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Abstract: The availability of water is crucial for the growth and sustainability of human development.
The effective management of water resources is essential due to their renewable nature and their
critical role in ensuring food security and water safety. In this study, the multi-step-ahead modeling
approach of the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage (TWS)
was utilized to gain insights into and forecast the fluctuations in water resources within Saudi Arabia.
This study was conducted using mascon solutions obtained from the University of Texas Center for
Space Research (UT-CSR) over the period of 2007 to 2017. The data were used in the development of
artificial intelligence models, namely, an Elman neural network (ENN), a backpropagation neural
network (BPNN), and kernel support vector regression (k-SVR). These models were constructed
using various input variables, such as t-12, t-24, t-36, t-48, and TWS, with the output variable being
the focus. A simple and weighted average ensemble was introduced to improve the accuracy of
marginal and weak predictive results. The performance of the models was assessed with the use of
several evaluation metrics, including mean absolute error (MAE), root mean square error (RMSE),
mean absolute percentage error (MAPE), correlation coefficient (CC), and Nash–Sutcliffe efficiency
(NSE). The results of the estimate indicate that k-SVR-M1 (NSE = 0.993, MAE = 0.0346) produced
favorable outcomes, whereas ENN-M3 (NSE = 0.6586, MAE = 0.6895) emerged as the second most
effective model. The combinations of all other models exhibited accuracies ranging from excellent
to marginal, rendering them unreliable for decision-making purposes. Error ensemble methods
improved the standalone model and proved merit. The results also serve as an important tool for
monitoring changes in global water resources, aiding in drought management, and understanding
the Earth’s water cycle.
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1. Introduction

The growth and sustainability of human development are reliant on the availability
of water resources [1,2] and social development [3]. Water can be considered an essential
resource to supply industrial, domestic, and agricultural demands. The effective man-
agement of water resources is vital due to their renewable nature and their crucial role
in ensuring food security and water availability. The demand for water supply is seeing
a sustained increase due to a variety of variables and effective management practices,
hence necessitating long-term planning and provision [4–6]. The sustainability of water
resources is now facing significant challenges in several regions worldwide due to saliniza-
tion, pollution, and groundwater depletion. These issues are widely recognized as global
concerns. The water storage balance may be impacted by unpredictable fluctuations in
natural elements, such as global surface temperature, evapotranspiration, and rainfall,
potentially leading to shortages, floods, and other adverse events [7]. This necessitates
the development of accurate systems for monitoring changes in water storage. Traditional
approaches, such as large-scale monitoring networks, need a significant amount of human
and material resources to monitor water resources developments [8,9]. As a result, various
initiatives have been undertaken in recent years to better the spatiotemporal aspects of
water resources changes, such as hydrological modeling and satellite remote sensing [3].

In artificial intelligence (AI) modeling and forecasting, various machine learning (ML)
techniques are applied to analyze, predict, and develop algorithm processes [10–12]. The
commonly used machine learning techniques in hydrological modeling and forecasting
involve supervised learning techniques, time-series analyses, ensemble learning, hybrid
models, deep learning techniques, fuzzy logic, etc. For instance, one study investigated
the local learning approach applied in the dynamic and evolving neuro-fuzzy inference
system (DENFIS) for water level forecasting in the Mekong River. By comparing the
results obtained from DENFIS with the results obtained from the adaptive neuro-fuzzy
inference system (ANFIS) and the unified river basin simulator model, it was found
that DENFIS performed better than ANFIS and the unified river basin simulator model,
highlighting the potential of neuro-fuzzy models for river level forecasting and the ad-
vantages of local learning approaches for self-adapting models in response to changing
hydrological conditions [13].

Accompanying present monitoring networks and modeling studies can be carried
out using satellite-based observation, which recompenses the gaps in temporal and spatial
coverage [6,14]. The Gravity Recovery and Climate Experiment (GRACE) mission, launched
in 2002, consisted of a pair of identical satellites that represent a collaborative effort between
the National Aeronautics and Space Administration (NASA) and the Deutschen Zentrum
für Luftund Raumfahrt (DLR). Its primary objective is to observe and document the spatial
and temporal variations in global terrestrial water storage (TWS), thereby contributing to
the progress of hydrological science [4,5,15,16]. In principle, GRACE measures the monthly
changes in the Earth’s gravity field related to variations in TWS over the Earth’s surface
using a microwave ranging system. This system was designed to precisely measure the
distance between two satellites due to changes in mass concentration before converting
them into variations in the Earth’s gravity field. Time variable gravity solutions have
been provided by different processing centers, such as the Center for Space Research at
University of Texas, Austin (CSR); the Jet Propulsion Laboratory (JPL), and the German
Research Centre for Geosciences (GFZ). On land, TWS is interpreted as the sum of water
stored on and below the Earth’s surface, including canopy water, soil moisture, surface
water, snow water, and groundwater [17].

GRACE’s capability to accurately estimate mass changes associated with water re-
sources has been highlighted by several studies, proven by their agreement with in situ
measurements [18,19]. In this context, the GRACE dataset has proven valuable in fore-
casting studies across different regions [20–23]. Continuous and uninterrupted time-series
records are crucial to prevent errors in amplitude and distortions in statistical analy-
ses [24,25]. However, the current GRACE dataset is affected by temporal gaps due to
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battery performance. To address this issue, various techniques have been applied, includ-
ing simple interpolation and data assimilation methods. In recent times, the use of artificial
intelligence (AI) and machine learning (ML) has shown potential in enhancing the precision
and efficiency of modeling changes in water supplies via the analysis of GRACE satellite
data [3,26–29]. Different models have been employed, including ANN, fuzzy logic, and
hybrid learning [30]. The use of AI-based methods to model GRACE TWS has several
advantages. Firstly, AI can process large amounts of complex data faster than traditional
modeling methods, allowing for more efficient and accurate predictions.

Additionally, AI can identify patterns and correlations within data that may be missed
by traditional modeling methods, leading to improved understanding and insights. Further-
more, AI models can adapt and improve over time, incorporating new data and feedback,
making them ideal for real-time monitoring and decision making. Generally, AI can pro-
vide more accurate, efficient, and adaptive models of GRACE TWS, leading to a better
management of water resources, a more effective monitoring of natural hazards, and an
improved understanding of climate change impacts [4,31–33]. Therefore, the primary
objective of this research is to use several multi-step multi-station machine learning meth-
ods, such as the Elman neural network (ENN), backpropagation neural network (BPNN),
and support vector regression (SVR), in order to predict GRACE TWS in Saudi Arabia.
This is achieved by considering different combinations of input variables. The selection
of ENN, BP-ANN, and kernel support vector regression (k-SVR) is well founded due to
their proven capabilities in time-series forecasting, which is crucial for analyzing GRACE
data on TWS. ENN and BP-ANN are adept at capturing temporal dynamics and complex
nonlinear relationships in time-series data, while k-SVR’s strength lies in its high accuracy
and ability to handle high-dimensional data. These models are suitable for this study’s
objectives due to their robustness in prediction tasks, efficiency in processing large datasets,
and adaptability to incorporate new data and feedback. Furthermore, the integration of
these models in an ensemble approach allows for comprehensive and improved predictive
accuracy, aligning well with this study’s aim of precisely forecasting water storage fluc-
tuations in Saudi Arabia, thereby supporting effective water resource management and
environmental monitoring. The novelty of this study is captured in its groundbreaking
integration of advanced AI models (ENN, BP-ANN, and k-SVR) with GRACE satellite data
for forecasting TWS, emphasizing multi-step-ahead forecasting. This approach represents
a significant advancement in hydrological forecasting, particularly in addressing the chal-
lenges of water resource management in arid regions like Saudi Arabia. The innovative
use of ensemble methods enhances predictive accuracy, setting a new benchmark in model
performance assessment with comprehensive metrics. This study’s region-specific focus
contributes to a more targeted approach to managing water resources, directly supporting
Sustainable Development Goals (SDGs) related to water security. This work stands out for
its application of sophisticated AI techniques in environmental monitoring and its potential
impact on sustainable resource management.

2. Materials and Methods
2.1. Data Description and Proposed Method

In this section, there are two different scenarios, namely, an experimental field ap-
proach and a data-driven approach. The first component encompasses the process of
acquiring data, while the latter component entails the use of various ML algorithms. This
serves as the primary incentive for conducting this research. The current investigation
considered both domain-specific knowledge and data-driven techniques to ensure a gen-
eral approach, for instance, (i) prioritizing input variables based on their impact on target
hydrological processes, (ii) exploring methods such as a principal component analysis or
recursive feature elimination to reduce dimensionality, and (iii) investigating hybrid models
that combine expert knowledge with ML techniques to enhance input selection. One study
suggested employing the Haugh and Box method alongside a novel neural-network-based
approach for the identification of inputs in multivariate artificial neural network mod-
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els. Both methodologies were applied to extract inputs for a multivariate BPNN model
utilized in the prediction of salinity levels in the River Murray at Murray Bridge, South
Australia [34]. However, herein, the research used a multi-step-ahead modeling approach
to analyze the mascons solution of GRACE TWS data collected from the University of Texas
Center for Space Research (UT-CSR). This research used GRACE TWS data spanning from
2007 to 2017, specifically focusing on Saudi Arabia. Multi-station modeling was generated
using ENN, SVR, and BPNN models. The models were improved using ensemble error
averaging. The flowchart shown in Figure 1 illustrates the whole process. 
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Figure 1. Proposed flowchart used in this study.

2.2. Neural Network Models

The Elman neural network (ENN) was introduced by Elman in the year 1990. The
described model may be classified as a recurrent neural network (RNN) that incorporates
many interconnected neurons. It is built upon the foundational structure of a backprop-
agation neural network (BPNN), with the addition of an extra layer in the hidden layer.
This additional layer functions as a one-step delay operator, enabling the network to retain
and use memory. The predominant network topologies often seen in neural networks
include FFNNs (feedforward neural networks), FBNNs (feedback neural networks), and
self-organizing neural networks. These topologies are determined by the interconnections
between neurons inside the network [35]. The feedback network facilitates the bidirec-
tional transmission of information, allowing for simultaneous communication in both the
forward and backward directions. The feedback derived from this data might involve
neurons distributed across numerous network levels or may just pertain to neurons within
a single layer [36,37]. The backpropagation neural network (BPNN) is well recognized as a
multilayer feedforward neural network with exceptional generalization capabilities and
robust nonlinear mapping characteristics.

During the training process, the weight in the network is influenced by both the
forward propagation of information and the backpropagation of mistakes. To ensure that
the anticipated output of the BP neural network consistently approaches the intended
output, the assessment and onset are adjusted. The Elman network’s hierarchical model
generally has four levels. The input layer, consisting of mostly linear neurons, facilitates
the transmission of signals to the hidden layer. In the hidden layer, these signals undergo
expansion or translation using an activation function. The subsequent layer, known as
the context layer, operates as a one-step delay operator and can retrieve the previous
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instantaneous values of the output from the hidden layer. Moreover, this layer has a
feedback mechanism. In conclusion, the output layer is responsible for generating the
results or findings [36,38,39]. More details on ENN can be found in [40,41]. A schematic
representation of ENN’s structure is shown in Figure 2.
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Figure 2. The structure of ENN.

FF-BPNN is a top upfront kind of ANN algorithm and the most often used neural
network (NN) in the literature. Multilayer perceptron (MLP) or simply neural networks
are other names for FFNN. When the variables are neither sequential nor time-dependent,
FFNN is typically used. FFNN, a mathematical model, is designed to effectively capture the
intricate relationships between input and output sets of nonlinear datasets [42]. In the past,
ANN utilized neurons to function like a biological brain nervous system. Various design
problems are commonly addressed using FFNN with backpropagation (BP) calculation [43].
A diagram of FFNN is presented in Figure 3, and it consists of three layers. The input
layer of a neural network consists of a fixed number of neurons, which corresponds to
the number of features in the dataset. The input layer receives information on the inputs,
which is then sent to the second layer. To propagate the input information to the output
layer, the intermediate layer, positioned between the 59 input and output layers, consists
of several neurons. The weight of each neuron in the hidden layer is indicative of the
magnitude of the interconnections between two neurons. The output layer represents the
desired outcome or objective of the issue that we seek to predict [44].
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Figure 3. The structure of BPNN.
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2.3. Kernel Support Vector Regression (kSVR)

k-SVR was introduced by [45]. SVR, as presented in Figure 4, is an example of a data-
driven learning machine; it is a method of problem solving that combines classification,
regression analysis, forecasting, and pattern recognition. Support vector regression (SVR)
and artificial neural network (ANN) methods exhibit contrasting characteristics in terms
of reduced error and complexity, as well as enhanced performance, while benefiting from
both structural risk reduction and numerical learning theory [46,47]. SVR models are
separated into two categories: linear and nonlinear [47–49]. In the layer-based support
vector regression (SVR) model, the input parameter is weighted by the kernel function, and
the resulting kernel outputs are merged using a function-weighted sum. The data were
originally subjected to a linear regression model in order to use the support vector machine.
Following this, a nonlinear kernel was used to accurately capture the nonlinear properties
present in the data. One advantage of the support vector machine (SVM) technique lies in
the use of the regularization parameter in contrast to neural networks, which are primarily
focused on local optimization, and the support vector machine (SVM) method has the
benefit of being characterized as a convex optimization issue. Additionally, it offers an
estimate of the upper limit of the test error rate [50]. Further information on SVM is
available in [47,48].
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Figure 4. Schematic diagram of k-SVM algorithms.

2.4. Ensemble Averaging Methods

Ensemble averaging in modeling refers to a technique used to improve the accuracy
and robustness of predictive models, particularly in fields like statistics, machine learning,
and computational science. The concept is based on the principle that combining multiple
models can often yield better results than any single model alone. It is quite clear that
standalone ML models attain different predictive abilities and skills with the same or
different input combinations based on the powerful nature of the individual models. In
most cases, employing an ensemble averaging approach (Figure 5) reduces the limitation of
other input combinations and increases the accuracy of the models despite increasing the
computational burden [51]. In time-series analyses, ensemble averaging has been applied
by several researchers, and its superiority over single models has been reported. This work
proposes simple and weighted averaging on standalone models. The techniques of simple
averaging are generated using the predicted model combination of the individual model,
while weighted averaging considers the relative significance of each predictive instance,
and weights are assigned to each as stated in Equation (1):

TWS(t) = ∑N
i=1 wiTWS(t)i (1)
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where wi is the assigned weight on the output of the ith model, TWS(t) is the ensemble
output, and TWSi(t) is the output of the ith single model.
Furthermore, wi can be computed as follows:

wi =
NSEi

∑N
i NSEi

(2)

where NSEi is the Nash–Sutcliffe coefficient for the ith model.
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Figure 5. Averaging techniques used in this study.

2.5. Performance Criteria

The criteria of the models can be measured by observing differences in statistical
performance, allowing for a clear picture of the predictive accuracy, error, and bias of
the models to be presented [52]. It is worth mentioning that the determination of these
indicators was coupled with two-dimensional visualization diagrams and other spatial
measures, including the root mean square error (RMSE). The reason for employing dif-
ferent indicators was based on the conclusion of efficiency performance criteria. Addi-
tional criteria used in this investigation include MAE (mean absolute error), RMSE (root
mean square error), MAPE (mean absolute percentage error), NSE (Nash–Sutcliffe effi-
ciency), PBIAS (percent bias), and CC (correlation coefficient), which have been used in
previous studies [53–56].

MAE =
∑N

i=1

∣∣∣TWS(p) − TWS (o)

∣∣∣
N

(3)

CC =
∑N

i=1

[
TWS (t),i − TWS (t)

][
ˆTWS (t),i −

∼
TWS (t)

]
√

∑N
i=1

[
TWS (t),i − TWS (t)

]2
[

ˆTWS (t),i −
∼

TWS (t)

]2
(4)

PBIAS =
∑N

i=1

(
TWS (o) − TWS (p)

)
∑N

i=1 TWS (p)
(5)

NSE = 1 −
∑N

i=1

(
TWS (p) − TWS (o)

)2

∑N
i=1

(
TWS (p) − TWS′

(o)

)2 (6)

RMSE =

√
1
N ∑N

i=1

(
TWS (p) − TWS (o)

)2
(7)

MAPE =
100
n ∑N

i=1

∣∣∣∣∣TWS (o) − TWS (p)

TWS (o)

∣∣∣∣∣ (8)
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where TWS(p)i is the predicted value of TWS, TWS(o)i is the observed value of TWS, N is

the total number of observations, TWS (t) is the mean of the predicted values, and
∼

TWS (t)
is the mean of the observed value.

In this study, constructing AI, specifically ENN, k-SVR, and BP-ANN, involves making
critical decisions on various parameters and hyperparameters. For k-SVR, the choice of the
kernel function, such as linear, polynomial, radial basis function (RBF), or sigmoid, and
hyperparameters, like penalty parameter C and kernel-specific parameters, are essential,
typically determined through a grid search and cross-validation; hence, RBFs are used. In
BP-ANN, factors like the type of activation function (sigmoid, tanh, ReLU, etc.), the number
of hidden layers and neurons, and parameters like the learning rate and optimization algo-
rithm (e.g., SGD or Adam) are pivotal. ENN, a recurrent neural network, requires careful
consideration of its architecture, including the number of hidden layers, neurons, and
context layer parameters, to effectively capture temporal dynamics. The determination of
these parameters is achieved through a combination of empirical testing, domain expertise,
and validation techniques like k-fold cross-validation, ensuring that the models are robust
and suitable for accurately forecasting terrestrial water storage variations in Saudi Arabia.

3. Study Locations

Due to climate change and a high rate of unsustainable water withdrawal, the Arabian
Basin has been among the most stressed basins in the world during the last few decades [57,58].
The basin encompasses many states in the Middle East, including Jordan, Saudi Arabia,
Kuwait, Bahrain, Iraq, Qatar, the United Arab Emirates, Yemen, and Oman. The largest
part of the basin lies within Saudi Arabia, comprising over half of the nation. This huge
sedimentary basin contains thick and high-yielding aquifers [59], including Saq, Qassim,
Minjur and Dhruma, Wasia-Biyadh, Umm Er Radhuma, Dammam, and Neogene as primary
aquifers and Khuff, Sakaka, Jauf, Jilh, and Aruma as secondary aquifers. Consequently,
most agricultural practices in Saudi Arabia are situated within this basin. The selection
of this basin as the research region was based on the aforementioned considerations. The
basin itself encompasses the Saudi Arabian areas of Tabuk, Jouf, Hail, Qassim, Riyadh, the
Northern Borders, and the Eastern Province (see Figure 6).
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Figure 6. Geological map and aquifers of the Arabian Peninsula, (a) geological map modified
from [60], (b) principal aquifers for groundwater in Saudi Arabia [61].

4. Results

AI-based models are constructed by discerning intricate nonlinear patterns within
empirical data and learning interactions. The approaches are also effective without the use
of complicated judgment calls or pre-made regression equations. A regression problem
was used to model and anticipate TWS utilizing a variety of input factors. For model
development, 70% (26,427) and 30% (11,326) were used for calibration and verification
phases, respectively. Data on TWS were used to create the AI-based models (k-SVR, ENN,
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and BPNN) used in the analysis. The research incorporated t-12, t-24, t-36, t-48, and TWS
as the outcome variables among the input variables. The data went through several pre-
processing procedures, such as scaling, data normalization, and data partitioning, before
being used in the modeling operation. In addition, normalization of the input and target
was performed. Table 1 presents the descriptive statistics and essential facts pertaining to
the employment of the different AI-based modeling techniques. Additionally, descriptive
statistics provide a way to summarize and describe a large set of data in a meaningful
and concise way. They can allow for a better understanding of the data by providing
measures of central tendency (mean, median, and mode) and measures of variability
(standard deviation and range). Figure 7 also provides a simple interpretation that can be
accessible to communicate key information about a dataset to a wider audience, including
stakeholders, managers, and decision makers.

Table 1. Statistical analysis of the relationship between input and output components.

Input Variables t-12 t-24 t-36 t-48

Mean −2.8277 −3.3221 −3.8622 −4.4879
Median −2.3357 −2.7804 −3.344 −3.934

Standard Deviation 2.32164 2.43283 2.59588 2.93531
Kurtosis 1.09337 0.37475 0.78005 4.14015

Skewness −1.0135 −0.8047 −0.7754 −1.2513
Minimum −14.028 −14.028 −20.36 −28.278
Maximum 4.565 4.565 4.565 4.565
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Figure 7. Visualization of the step-ahead parameters.

It can be important to identify outliers, as they may indicate errors in the data collection
process, or they may represent important data points that need further investigation.
Overall, descriptive statistics can provide valuable insights into a dataset, and they can
help researchers and analysts to communicate the results of their analyses to others in a
clear and concise manner. Figure 8 illustrates the examination of the target variable using a
correlation matrix, which was used to carry out a conventional sensitivity analysis aimed
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at identifying the input combinations that are both prevalent and impactful. The matrix is
tasked with analyzing the fundamental signals of correlation within a group of variables
and ascertaining the nature of the linear connection that exists among them. Positive
correlation values indicate inverse associations between two variables, whereas negative
correlation values suggest the presence of stationary and statistically significant variables
with a probability lower than 0.05 (p < 0.05).
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Figure 8. Matrix showing correlations for the TWS modeling parameters.

Results of AI-Based Models

The performance assessment results analyzed in this research are shown in Table 2, as
per the prediction models. The statistical indices, namely, NS, CC, PBIAS, MAE, RMSE, and
MAPE, are used to assess the predictive accuracy of the offered models. Note that all the
units of MAE and RMSE for TWS are in mm/yr. These indices are considered suitable for
evaluating the efficacy of the models, since they take into consideration both the mistakes
and the prerequisites for a successful fit. Based on the results shown in Table 2, it can be seen
that almost all of the combinations meet the statistical criteria for accuracy across all three
levels of the models (M1, M2, and M3). Based on the findings, these methodologies show
their efficacy in managing models characterized by a substantial quantity of independent
variables, reducing the error function, addressing challenges related to data fitting, and
establishing themselves as widely accepted approaches for highly turbulent nonlinear
scenarios. More than half of the models demonstrate clear adherence to the statistical
criteria for accuracy, with a coefficient of correlation (CC) value of up to 0.8. The obtained
k-SVR-M1 model combination meets the requirements. ENN-M2 and ENN-M3, out of the
ENN models, meet the requirements. BPNN-M2, and BPNN-M3, out of the BPNN models,
meet the requirements. The KSVR-M1 model has superior performance in predicting TWS,
as shown by its high correlation coefficient (CC) of 0.9997 and the lowest root mean square
error (RMSE) of 0.0432 seen during both the calibration and verification phases of the
model. The findings indicate that these approaches are effective in handling models with
several independent variables, minimizing the error function, and addressing data fitting
challenges and that they have evolved into a technique that can be widely used for highly
unpredictable nonlinear situations.

The models SVR-M1, ENN-M3, and BPNN-M3 demonstrate a high level of concor-
dance between the projected and actual values, as shown in Figure 9. The combination
of SVR-M1, as shown in Table 2, exhibits the most favorable performance assessment
measures, with a correlation coefficient (CC) of 0.9997 and 0.9998 in the calibration and
verification stages, respectively. These results are valuable for assessing the strong agree-
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ment between the observed and projected total water storage (TWS) values [46,62]. The
impressive performance of k-SVR may be attributed to the use of a robust and adaptable
machine learning algorithm capable of effectively addressing both classification and regres-
sion objectives. Other advantages of k-SVR over the other models include the following: it
is effective in high-dimensional spaces, is robust to outliers, works well with small datasets,
provides good generalization performance, and is efficient to train. In general, k-SVR is a
popular choice for many machine learning tasks due to its flexibility, accuracy, and ability
to handle complex data.

Table 2. Results of AI models based on SVR, ENN, and BPNN.

Models
Calibration Phase Verification Phase

NS CC PBIAS MAE RMSE MAPE NS CC PBIAS MAE RMSE MAPE

SVR-M1 0.9993 0.9997 -0.0204 0.0346 0.0432 15.5646 0.9996 0.9998 −0.0041 0.0349 0.0467 2.3691
SVR-M2 0.5948 0.7712 −0.1481 0.7044 0.9852 266.5284 0.4464 0.6681 0.2167 1.0591 1.4949 45.9196
SVR-M3 0.5949 0.7713 −0.1447 0.7024 0.9825 264.8380 0.4422 0.6650 0.2207 1.0635 1.5012 45.9486
ENN-M1 0.6187 0.7866 −0.1423 0.7351 1.0070 231.6849 0.4270 0.6535 0.1844 1.1017 1.5188 52.0277
ENN-M2 0.6479 0.8049 −0.1350 0.7142 0.9757 229.2472 0.5162 0.7185 0.1907 1.0309 1.4410 44.3684
ENN-M3 0.6586 0.8115 −0.1259 0.6895 0.9553 220.4828 0.5981 0.7733 0.1563 0.9808 1.3293 50.2385

BPNN-M1 0.6211 0.7881 −0.1436 0.7363 1.0067 234.0345 0.4355 0.6599 0.1832 1.1002 1.5080 52.2315
BPNN-M2 0.6419 0.8012 −0.1482 0.7179 0.9925 247.1350 0.5205 0.7215 0.1813 1.0239 1.4281 45.8221
BPNN-M3 0.6525 0.8078 −0.1224 0.6970 0.9557 220.8120 0.5942 0.7709 0.1694 0.9977 1.3473 50.0556
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However, the results are also numerically explained using dimensional radar plots.
A radar plot, also known as a spider plot or star plot, is a type of chart used to display
multivariate data in a two-dimensional format. The plot consists of a series of axes, each
representing a different variable, emanating from a central point, with each variable plotted
as a data point along its respective axis [63]. The advantage of using a radar plot in the
analysis of data is that it allows for a quick and easy visualization of patterns and trends
across multiple variables. During the modeling phase, radar diagrams are used to evaluate
the overall performance of each model based on the NSE performance assessment criteria.
These models have a higher degree of precision in generating predictions than other models.
This article examines the appropriateness of using AI-based modeling in the context of
engineering and scientific research. The box plot model effectively illustrates the uniform
distribution of values in the data, as shown in Figure 10. This information allows for a
comparison of the distribution of large datasets. Consequently, although the variation
remains unaffected by the quantitative dependability of the models, it exhibits similarities
to the dispersion seen in the data.
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Figure 10. Box plots for (a) SVR, (b) ENN, (c) BPNN, (d) SVR-M1, ENN-M3, and BPNN-M3.

The plots in Figure 10 are visual representations of the data points collected over time.
These plots are widely used in many different fields, including finance, economics, climate
science, and engineering, because they offer several advantages, including highlighting trends
and patterns, identifying outliers, and comparison methods. However, variation series plots
offer a simple yet effective way to explore and understand data over time. They can help
to identify trends, patterns, and outliers, and they can be used to communicate complex
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information to a wide range of stakeholders. The graph illustrates that k-SVR-M1, ENN-M1,
and BPNN-M3 exhibited contemporaneous agreement with a comparable pattern, taking into
consideration the observed TWS. For instance, [64] emphasized the need to comprehend the
time series to fully comprehend the exact significance of a given dataset. As a component of this
study’s purpose was to enhance the precision of a particular model, averaging techniques such
as SA and WA were used, as shown in Table 3. The overall results indicate the improvement
of some models in terms of error such as BPNN and ENN. From the results, it could be
observed that SA-k-SVR had the lowest PBAIS = 0.1341 in the verification phase. Followed by
WA-kSVR > WA-ENN > WA-BPNN>WA-k-SVR > SA-ENN. It is worth noting that averaging
is employed in several technical water resources papers. Ensemble averaging learning refers
to a methodology whereby numerous machine learning models are integrated in order to
enhance the overall system’s performance. One of the primary benefits associated with
ensemble learning is its capacity to enhance the accuracy, robustness, and generalizability
of the model. Some specific advantages of ensemble learning include increased accuracy,
increased generalizability, and better model interpretation. Although k-SVR outperformed
most of the averaging methods, this was not surprising, as it was reported in some studies
that ensemble averaging could be inferior to single models. Figure 11 shows error plots of
ensemble averaging to show a visual comparison.
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Table 3. Results of ensemble averaging based on SVR, ENN, and BPNN.

Calibration Phase Verification Phase

PBIAS MAE RMSE PBIAS MAE RMSE

SA-k-SVR −0.1081 0.4772 0.6675 0.1341 0.7143 1.0088
SA-ENN −0.1345 0.7018 0.9624 0.1770 1.0152 1.3925

SA-BPNN −0.1382 0.7080 0.9717 0.1779 1.0161 1.3922
WA-k-SVR 0.2223 0.6142 0.8333 0.5543 1.3827 1.7708
WA-ENN 0.3488 0.7890 1.0686 0.8340 1.7672 2.2519

WA-BPNN 0.3496 0.7947 1.0740 0.8448 1.7791 2.2616

Despite some limitations of marginal accuracy being attained by other models, gener-
ally both single models (BPNN, k-SVR, and ENN) and simple ensemble models (SA and
WA) have their own advantages and limitations. The use of standalone models is advanta-
geous in cases when there is a comprehensive understanding of the connections between
the input and output variables, and the data are devoid of noise or substantial changes in
their statistical characteristics. It also provides a simple and transparent representation of
the system being modeled, which can be helpful in developing an understanding of the
system’s behavior, such as GRACE TWS. However, BPNN, k-SVR, and ENN struggle to
capture complex nonlinear relationships and interactions between variables. They may
also be sensitive to the choice of parameters, which can be difficult to optimize. In addi-
tion, BPNN may be prone to overfitting, especially when the available data are limited.
Hence, averaging models can help overcome some of the limitations of single models
by combining multiple models into a single prediction. Ensemble averaging models can
improve the accuracy and robustness of predictions, as they can capture a wider range of
possible relationships between the input and output variables. Ensemble models can be
particularly useful in situations where the system being modeled is complex and subject to
significant variation or uncertainty [65]. They can also help address issues with overfitting
by combining multiple models with different parameterizations. In conclusion, both single
models and ensemble models possess distinct benefits and limits within the domain of wa-
ter management and analysis. The selection of the appropriate methodology is contingent
upon many factors, including the nature of the issue under investigation; the data that are
accessible; and the objectives of the research, such as the modeling of GRACE-TWS, as
shown in this study. This approach has shown superior performance in predicting water
storage changes compared to traditional modeling techniques. However, there are still
challenges and limitations to be addressed in the use of MLs for GRACE-TWS modeling,
including the need for high-quality ground observations and satellite data, as well as the
interpretation and validation of model outputs. The use of ML techniques for GRACE-TWS
modeling provides a promising avenue for improving our understanding of the Earth’s
water cycle and supporting sustainable water resource management. Continued research
and development in this area will undoubtedly lead to further advancements and insights
into the dynamic nature of the Earth’s water cycle.

5. Conclusions

It is noteworthy to emphasize that the GRACE-TWS system plays a crucial role in the
monitoring of global water resources, as it offers precise and comprehensive measurements
of changes in total water storage (TWS) on a worldwide level. These measurements are
particularly important for managing water resources in regions affected by drought or
water scarcity. They can help to identify areas that are particularly vulnerable to drought
and support targeted water management strategies. Moreover, the use of GRACE data
has significance in enhancing our comprehension of the Earth’s hydrological cycle and the
interplay among several constituents of this cycle, including precipitation, evaporation,
and runoff. The provided information has the potential to contribute to the development of
policies and management strategies that are focused on achieving sustainable and equitable
access to water resources. This work used step-forward modeling of total water storage
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(TWS) by using the Mascon Solutions of Gravity Recovery and Climate Experiment GRACE
TWS data received from the University of Texas Center for Space Research UT-CSR over
the period of 2007 to 2017. The forward modeling stages included the use of AI-based
models, namely, ENN and SVR. In order to assess the correctness of the models, the
following metrics were utilized: mean absolute error (MAE), Pearson correlation coefficient
(PCC), Nash–Sutcliffe efficiency (NSE), concordance correlation coefficient (CC), mean
absolute percentage error (MAPE), and root mean square error (RMSE). In the study, the
key findings include the high accuracy of the k-SVR model, particularly SVR-M1, which
demonstrated superior predictive accuracy with an NSE of 0.993 and an MAE of 0.0346,
indicating its effectiveness in forecasting terrestrial water storage (TWS) changes. The ENN
model, especially ENN-M3, also performed effectively, albeit with a slightly lower accuracy
(an NSE of 0.6586 and an MAE of 0.6895), showcasing its potential in modeling TWS
dynamics. This study noted variability in the performances of other model combinations,
ranging from excellent to marginal, highlighting the complexity of predicting TWS changes.
Importantly, the implementation of simple and weighted average ensemble methods
improved the accuracy of weaker models, suggesting the benefit of integrating different
machine learning approaches for more reliable predictions. These results are significant for
practical applications in monitoring global water resources, aiding in drought management,
and understanding the Earth’s water cycle, providing valuable tools for decision making in
water resources management and environmental monitoring.

In conclusion, the multi-step-ahead modeling of GRACE-TWS changes using ML
techniques has shown promising results in improving our understanding of the Earth’s
water cycle. The use of ML algorithms has provided a powerful tool to predict GRACE-
TWS accurately, especially the SVR model, with more than 96% accuracy. This can help
to address critical issues related to water management, drought monitoring, and climate
change research. By integrating satellite data and ground observations, ML models can
effectively capture the complex interactions between various environmental factors and
GRACE-TWS changes. The machine learning algorithms can generalize well to diverse
geographical regions. Once trained on relevant data from Saudi Arabia, the models can be
adapted and applied to other locations, contributing to a global understanding of water
resource fluctuations. Future research based on this study could significantly broaden the
application of advanced AI and GRACE data in understanding water resources and climate
change. Potential areas for exploration include expanding the geographical scope to include
diverse climatic regions, integrating additional environmental variables with GRACE data
for a more comprehensive analysis, advancing AI techniques such as deep learning (DL)
and optimization algorithms for enhanced prediction accuracy, and developing real-time
data processing models for immediate decision making in water management. Long-
term studies focusing on the impacts of climate change on water resources, incorporating
socioeconomic data for a holistic understanding, translating findings into practical tools for
policy and decision making, engaging the public in awareness and education initiatives,
and fostering cross-disciplinary collaborations can collectively deepen our understanding
and offer more effective strategies for sustainable water resources management in the face
of global environmental challenges.
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51. Kazienko, P.; Lughofer, E.; Trawiński, B. Hybrid and ensemble methods in machine learning J.UCS special issue. J. Univers.

Comput. Sci. 2013, 19, 457–461.
52. Zhang, G.; Patuwo, B.E.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14, 35–62.

[CrossRef]
53. LeGates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model

validation. Water Resour. Res. 1999, 35, 233–241. [CrossRef]

https://doi.org/10.1016/j.jclepro.2019.119473
https://doi.org/10.1016/j.advwatres.2020.103595
https://doi.org/10.1016/j.chemosphere.2022.137671
https://www.ncbi.nlm.nih.gov/pubmed/36586442
https://doi.org/10.1016/j.rineng.2023.101434
https://doi.org/10.3390/hydrology10070136
https://doi.org/10.3390/rs11242979
https://doi.org/10.1016/j.advwatres.2017.10.021
https://doi.org/10.1111/0885-9507.00069
https://doi.org/10.1016/j.rser.2015.04.065
https://doi.org/10.1016/j.neucom.2018.01.046
https://doi.org/10.1007/s00521-017-3076-7
https://doi.org/10.1007/s00500-020-05174-2
https://doi.org/10.3390/app11178029
https://doi.org/10.1016/j.asoc.2014.06.027
https://doi.org/10.1016/j.suscom.2022.100721
https://doi.org/10.1007/s00500-018-3598-7
https://doi.org/10.1155/2020/9682740
https://doi.org/10.1007/978-1-4615-5703-6_3
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.35940/ijbsac.A0191.073120
https://doi.org/10.1016/j.conbuildmat.2021.124604
https://doi.org/10.1016/j.conbuildmat.2019.117021
https://doi.org/10.1016/S0169-2070(97)00044-7
https://doi.org/10.1029/1998WR900018


Water 2024, 16, 246 18 of 18

54. Ehteram, M.; Sammen, S.S.; Panahi, F.; Sidek, L.M. A hybrid novel SVM model for predicting CO2 emissions using Multiobjective
Seagull Optimization. Environ. Sci. Pollut. Res. 2021, 28, 66171–66192. [CrossRef]

55. Pham, Q.B.; Sammen, S.S.; Abba, S.I.; Mohammadi, B.; Shahid, S.; Abdulkadir, R.A. A new hybrid model based on relevance
vector machine with flower pollination algorithm for phycocyanin pigment concentration estimation. Environ. Sci. Pollut. Res.
2021, 28, 32564–32579. [CrossRef] [PubMed]

56. Sihag, P.; Kumar, M.; Sammen, S.S. Predicting the infiltration characteristics for semi-arid regions using regression trees. Water
Supply 2021, 21, 2583–2595. [CrossRef]

57. Döll, P.; Schmied, H.M.; Schuh, C.; Portmann, F.T.; Eicker, A. Global-scale assessment of groundwater depletion and related
groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites.
Water Resour. Res. 2014, 50, 5698–5720. [CrossRef]

58. Sultan, M.; Ahmed, M.; Wahr, J.; Yan, E.; Emil, M.K. Monitoring aquifer depletion from space: Case studies from the Saharan and
Arabian aquifers. Remote Sens. Terr. Water Cycle 2014, 206, 349.

59. Wagner, W. Groundwater in the Arab Middle East, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2011. [CrossRef]
60. Awadh, S.M.; Al-Mimar, H.; Yaseen, Z.M. Groundwater availability and water demand sustainability over the upper mega

aquifers of Arabian Peninsula and west region of Iraq. Environ. Dev. Sustain. 2021, 23, 1–21. [CrossRef]
61. Chowdhury, S.; Al-Zahrani, M. Characterizing water resources and trends of sector wise water consumptions in Saudi Arabia.

J. King Saud Univ.-Eng. Sci. 2015, 27, 68–82. [CrossRef]
62. Pagano, A.; Amato, F.; Ippolito, M.; De Caro, D.; Croce, D.; Motisi, A.; Provenzano, G.; Tinnirello, I. Machine learning models

to predict daily actual evapotranspiration of citrus orchards under regulated deficit irrigation. Ecol. Inform. 2023, 76, 102133.
[CrossRef]

63. Malik, A.; Tikhamarine, Y.; Sammen, S.S.; Abba, S.I.; Shahid, S. Prediction of meteorological drought by using hybrid support
vector regression optimized with HHO versus PSO algorithms. Environ. Sci. Pollut. Res. 2021, 28, 39139–39158. [CrossRef]

64. Adhikari, R.; Bijari, M.; Zhang, G.P. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Neurocomputing
2003, 50, 159–175.

65. Al-Sulttani, A.O.; Al-Mukhtar, M.; Roomi, A.B.; Farooque, A.A.; Khedher, K.M.; Yaseen, Z.M. Proposition of New Ensemble
Data-Intelligence Models for Surface Water Quality Prediction. IEEE Access 2021, 9, 108527–108541. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11356-021-15223-4
https://doi.org/10.1007/s11356-021-12792-2
https://www.ncbi.nlm.nih.gov/pubmed/33625698
https://doi.org/10.2166/ws.2021.047
https://doi.org/10.1002/2014WR015595
https://doi.org/10.1007/978-3-642-19351-4
https://doi.org/10.1007/s10668-019-00578-z
https://doi.org/10.1016/j.jksues.2013.02.002
https://doi.org/10.1016/j.ecoinf.2023.102133
https://doi.org/10.1007/s11356-021-13445-0
https://doi.org/10.1109/ACCESS.2021.3100490

	Introduction 
	Materials and Methods 
	Data Description and Proposed Method 
	Neural Network Models 
	Kernel Support Vector Regression (kSVR) 
	Ensemble Averaging Methods 
	Performance Criteria 

	Study Locations 
	Results 
	Conclusions 
	References

