predicted to be highly vulnerable, and we identified the input variables (i.e., exposure,
sensitivity, adaptive capacity) with the most substantial contributions to GIE vulnerability.
We further evaluated predicted vulnerability of areas in current conservation management
that have predicted high suitability for GIE occurrence, as well as the vulnerability of
watersheds surrounding those GIEs. By identifying the variables with the greatest contri-
butions to the vulnerability scores, our results could inform management and conservation
of groundwater-influenced ecosystems in the northeastern U.S.

2. Methods
2.1. Study Area

Our study extent spanned two EPA Level II ecoregions (Atlantic Highlands and Mixed
Wood Plains; [37]; source: https://www.epa.gov/eco-research/ecoregion-download-files-
region; accessed on 27 January 2021) with similar physical and biological conditions in por-
tions of nine northeastern U.S. states (Connecticut, Massachusetts, Maine, New Hampshire,
New Jersey, New York, Pennsylvania, Rhode Island, Vermont) (Figure 1). We combined the
ecoregions into one extent for our analysis. Suitability at a 30 m resolution for GIEs within
our study area was obtained from ensembled correlative distributions models created for
the two EPA ecoregions [36]. These ensembled models used known locations of GIEs
and environmental variables representing topography, geology, and vegetation to predict
suitability for GIEs across the ecoregions.
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Figure 1. Environmental Protection Agency (EPA) Level II Ecoregions [37] (Atlantic Highlands, Mixed
Woods) in the northeastern United States (source: https://www.epa.gov/eco-research/ecoregions-
north-america; accessed on 27 January 2022). State abbreviations: Connecticut (CT), Delaware (DE),
Maine (ME), Maryland (MD), Massachusetts (MA), New Hampshire (NH), New Jersey (NJ), New
York (NY), Ohio (OH), Pennsylvania (PA), Rhode Island (RI), Vermont (VT), Virginia (VA), West
Virginia (WV), District of Columbia (DC).
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2.2. Vulnerability Framework

We used the conceptual framework of Magness et al. [34] to estimate vulnerability of
pixels in the study extent by calculating sensitivity (i.e., degree to which ecosystem survival,
persistence, fitness, or regeneration may be affected by stressors), adaptive capacity (i.e.,
capacity of an ecosystem to cope with stressors, including adaptation responses), and
exposure (i.e., effect of climate change experienced by the locale). Vulnerability was summed
as (1) adaptive capacity − sensitivity = resilience and (2) exposure − resilience = vulnerability
(Figure 2). We calculated vulnerability at the pixel (30 m × 30 m) and watershed extents
[mean vulnerability score of pixels within HUC12 watersheds (24–100 km2; 4185 HUC12
watersheds in study area)].
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Figure 2. Vulnerability conceptual framework [34] and the framework used to estimate groundwater-
influenced ecosystem (GIE) vulnerability across our study area. Orange boxes in the conceptual
framework represent the core components of estimating vulnerability (tan boxes). Source data for the
variables are listed in Table 1. Abbreviations: Topographic Wetness Index (TWI).

Table 1. Data used to estimate exposure, adaptive capacity, and sensitivity categories for GIEs under
current climate and anthropogenic conditions. Variable abbreviations: minimum temperature (tmin),
maximum temperature (tmax), precipitation (prcp), mean annual temperature (bio1), isothermality
(bio3), mean temperature of driest quarter (bio9), mean temperature of warmest quarter (bio10),
annual precipitation (bio12), precipitation of driest month (bio14), precipitation of warmest quarter
(bio18), annual evapotranspiration (ET), potential evapotranspiration (PET), evapotranspiration in
the growing season (ET-GS; May 15–September 15).

Category Data Variables Source

Exposure tmin, tmax, prcp Bio1, 3, 9, 10, 12, 14, 18 https://daymet.ornl.gov/

Evapotranspiration ET, PET, ET-GS https://lpdaac.usgs.gov/products/mod16a2gfv006/

Adaptive
capacity

Topographic Wetness
Index (TWI) TWI https://umassdsl.org/data/ecological-settings/

Physiographic Diversity Physiographic diversity https://developers.google.com/earth-engine/datasets/
catalog/CSP_ERGo_1_0_US_physioDiversity

Hydric Soil Percent hydric soil https://www.nrcs.usda.gov/resources/data-and-reports/
gridded-soil-survey-geographic-gssurgo-database

Sensitivity Agriculture Land Cover Percent agriculture land https://www.mrlc.gov/data/nlcd-2019-land-cover-conus

Developed Land Cover Percent developed land https://www.mrlc.gov/data/nlcd-2019-land-cover-conus

Aquatic Barriers Aquatic barriers https://umassdsl.org/data/ecological-settings/

https://daymet.ornl.gov/
https://lpdaac.usgs.gov/products/mod16a2gfv006/
https://umassdsl.org/data/ecological-settings/
https://developers.google.com/earth-engine/datasets/catalog/CSP_ERGo_1_0_US_physioDiversity
https://developers.google.com/earth-engine/datasets/catalog/CSP_ERGo_1_0_US_physioDiversity
https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-survey-geographic-gssurgo-database
https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-survey-geographic-gssurgo-database
https://www.mrlc.gov/data/nlcd-2019-land-cover-conus
https://www.mrlc.gov/data/nlcd-2019-land-cover-conus
https://umassdsl.org/data/ecological-settings/
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2.3. Sensitivity

We calculated sensitivity with three variables (Table 1): developed land use, agricul-
tural land use, and aquatic barriers. Agriculture can affect water quality by contributing
nutrients (e.g., nitrogen and phosphorus) and pesticides to groundwater ecosystems [21,22].
Urbanization and agriculture can lead to increased groundwater extraction for public water
supplies and irrigation [21,22]. We extracted 30 m pixels from urbanized and agricultural
land uses by selecting land cover classes (developed, pasture/hay, and cultivated crops)
within the National Land Cover Database (NLCD; source: https://www.mrlc.gov/data;
2019; accessed on 10 November 2022) that represented these land-use types. Pixels extracted
from these land-use types were given a value between 0.5 and 1, corresponding with the
weights assigned by McGarigal et al. [38] (developed-high intensity = 1, developed-medium
intensity = 0.8, developed low-intensity = 0.5, pasture/hay = 0.5, cultivated crops = 0.5) and
all other pixels within the study area were given a value of 0. Aquatic barriers represent
the relative degree to which road–stream crossings and dams potentially impede upstream
and downstream movement of water. Aquatic barriers (e.g., roads, dams) can alter the flow
and temperature of surface water, which can reduce downstream recharge and decrease the
thermal influence of groundwater [20,22]. We represented the effect of aquatic barriers by
using an aquatic barriers dataset created for the Northeast [39] with values ranging from 0
(no aquatic barrier effect) to 1 (high aquatic barrier effect). We clipped the data layers to
the extent of the study area, resampled the clipped layers to 30 m pixels, and summed the
resampled data layers with Geographic Information Systems (GIS) software (ArcGis Pro
v. 2.8.0; ESRI; Redland, CA, USA) to estimate sensitivity (Figure 2).

2.4. Adaptive Capacity

We calculated adaptive capacity with three variables: topographic wetness index,
physiographic diversity, and hydric soils (Table 1). Topographic wetness index is the rel-
ative amount of moisture at any point in the landscape [38] contributed by up-gradient
topography, which has been shown to be positively associated with GIEs in the northeast-
ern U.S. [40]. Physiographic diversity is an estimated index of physiographic types [41].
Hydric soil affects landscape suitability for groundwater-influenced systems [36] and is
represented as percentage of hydric soil in the gridded soil survey geographic database for
the conterminous United States [42]. We clipped the data layers to the study area extent,
resampled the clipped data to 30 m pixels, and summed the resampled data to estimate
adaptive capacity (ArcGIS Pro v. 2.8, Redland, CA, USA) (Figure 2).

2.5. Exposure

We calculated climate exposure with climatic niche models (CNMs). These mod-
els use current geographic distribution data for ecosystems or species to infer climatic
environmental requirements [43]. This modeling technique has been used to predict
species or ecosystem range shifts under current and projected climate scenarios [44–46].
We used CNMs to model the current climatic niche of GIEs to calculate climate exposure of
these ecosystems.

2.6. Geographic Distribution Data

We trained our CNM models by compiling location data for 3168 GIEs that were
field-verified during 1981–2020 by state Natural Heritage Programs (see [36] for geographic
distribution data sources). We reduced spatial autocorrelation in the dataset by removing
occurrences within 2 km of other recorded locations, which removed 296 locations from
the dataset. We reduced the effect of spatial sorting bias (SSB) with point-wise distance
sampling that produced a subsample with SSB = 1. We used the final SSB-reduced dataset
(1690 locations) for training the CNMs.

https://www.mrlc.gov/data
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2.7. Climate Variables

We selected climate variables to include in our CNMs by reviewing literature de-
scribing effects of climate change on GIEs [19,22,28,47,48] (Table 1). We included ten
climate variables in the CNMs that measured or estimated temperature, precipitation, and
annual evapotranspiration (Table 1). We estimated seven bioclimatic variables (Table 1)
with monthly Daymet V4 Daily Surface Weather and Climatogical summaries (1 km res-
olution; [49]). Maximum temperature (tmax), minimum temperature (tmin), and pre-
cipitation (prcp) during 1980–2019 were used to calculate the seven bioclimatic vari-
ables using the ‘biovars’ function within the ‘dismo’ R (v1.4.1106) package [50]. We es-
timated evapotranspiration (ET), potential evapotranspiration (PET), and evapotranspi-
ration in the growing season (ET-GS) from MOD16A2 V.6 Terra Net Evapotranspiration
8-day Global dataset (https://lpdaac.usgs.gov/products/mod16a2gfv006/; accessed on
25 January 2023) within a web-available mapping system (Google Earth Engine, GEE;
https://earthengine.google.com/; [51]) to obtain average annual rates during 2001–2019.
All climate data layers were clipped to the extent of our study area and resampled to 1 km
pixels if the source data were not 1 km resolution. We compared all variables with a Pearson
correlation test and determined that none of the climatic variables were highly correlated
(R2 < 0.60).

2.8. CNM Development and Evaluation

We selected two climatic niche modeling methods, maximum entropy (Maxent) and
generalized additive models (GAM), which have been used frequently and have outper-
formed other climatic niche modeling methods [43,52–54]. No single modeling approach
will perform best in every scenario [55], thus we developed two statistically contrasting
models and integrated the predictions by calculating the mean suitability score for each
pixel. Maxent is a machine learning modeling method that estimates suitability by find-
ing the distribution that achieves maximum entropy given the environmental conditions
at occurrence locations [56]. Generalized additive models smooth data to fit non-linear
functions with non-parametric distributions. We developed our CNMs within the ‘dismo’
(Maxent; [50]) and ‘mgcv’ (GAM; [57]) packages in R (version 1.4.1106). We generated
20,000 pseudo-absence locations by randomly sampling across the study area extent. We
partitioned occurrence (1690) and pseudo-absence data (20,000) into training (1352 pres-
ences and 16,902 background points) and testing (338 presences and 4225 background
points) datasets with a K-fold cross validation with five folds. We evaluated CNM pre-
diction accuracy with five metrics: area under the curve (AUC) estimates, Cohens Kappa
statistic, sensitivity rates, specificity rates, and the true skill statistic (TSS). We evaluated
CNM performance with each metric with thresholds to determine if the CNM was informa-
tive: AUC ≥ 0.70 [58], Cohens Kappa ≥ 0.50 [59], sensitivity and specificity rates ≥ 0.70,
and TSS ≥ 0.50 [60].

2.9. Pixel-Scale Vulnerability Calculation

We scaled (0 to 1) 30 m data representing adaptive capacity and sensitivity and
averaged the scaled pixel values separately for both. We subtracted the sensitivity pixel
values from the adaptive capacity pixel values and scaled (0 to 1) the resulting pixel values
to estimate resiliency in each 30 m pixel in the study extent (Figure 2). We used the CNM
models, which produced climatic niche suitability scores from 0 (least suitable) to 1 (most
suitable), to calculate exposure. We scaled the exposure estimate as 1 − suitability score,
assigning the greatest exposure score to the smallest climate niche suitability. We resampled
the 1 km exposure raster data to 30 m pixels, and we calculated the vulnerability raster
as exposure − resilience, scaling the resultant pixels from 0 (least vulnerable) to 1 (most
vulnerable). We classified the scaled vulnerability values into four vulnerability categories:
least [0 ≤ value ≤ 0.25], low [0.25 < value ≤ 0.50], moderate [0.50 < value ≤ 0.75], and high
[0.75 < value ≤ 1.0].

https://lpdaac.usgs.gov/products/mod16a2gfv006/
https://earthengine.google.com/


Water 2024, 16, 1366 7 of 23

2.10. Land Ownership

We identified lands in conservation ownership within the study extent with the Pro-
tected Areas Database for the United States (PAD-US; https://www.usgs.gov/core-science-
systems/science-analytics-and-synthesis/gap/science/protected-areas; accessed on 5 Oc-
tober 2022). The PAD-US database designates 10 land ownership types; we calculated the
average vulnerability scores in areas in the Federal, Joint, Non-Governmental Organization,
Private, and State ownership types. The PAD-US also assigns the type of conservation prac-
tices that occur within each protected area into four categories: (1) managed for biodiversity,
where natural disturbance events proceed or are mimicked; (2) managed for biodiversity,
where natural disturbance events are suppressed; (3) managed for multiple uses, including
extractive (e.g., mining or logging) or off-highway motor vehicles (OHV) use; and (4) no
known mandate for biodiversity protection. We calculated the average vulnerability scores
in each protected area and then identified the number and total area of protected areas
that had moderate [0.50 < value ≤ 0.75] or high vulnerability [0.75 < value ≤ 1.0] for each
conservation practice type.

2.11. Landscape Suitability Model Comparison

We created a polygon layer from the ensembled model raster predicting areas that are
suitable (80th percentile) for GIEs [36], and we used this polygon layer to extract (mask) pix-
els from the pixel-scale vulnerability raster to identify GIEs with vulnerability score > 0.50
(indicating vulnerable). We identified areas predicted to be suitable for GIEs that also
contained vulnerable pixels (>0.50) that are within the United States Department of Agricul-
ture’s (USDA) recommended 30 m wide conservation buffer around shallow groundwater
(source: https://www.fs.usda.gov/nac/buffers/guidelines/1_water_quality/15.html; ac-
cessed on 10 March 2023). We calculated the average vulnerability score of pixels occurring
within 30 m of each GIE-suitable polygon by overlaying the buffered (30 m) GIE polygons
as a mask on the landscape vulnerability raster and then identified GIEs that are highly
(value > 0.75) or moderately (0.50 < value ≤ 0.75) vulnerable.

We extracted patches of contiguous pixels (≥10 ha area) with high vulnerability
(>0.75), converted the pixels to polygons, and calculated the distance between the edge
of each GIE polygon and the nearest high-vulnerability polygon (mean = 54 ha, Standard
Deviation = 301.4 ha). This allowed us to determine the number and total area of areas
predicted to be suitable for GIEs that are within close proximity (<200 m) to highly vul-
nerable polygons. We calculated the proportion of GIE areas and highly vulnerable areas
(>0.75 vulnerability) within each HUC12 watershed to identify watersheds with the greatest
proportion of areas that are both suitable for GIEs and also vulnerable.

3. Results
3.1. GIE and Watershed Vulnerability

Approximately 34% of the study area (334,150 km2) is estimated to be at least mod-
erately vulnerable (Table 2), and 54% of watersheds (representing 53% of the study area)
are at least moderately vulnerable (Figure 3). Scaled estimates of adaptive capacity, ex-
posure, and sensitivity are presented in Figure 4. Approximately two thirds of HUC12
watersheds are predicted to contain highly suitable conditions for GIEs, and areas predicted
to be suitable for GIEs are relatively small (range: 0.2–1992 ha, mean = 2.4 ha, Standard
Deviation = 11.4; [36]). Highly vulnerable areas are also small and vary in size (range:
0.12–31,969 ha, mean = 3.6 ha, Standard Deviation = 68.9). Of the HUC 12 watersheds
predicted to contain highly suitable conditions for GIEs, 199 (representing 5% of total
watershed area) contain GIEs with moderate vulnerability. Only 0.6% of GIEs (0.6% of
total GIE area) are predicted to be highly vulnerable (Table 3) within 30 m of GIE edges.
Approximately 26% of pixels with high suitability for GIEs (representing 28% of total
GIE area) are within 30 m of land predicted to be at least moderately vulnerable. Areas
predicted to be suitable for GIEs and within 30 m of highly vulnerable pixels vary in size
(range: 0.8–394 ha, mean = 2.4 ha, Standard Deviation = 10.3) and generally are smaller

https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/protected-areas
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/protected-areas
https://www.fs.usda.gov/nac/buffers/guidelines/1_water_quality/15.html
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than the highly vulnerable areas around them (range: 0.1–1217 ha, mean = 52.3 ha, Standard
Deviation = 150.9). Of the 195,225 ha of area predicted to be suitable for GIEs that are within
30 m of moderately or highly vulnerable pixels, climate exposure and land-use practices
(Table 4) are important drivers of vulnerability. Most (98.5%) areas suitable for GIEs are
>200 m from large (≥10 ha) highly vulnerable areas of the landscape (Table 5).

Table 2. Total area (km2) and percentage of area of Hydrologic Unit Code 12 (HUC12) watersheds
(24–100 km2) in the study area (Figure 1) and their partitioning by vulnerability score. Groundwater-
influenced ecosystems (GIE).

Vulnerability
Categories Square Kilometers Percent of Ecoregion GIE Area (km2)

Percent of Total GIE
Area

0 ≤ value < 0.25 4836 1.5 1212 19.6
0.25 ≤ value < 0.50 203,236 63.2 4308 69.5
0.50 ≤ value ≤ 0.75 105,787 32.9 669 10.8

0.75 < value ≤ 1 7728 2.4 11 0.2

Number of HUC12
Watersheds Percent of Watersheds GIE Area (km2)

Percent of Total GIE
Area

0 ≤ value < 0.25 0.25 0.6 34.92 0.5
0.25 ≤ value < 0.50 19 44.5 5633 80.5
0.50 ≤ value ≤ 0.75 23 54.6 1329 19.0

0.75 < value ≤ 1 0.14 0.3 0 0.0

Table 3. Vulnerability scores within 30 m of areas predicted by [36] to be suitable for groundwater-
influenced ecosystem (GIE) occurrence in the northeastern United States study area (Figure 1).
Vulnerability score range estimates are cumulative (e.g., ≥0.50 indicates 0.50–1 totals). The conceptual
framework for estimating vulnerability [34] is provided in Figure 2.

Vulnerability Score GIEs Counts Percent of GIEs GIE Area (km2)
Percent of Total

GIE Area

<0.25 13,847 4.8 361 5
<0.50 196,795 67.9 5045 68.1
≥0.50 77,344 26.7 1952 26.4
≥0.75 1878 0.6 45 0.6

Table 4. Number and proportion of areas predicted to be suitable for groundwater-influenced
ecosystems (GIEs) [36] that are within ≤30 m of areas predicted to be vulnerable owing to sensitivity
(land use) and exposure (climate) in the study area (Figure 1). Vulnerability score range estimates
are cumulative (e.g., ≥0.50 indicates 0.50–1 totals). Variables combined to estimate sensitivity and
exposure components of vulnerability are indicated in Table 1. The conceptual framework for
vulnerability [34] is provided in Figure 2.

Number of GIEs
Exposure Exposure Sensitivity Sensitivity
≥0.50 ≥0.75 ≥0.50 ≥0.75

Exposure ≥0.50 31,563 - 5837 177
Exposure ≥0.75 - 774 185 3
Sensitivity ≥0.50 5837 185 14,419 -
Sensitivity ≥0.75 177 3 - 460

Percent of Vulnerable GIE area
Exposure Exposure Sensitivity Sensitivity
≥0.50 ≥0.75 ≥0.50 ≥0.75

Exposure ≥0.50 40.8 - 7.5 0.2
Exposure ≥0.75 - 1.0 0.2 <0.01
Sensitivity ≥0.50 7.5 0.2 18.6 -
Sensitivity ≥0.75 0.2 <0.01 - 0.6
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Table 5. Number and proportion of areas predicted to be suitable for groundwater-influenced
ecosystems (GIEs) [36] and occurrences within cumulative distance (m) bands around the GIEs
extending out of areas predicted to be highly vulnerable (score ≥ 0.75) to large patches (>10 ha) in
the study area (Figure 1). The conceptual framework for the vulnerability [34] score is provided in
Figure 2.

Distance Band
(m)

Number of GIEs in
Distance Band

Percent of
Total GIEs

GIE Area (km2) in
Distance Band

Percent of
GIE Area

<50 1628 0.6 56 0.8
<100 2581 0.9 78 1.1
<200 4049 1.5 109 1.6
<300 5243 1.9 127 1.8
<400 6277 2.3 139 2.0
<800 9599 3.5 177 2.5

3.2. State Scale

New York, Pennsylvania, and Maine contain the greatest total land area that is moder-
ately vulnerable (Figure 5; Table 6). Maine (64.7%), New York (46.2%), and New Hampshire
(28%) contain the largest proportions of moderate landscape vulnerability by state (Figure 5;
Table 6). The largest total area of watersheds that are at least moderately vulnerable are in
New York (911; 51% of state), Maine (831; 76%), and Pennsylvania (517; 32%). Watersheds
that are highly vulnerable (>0.75) occur in New York (14; 0.5% of state) and New Jersey
(2; 0.1% of state) (Figure 5; Table 7). Climate exposure is the greatest contributor to high
vulnerability of lands in Connecticut, and climate exposure and land-use practices are both
contributors to moderate and high vulnerability in Maine, Massachusetts, New Hampshire,
New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. (Figure 6; Table 8).
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Figure 5. Proportion of land area vulnerability predicted in 30 m pixels summarized by states in the
study area’s Environmental Protection Agency (EPA) Level II Ecoregions (Atlantic Highlands, Mixed
Woods) in the northeastern United States. EPA A Level III ecoregions in the study area are indicated
in Figure 1. Values used to create pie charts can be found in Table 6.
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Table 6. Area (km2) of land in vulnerability score ranges within the study region by state (Figure 1).
Vulnerability score range estimates are cumulative (e.g., ≥0.50 indicates 0.50–1 totals). The conceptual
framework for vulnerability [34] is provided in Figure 2.

Vulnerability Score <0.25 <0.25 <0.50 <0.50 ≥0.50 ≥0.50 ≥0.75 ≥0.75

State Area (km2) Percent of
State Area (km2) Percent of

State Area (km2) Percent of
State Area (km2) Percent of

State

Connecticut 1374 8.0 12,743 74.1 4104 23.9 143 0.8
Maine 46 0.0 39,941 33.8 76,437 64.7 2383 2.0

Massachusetts 1 2248 7.9 19,259 67.5 5995 21.0 46 0.2
New Hampshire 623 1.9 23,685 71.6 9271 28.0 49 0.2

New Jersey 1 107 0.4 2003 7.9 785 3.1 18 0.1
New York 1 2057 1.2 84,188 49.1 79,204 46.2 9316 5.4

Pennsylvania 1 291 0.2 14,427 9.3 42,737 27.6 3238 2.1
Rhode Island 586 16.2 2845 78.7 551 15.3 0.20 0.0

Vermont 2251 6.5 29,225 84.7 5101 14.8 15 0.0

Note(s): 1 Estimates are based on the area of the state within the study area.

Table 7. Area (km2) of HUC12 watersheds by vulnerability score range within the study region
of each state (Figure 1). Vulnerability score range estimates are cumulative (e.g., ≥0.50 indicates
0.50–1 totals). The conceptual framework for vulnerability [34] is provided in Figure 2.

Vulnerability
Score <0.25 <0.25 <0.25 <0.50 <0.50 <0.50 ≥0.50 ≥0.50 ≥0.50 ≥0.75 ≥0.75 ≥0.75

State Number of
Watersheds

Area
(km2)

Percent
of State

Number of
Watersheds

Area
(km2)

Percent
of State

Number of
Watersheds

Area
(km2)

Percent
of State

Number of
Watersheds

Area
(km2)

Percent
of State

Connecticut 0 0 0 154 14,049 81.7 30 2937 17.1 0 0 0
Maine 0 0 0 230 27,412 23.2 831 8998 76.1 0 0 0

Massachusetts 1 0 0 0 215 22,341 78.3 38 3176 11.1 0 0 0
New

Hampshire 0 0 0 299 29,221 88.4 44 3790 11.5 0 0 0

New Jersey 1 0 0 0 39 2161 8.5 17 749 2.9 2 24 0.1
New York 1 0 0 0 721 76,597 44.7 911 87,526 51.1 14 798 0.5

Pennsylvania 1 0 0 0 111 8049 5.2 517 49,456 31.9 0 0 0
Rhode Island 0 0 0 56 3319 91.8 2 187 5.2 0 0 0

Vermont 1 287 0.008 253 31,794 92.1 15 2711 7.9 0 0 0

Note(s): 1 Estimates are based on entire state area but the entirety of these states do not occur in the study area.

Table 8. Areas (km2) predicted to be highly vulnerable (≥0.75) owing to adaptive capacity, sensitivity
(land use) and exposure (climate) within the study region (Figure 1). Variables combined to estimate
adaptive capacity, sensitivity, and exposure are indicated in Table 1. The conceptual framework for
the vulnerability [34] score is provided in Figure 2. State abbreviations: Connecticut (CT), Maine
(ME), Massachusetts (MA), New Hampshire (NH), New Jersey (NJ), New York (NY), Pennsylvania
(PA), Rhode Island (RI), Vermont (VT).

km2

CT ME MA NH NJ NY PA RI VT

Exposure High 105 237 1 4 8 2025 454 0 0.02
Moderate 27 2096 41 42 10 7195 2738 0.2 15

Adaptive Capacity High 0.02 1 0.02 0.01 0.003 2 1 0 0
Moderate 1 28 0.4 1 0.1 86 30 0 0.3

Sensitivity High 6 10 7 2 0.5 32 7 0.1 1
Moderate 19 2146 31 38 10 7931 2976 0.01 13

Percent

Exposure High 73.3 10.0 2.0 7.4 42.5 21.7 14.0 0 0.1
Moderate 19.1 87.9 87.3 84.0 54.0 77.2 84.5 80.9 95.6

Adaptive Capacity High 0.01 0.02 0.03 0.02 0 0.02 0.03 0 0
Moderate 0.5 1.2 0.9 1.0 0.5 0.9 0.9 0.3 2.2

Sensitivity High 4.0 0.4 14.2 4.3 2.5 0.3 0.2 69.6 4.7
Moderate 13.4 90.0 66.4 75.1 56.6 85.1 91.9 6.4 86.0
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Figure 6. Proportion of the study area predicted to be highly vulnerable (≥0.75) owing to adaptive
capacity, sensitivity (indicated by land use), and exposure (indicated by climate) within the Protected
Areas Database for the United States (PAD-US), summarized by management type. High adaptive
capacity does not appear on any pie charts because estimates are low or are 0 for those categories
Management types: (1) managed for biodiversity—disturbance events proceed or are mimicked,
(2) managed for biodiversity—disturbance events suppressed, (3) managed for multiple uses—subject
to extractive (e.g., mining or logging) or OHV use, and (4) no known mandate for biodiversity
protection (PAD-US Source: https://www.sciencebase.gov/catalog/item/602ffe50d34eb1203115
c7ab). Values used to create pie charts can be found in Table 12. Variables combined to estimate
sensitivity and exposure are indicated in Table 1.

3.3. Vulnerability of Protected Areas

State-owned lands account for the most land area with moderate or high vulnerability
(Table 9). The majority (69%) of protected areas that are highly vulnerable have no man-
date for biodiversity conservation (category 4), and 25% are managed for multiple uses
(category 3; Table 10). Approximately 18% of the area predicted to be suitable for GIEs
occurs in lands mapped in the PAD-US database, with the most (6.8%) occurring in the
“managed for biodiversity with natural disturbance events suppressed” (category 2) and
“managed for multiple uses” (7.7%) conservation types (Table 11). Climate exposure and
land-use practices both contribute to high vulnerability in management categories 2, 3, and
4 (Figure 7; Table 12). For all land ownership types, vulnerability can be attributed to effects
of both land use and climate exposure (Figure 8; Table 13). The majority of GIE area that
has moderate or high vulnerability occurs within PAD-US protected areas in management
categories 3 and 4 (Table 11).

https://www.sciencebase.gov/catalog/item/602ffe50d34eb1203115c7ab
https://www.sciencebase.gov/catalog/item/602ffe50d34eb1203115c7ab
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Table 9. Distribution of landscape vulnerability scores calculated in 30 m pixels summarized by land
ownership type in the study area (Figure 1). Vulnerability score range estimates are cumulative (e.g.,
≥0.50 indicates 0.50–1 totals). The conceptual framework for the vulnerability [34] score is provided in
Figure 2. Ownership types are described in the Protected Areas Database for the United States (PAD-
US; https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/
protected-areas; accessed on 5 October 2022).

Vulnerability Score <0.25 <0.25 <0.50 <0.50 ≥0.50 ≥0.50 ≥0.75 ≥0.75

Ownership Type Area
(km2)

Percent of
Ownership

Type

Area
(km2)

Percent of
Ownership

Type

Area
(km2)

Percent of
Ownership

Type

Area
(km2)

Percent of
Ownership

Type

Federal 266 2.3 6835 59.3 4640 40.3 33 0.3
Joint 0.73 0.0 1001 25.7 2862 73.5 23 0.6

Non-Governmental Organization 244 4.0 3469 57.1 2510 42.3 10 0.2
Private 376 2.0 9280 49.7 9188 49.2 65 0.4

State 1027 2.1 30,236 60.7 19,269 38.7 86 0.2

Table 10. Distribution of landscape vulnerability scores calculated in 30 m pixels and summa-
rized by land management type in our study area (Figure 1). Vulnerability score ranges esti-
mates are cumulative (e.g., ≥0.50 indicates 0.50–1 totals). The conceptual framework for the
vulnerability [34] score is provided in Figure 2. Management types are described in the Pro-
tected Areas Database for the United States (PAD-US; https://www.usgs.gov/core-science-systems/
science-analytics-and-synthesis/gap/science/protected-areas; accessed on 5 October 2022) and in-
clude (1) managed for biodiversity—disturbance events proceed or are mimicked, (2) managed for
biodiversity—disturbance events suppressed, (3) managed for multiple uses—subject to extractive
(e.g., mining or logging) or OHV use, and (4) no known mandate for biodiversity protection.

Mean
Vulnerability
Score < 0.25

Mean
Vulnerability
Score < 0.50

Mean
Vulnerability
Score ≥ 0.50

Mean
Vulnerability
Score ≥ 0.75

Management Type Number of
Protected Areas

Number of
Protected Areas

Number of
Protected Areas

Number of
Protected Areas

Number of
Protected Areas

Biodiversity, disturbance (1) 1527 52 1152 303 1
Biodiversity, no disturbance (2) 9602 506 6906 2239 18

Multiple uses (3) 25,205 1432 18,874 5106 75
No mandate for biodiversity (4) 31,780 977 17,003 12,579 206

Total 68,114 2967 43,935 20,227 300

Proportion Proportion Proportion Proportion Proportion

Biodiversity, disturbance (1) 0.02 0.02 0.03 0.01 0.003
Biodiversity, no disturbance (2) 0.14 0.17 0.16 0.11 0.06

Multiple uses (3) 0.37 0.48 0.43 0.25 0.25
No mandate for biodiversity (4) 0.47 0.33 0.39 0.62 0.69

Table 11. Groundwater-influenced ecosystem (GIE) area within the moderate and high land-
scape vulnerability lands within the Protected Areas Database for the United States (PAD-US),
summarized by management type. Management types: (1) managed for biodiversity—natural
disturbance events proceed or are mimicked, (2) managed for biodiversity—disturbance events
are suppressed, (3) managed for multiple uses—subject to extractive (e.g., mining or logging) or
off-highway vehicle use, and (4) no known mandate for biodiversity protection (Source: https:
//www.sciencebase.gov/catalog/item/602ffe50d34eb1203115c7ab).

Moderate
Vulnerability

Moderate
Vulnerability

High
Vulnerability

High
Vulnerability

Management Type GIE Area Percent of Total
GIE Area GIE Area Percent of Total

GIE Area
Total GIE

Area
Percent of Total

GIE Area

Biodiversity, disturbance (1) 761 0.11 0 0 4611 0.7
Biodiversity, no disturbance (2) 1566 0.22 0 0 47,652 6.8

Multiple uses (3) 2305 0.33 1 <0.0001 53,536 7.7
No mandate for biodiversity (4) 1720 0.25 1 <0.0001 17,562 2.5

https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/protected-areas
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/protected-areas
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/protected-areas
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/protected-areas
https://www.sciencebase.gov/catalog/item/602ffe50d34eb1203115c7ab
https://www.sciencebase.gov/catalog/item/602ffe50d34eb1203115c7ab
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Figure 7. Proportion of land area predicted to be highly vulnerable (≥0.75) owing to adaptive
capacity, sensitivity (indicated by land use), and exposure (indicated by climate) within states in
Environmental Protection Agency (EPA) Level II Ecoregions (Atlantic Highlands, Mixed Woods) in
the northeastern United States. High adaptive capacity and High sensitivity do not appear on any pie
charts because estimates are low or are 0 for those categories. EPA Level III ecoregions in the study
area are indicated in Figure 1. Values used to create pie charts can be found in Table 8. Variables
combined to estimate sensitivity and exposure are indicated in Table 1.

Table 12. Variables contributing to highly vulnerable areas within the Protected Areas Database
for the United States (PAD-US), summarized by management type. Management types: (1) man-
aged for biodiversity—natural disturbance events proceed or are mimicked, (2) managed for
biodiversity—disturbance events are suppressed, (3) managed for multiple uses—subject to extrac-
tive (e.g., mining or logging) or off-highway vehicle use, and (4) no known mandate for biodiversity
protection (Source: https://www.sciencebase.gov/catalog/item/602ffe50d34eb1203115c7ab).

Percent
of Total

Percent
of Total

Percent
of Total

Percent
of Total Hectares Hectares Hectares Hectares

Management Type 1 2 3 4 1 2 3 4

High adaptive capacity 0 0.02 0 0.2 0 0.02 0 3
Moderate adaptive capacity 0 5.5 3.6 6.0 0 7 1 83

High sensitivity 0 0 0 0.13 0 0 0 2
Moderate sensitivity 76.7 50.6 44.2 94.4 8 64 11 1298

High exposure 91.2 72.1 96.7 71.3 9 91 23 980
Moderate exposure 0 32.2 7.4 55.1 0 40 2 757

https://www.sciencebase.gov/catalog/item/602ffe50d34eb1203115c7ab
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Figure 8. Proportion of the study area predicted to be highly vulnerable (≥0.75) owing to adaptive
capacity, sensitivity (indicated by land use), and exposure (indicated by climate) within the Pro-
tected Areas Database for the United States (PAD-US), summarized by land ownership type. High
adaptive capacity and High sensitivity do not appear on any pie charts because estimates are low
or are 0 for those categories. Ownership types are described in the Protected Areas Database for
the United States (PAD-US; https://www.usgs.gov/core-science-systems/science-analytics-and-
synthesis/gap/science/protected-areas). Non-Governmental Organization (NGO). Values used to
create pie charts can be found in Table 13. Variables combined to estimate sensitivity and exposure
are indicated in Table 1.

Table 13. Variables contributing to highly vulnerable areas by land ownership types in the
study area (Figure 1). The conceptual framework for the vulnerability [34] score is provided in
Figure 2. Ownership types are described in the Protected Areas Database for the United States (PAD-
US; https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/
protected-areas). Non-Governmental organization (NGO).

Hectares

Variables Federal Joint NGO Private State

High adaptive capacity 0 1 0 2 0
Moderate adaptive capacity 0 41 2 33 14

High sensitivity 0 0 0.3 0.4 1
Moderate sensitivity 0 453 53 784 90

High exposure 0.4 380 80 188 232
Moderate exposure 0 156 50 754 62

Percent of area

High adaptive capacity 0 0.2 0 0.2 0
Moderate adaptive capacity 0 8.2 2.3 4.1 5.5

High sensitivity 0 0.0 0.3 0.1 0.4
Moderate sensitivity 0 90.0 56.6 97.5 35.4

High exposure 21.9 75.5 84.6 23.4 91.7
Moderate exposure 0 30.9 53.2 93.8 24.5

https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/protected-areas
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/protected-areas
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/protected-areas
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/protected-areas
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3.4. Climatic Niche Models

The Maxent and GAM CNMs, which represent exposure in the vulnerability equation,
have large evaluation metrics for AUC, TSS, sensitivity, and specificity, but have small
Kappa statistics (Table 14). The Maxent CNM outperformed the GAM CNM (Table 14).
Precipitation in the warmest quarter, annual precipitation, precipitation in the driest month,
and mean temperature in the driest quarter are the most influential climatic variables in
the Maxent CNM (Table 15). Precipitation in the driest month, precipitation in the warmest
quarter, annual mean temperature, and mean temperature in the warmest quarter are the
most influential climatic variables in the GAM CNM (Table 15).

Table 14. Evaluation metrics for generalized additive model (GAM) and Maxent climatic niche
models. Abbreviations: area under the curve (AUC), true skill statistic (TSS), Cohen’s Kappa statistic
(Kappa).

Model AUC TSS Kappa Sensitivity Specificity

Maxent 0.77 0.39 0.18 0.69 0.77
GAM 0.76 0.4 0.17 0.68 0.76

Table 15. Pearson correlation and area under the curve (AUC) estimated relative variable importance
(percent) of climatic variables used to estimate generalized additive model (GAM) and Maxent
climatic niche models. Source data for the variables are provided in Table 1.

Maxent Maxent GAM GAM

Variables Pearson Correlation AUC Pearson Correlation AUC

Annual ET 1 12.5 5.2 10.9 4.6
Growing Season ET 1 2.2 0.8 5.6 2.7

Annual PET 2 24.3 8.6 21.8 10.5
Snow–water equivalency 24.6 11.3 12.4 5.8

Annual mean temperature 15.8 9.3 76.3 34.9
Isothermality 12.2 5.1 6.8 3.3

Mean temperature of driest quarter 30.2 16.4 49.0 18.6
Mean temperature of warmest quarter 7.9 3.9 53.5 27.3

Annual precipitation 52.7 25.3 64.3 30.0
Precipitation of driest month 49.8 22.6 81.7 38.2

Precipitation of warmest quarter 74.7 35.4 81.0 38.8

Note(s): 1 ET (evapotranspiration). 2 PET (potential evapotranspiration).

3.5. Discussion

Landscape vulnerability estimates revealed that nearly a third of the study area was
predicted to have at least moderate vulnerability, and nearly 11% of the area predicted to
be suitable for GIEs in the study area was predicted to be at least moderately vulnerable.
GIEs receive water from direct precipitation, as well as overland and subsurface flows,
and the quantity, timing, and quality of these flows can be affected by conditions in the
landscape surrounding the GIE [19,25]. Conservation measures, such as riparian buffers to
protect stream water quality, may be an effective approach for protecting resources that
are important for GIEs, particularly if the size of the buffer reflects the conditions in the
landscape surrounding a GIE [61,62]. However, the length of the groundwater flow path
from the GIE to upslope areas can vary, and conservation buffers that do not account for
that variation may not meet ecological requirements for all GIEs. Varying buffer sizes to
reflect landscape conditions around focal ecosystems has precedence in best management
practices to protect water quality for wetland and riparian conservation [61,62].

The contrast between pixel vulnerability and vulnerability summarized at the HUC12
watershed scale illuminates how scale can influence our understanding about how aquatic
resources may be affected by environmental conditions in the surrounding landscape [63–66].
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Approximately 770,000 ha of land area (2.4%) in the study region was predicted to be
highly vulnerable at the pixel scale. However, when scaled to the watershed, only 0.3%
of the watersheds were predicted to be highly vulnerable. Additionally, 26% of GIEs
had moderately vulnerable pixels within 30 m, but 19% of GIEs occurred in watersheds
that were moderately vulnerable. Less than 1% of the study area’s moderately or highly
vulnerable HUC12 watersheds contained GIEs, and only 1.6% of GIEs occurred near (<200
m) large patches of highly vulnerable areas.

The northeast is warming faster than any other region in the continental United
States [67] and continued increases in average annual air temperature and shifts in precipi-
tation patterns could contribute to increased vulnerability of the region’s GIEs to climate
exposure. Predicted changes in precipitation amount and frequency that affect water cy-
cling, coupled with longer and warmer growing seasons, could alter the contribution of
groundwater discharge to the region’s GIEs. Exposure, represented by climate, was the
most important variable in Maine’s highly vulnerable watersheds. Since 1900, Maine’s aver-
age annual air temperature has increased 1.9 ◦C, and the length of growing seasons also has
increased by 14 days [68], which may contribute to the estimated greater climate exposure.
Nearly half (40%) of the moderately vulnerable GIEs were located within 30 m of areas
predicted to be vulnerable to climate exposure. The northeastern United States is projected
to have shorter, warmer winters [69]; increases in extreme precipitation and timing between
rain events [70]; and longer, warmer growing seasons [70,71]. These projected changes in
climate could alter the magnitude and timing of the spring freshet, increase evapotranspira-
tion, increase runoff, and reduce infiltration. Our climatic niche model, which represented
exposure, indicated that precipitation in the warmest quarter, annual precipitation, and
precipitation in the driest month were the most influential climatic variables affecting
suitability of areas in the landscape for GIE occurrence. Precipitation patterns that decrease
warm-season (i.e., growing season) precipitation and increase cool-season (fall or winter)
precipitation have been observed to increase groundwater temperatures [72]. Predicted
increases in precipitation intensity can also lead to more surface run-off and, thus, alter the
location and amount of groundwater recharge [73]. Changes in precipitation timing and
frequency could play a large role in increasing climate exposure of GIEs in the Northeast.

Land-use-induced sensitivity contributed to highly vulnerable areas in nearly 1% of
GIEs. Highly vulnerable areas in more than half of the states in the region were sensitive
owing to land-use practices. Land-use practices can affect GIEs by lowering groundwater
levels through groundwater extraction in watersheds [19,21]. The high vulnerability of
watersheds in New York (5%) can be attributed primarily to sensitivity variables associated
with land use. Urban development and agricultural land uses have been observed to reduce
groundwater recharge, which has led to altered hydrological dynamics in the region [74].
Conversion to developed or agricultural land-use types could alter the amount and location
of groundwater recharge, which may affect GIEs in the region. Additionally, land use may
restrict the adaptive capacity of the region’s GIEs to respond to effects of the changing
climate on groundwater.

Effects of climate and land use can be both additive and synergistic [75]. For example,
agriculture is a leading cause of aquatic ecosystem impairment in the United States due
to excessive nutrients in surface water runoff [76]. Additionally, prolonged periods of
drought can lead to increased groundwater extraction for agriculture [22]. A combination
of moderate climate exposure and moderate sensitivity to land-use practices contributed
to high vulnerability scores of watersheds in our study area, where 14% of the land area
is agriculture and 23% is developed lands. Land use and climate change have been
observed to act synergistically to inhibit water retention [77], reduce water yield in river
basins [78], and alter water cycles across landscapes [79], which could pose threats to GIEs
and their persistence.

Land in the protected areas database that was highly vulnerable was at risk primarily
owing to climate exposure, similar to the observations of [34], where climate exposure
was the main contributing factor to vulnerability in approximately half of the National
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Wildlife Refuges across the United States. Private and jointly owned lands that contained
highly vulnerable areas were primarily attributable to high sensitivity caused by land-
use practices. The majority of these lands in our study area also had a no mandate for
biodiversity conservation practice designation. In addition, the majority (62%) of the
study area’s protected lands in the PADUS database classified as being moderately or
highly vulnerable had no protection conservation designation (level 4), which may indicate
that groundwater ecosystems in these areas (2.5% of total GIEs) may not be managed
for conservation.

Landscape management of GIEs may be challenging, owing to the unique potential
threats from watershed activities and ecological requirements of individual GIEs [14]. An
adaptive management framework to conserve GIEs could address these challenges. As new
information is acquired, an adaptive management approach provides an iterative process
that allows uncertainties in cause and effect and ecological responses to be considered and
addressed [14,80]. This iterative approach could provide opportunities to incorporate new
spatial data in the vulnerability analysis to revise or update results. Land management
of vulnerable landscapes and GIE conservation practices have largely been conducted in
state-owned or federally owned landscapes where practitioners develop and apply land
management actions [81]. Increasing demand for public drinking water and irrigation has
led to widespread groundwater over-extraction and contamination [21,23], affecting human
health and ecological services [82,83]. Few management practices can directly moderate
variables contributing to exposure, such as increases in average annual temperatures and
the seasonality of precipitation. However, reducing groundwater extraction by modifying
agriculture irrigation practices and creating more sustainable municipal water-use practices
can directly benefit GIEs [22]. Examples of potential management practices that could
help maintain or improve GIE persistence and integrity in the landscape include: reducing
the use of pesticides in agricultural lands to improve water quality [21], prioritizing the
acquisition of lands with high geodiversity [84] and adaptive capacity [1] to enhance
resilience, mitigate disturbances to natural recharge areas to maintain water quantities, and
restoration management practices that directly restore degraded GIEs and watersheds.

Our approach to modeling GIE vulnerability is a hypothesis- and data-driven frame-
work that explores the contributions of climate exposure, sensitivity caused by land use,
and the adaptive capacity of the landscape on GIEs. The methods used are replicable
and easily interpreted and can be applied in a wide range of geographic regions and for
various ecosystem types. Despite these strengths, our approach is not encompassing of all
the potential threats to GIEs in the Northeast. With the high human population density
of the northeastern United States, spatial data on groundwater extraction rates could be
an important contributing parameter to GIE vulnerability. Likewise, groundwater con-
tamination is also a global problem that has a significant impact on human health and
ecological services not included explicitly here [82,83] and that could have negative impacts
on GIE vulnerability. Our results provide insight into vulnerable watersheds and sites,
however we did not quantify the potential impacts of highly vulnerable upstream areas or
watersheds on downstream locations, which may underestimate the vulnerability of those
locations. To date, no such spatial data exist for the Northeast that describe the full extent of
groundwater extraction and contamination. The vulnerability of GIEs in the northeastern
U.S. to groundwater extraction and contamination due to increasing population demands
and irrigation for agriculture is an area for future research. Temporal scales could also be
included in assessing the vulnerability of GIEs in the Northeast, as climate factors have been
observed to have significant seasonal characteristics [85] that could drive climate exposure.

Understanding the effects of climate change and anthropogenic disturbances on ecosys-
tems has accelerated the development of methods to assess the ability of a system to cope
with change [34,86–88]. Our analysis of landscape, watershed, and GIE vulnerability in the
northeastern U.S. reveals contributing factors to vulnerability for individual sites, which
could inform the conservation and prioritization of these systems. Our analysis indicates
that the majority of GIEs in the region do not occur in currently vulnerable areas. However,
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those that are highly vulnerable are mainly vulnerable to climate exposure. This presents
a challenge to maintaining the integrity and persistence of these GIEs in the northeast-
ern United States, as climate change effects are projected to increase in the region and in
landscapes across the world [67].
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