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Abstract: A continuous and multi-decadal surface water extent (SWE) record is vital for water
resources management, flood risk assessment, and comprehensive climate change impact studies.
The advancements in remote sensing technologies offer a valuable tool for monitoring surface water
with high temporal and spatial resolution. However, challenges persist due to image gaps resulting
from sensor issues and adverse weather conditions during data collection. To address this issue, one
way to fill the gaps is by leveraging in situ measurements such as streamflow discharges (SFDs). We
investigate the relationship between SFDs and Landsat-derived SWE in the New England region
watersheds (eight-digit hydrological unit code (HUC)) on a monthly scale. While previous studies
indicate the relationship exists, it remains elusive for larger domains. Recent research suggests using
monthly average SFD data from a single stream gage to fill the gaps in SWE. However, as SWE
represents a monthly maximum value, relying on a single gage with average values may not capture
the complex dynamics of surface water. Our study introduces a novel approach by replacing the
monthly average SFD with the maximum day streamflow discharge anomaly (SFDA) within a month.
This adjustment aims to better reflect extreme scenarios, and we explore the relationship using ridge
regression, incorporating data from all stream gages in the study domain. The SWE and SFDA are
both transformed to stabilize the variance. We found that there is no discernible correlation between
the magnitude of the correlation and the size of the basins. The correlations vary based on HUC and
display a wide range, indicating the variances of the importance of stream gages to each HUC. The
maximum correlation is found when the stream gage is located outside of the target HUC, further
verifying the complex relationship between SWE and SFDA. Covering over 30 years of data across
45 HUCs, the imputing technique using ridge regression shows satisfactory performance for most
of the HUCs analyzed. The results show that 41 out of 45 HUCs achieve a root-mean-square error
(RMSE) of less than 10, and 44 out of 45 HUCs exhibit a normalized root-mean-square error (NRMSE)
of less than 0.1. Of 45 HUCs, 42 have an R-squared (R2) score higher than 0.7. The Nash–Sutcliffe
efficiency index (Ef) shows consistent results with R2, with the relative bias ranging from –0.02 to 0.03.
The established relationship serves as an effective imputing technique, filling gaps in the time series
of SWE. Moreover, our approach facilitates the identification and visualization of the most significant
gages for each HUC, contributing to a more refined understanding of surface water dynamics.

Keywords: surface water extent; remote sensing; Landsat; water resources monitoring; data
imputation; ridge regression

1. Introduction

The advent of remote sensing technology has brought valuable applications in flood
studies [1], water quality assessment [2], and urban planning [3], with numerous studies
focusing on remote sensing-based inundation mapping [4–9]. Among the most notable
satellite programs are the NASA/USGS Landsat and the European Union’s Sentinel pro-
gram. These satellite programs have significantly enhanced the accuracy of inundation
mapping, thereby enabling better flood management and disaster response.
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The Landsat program is recognized as one of the longest-running satellite missions,
with its initial launch dating back to 1972 [10]. In contrast, the European Union’s Sentinel
program is relatively new, starting in 2014, but has gained popularity due to its ability
to collect data in all weather conditions, during the day and night, and even to carry out
real-time inundation mapping due to its synthetic aperture radar (SAR) [11]. The Land-
sat program has significantly enriched our understanding of Earth through its extensive
historical archive, offering insights into long-term changes. However, the satellite’s sus-
ceptibility to adverse weather conditions due to its optical sensors has led to gaps in data
collection. On overcast days, for example, the imagery produced by Landsat may provide
limited information due to reduced sunlight availability, which impacts the accuracy of
calculations based on spectral bands and their reflection. While research has indicated the
potential for gap-filling Landsat imagery using nearby pixels, addressing extended periods
of missing data remains a persistent challenge [12]. Among the products derived from the
Landsat program, one recent data product is the Joint Research Centre (JRC) Global Surface
Water Explorer, which is a collection of datasets at a resolution of 30 m, including water
occurrence, occurrence change intensity, seasonality, recurrence, transitions, and maximum
surface water extent [13]. Available at a monthly scale, maximum surface water extent iden-
tifies surface water within a designated area whenever pixels are classified as water during
that month. Consequently, a time series spanning over 30 years of surface water extent is
established, albeit with intermittent gaps [13,14]. To ensure the continuity and reliability of
this time series, supplementary variables can be utilized to fill these gaps. Previous studies
have explored the correlation between inundation area and in situ hydraulic measurements
such as river discharge, river stage height, and river width, illustrating the potential to
mutually estimate one from the other [14–17]. These studies have highlighted the potential
for reciprocal estimation among these variables. In a specific study, a neural network model
was employed to predict river discharge from satellite-derived surface water extent, water
level, water volume change, and river width [18]. This approach further demonstrates the
interconnectivity and utility of satellite-derived information in estimating hydrological
parameters. However, one of the limitations of in situ methods is the one-dimensional
view of surface waters, which is insufficient in more complex three-dimensional dynamic
riverine landscapes with the involvement of the movement of water and diverse flow
patterns [19].

This study aims to identify relationships between the surface water extent and in situ
streamflow discharges. Our hypothesis states that a plausible correlation exists between
surface water extent and streamflow discharge. This hypothesis is grounded in the princi-
ple of watershed water balance, where the inflow to a water system or area is equivalent to
the combined outflows and changes in storage during a given time interval. Each HUC
is a water system, and both surface water extent and streamflow discharge are integral
components of the hydrological cycle. Changes in one component can directly influence the
other due to the interconnectedness of water movement. While more complex correlations
and features have been investigated to assess the effects of quantifying surface water extent,
our objective is to introduce a methodology that exclusively utilizes streamflow discharges
or their derivatives and is driven by the convenient accessibility of these observations and
their minimal computational requirements. Therefore, this research confronts two major
challenges. The first revolves around identifying the optimal variable to establish a correla-
tion with surface water extent. Given that the JRC maximum surface water extent denotes
the aggregated water coverage in a month, coupling it with average stream discharge lacks
precision. To address this, an alternative approach is explored by employing anomalies.
The second challenge is identifying suitable techniques to establish a robust relationship
between these variables, especially given the significant amounts of missing values.

This paper is organized as follows: in Section 2, the study area and data are introduced.
Section 3 provides the methodology to determine the correlation between surface water
extent and streamflow discharge anomaly. In Section 4, the results are presented, demon-
strating that the correlation is higher when gages out of the reference HUC are considered.
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In Section 5, a discussion follows on the implications of the results and other potentially
influencing factors. Finally, Section 6 summarizes the findings and offers insights into
future research directions.

2. Study Area and Data
2.1. Study Area

The study area is the New England region where watersheds have been categorized
by the eight-digit hydrological unit code (HUC; subbasin level) according to the United
States Geological Survey (USGS). The region covers the states of Maine, Vermont, New
Hampshire, Massachusetts, Connecticut, and Rhode Island. It is noted that the USGS
regional watersheds are defined based on the physical characteristics of the land and water
systems, and they do not always align with political boundaries or other regional definitions.
Therefore, the HUC in this study is collected from three USGS regional watersheds: the
New England region (01), mid-Atlantic region, and Great Lakes region (04). The basin size
varies by HUC, ranging from 488 km2 to 12,478 km2, with a mean of 3492 km2.

2.2. The Joint Research Centre Monthly Water History

The European Commission’s Joint Research Centre (JRC) provides long-term statistics
of monthly maximum surface water extent (SWE) since April 1984. The JRC dataset
is generated using satellite images from Landsat missions (Landsat 5, 7, and 8) with a
spatial resolution of 30 m, and each pixel is classified as either water, non-water, or no
data, combing all the satellite images in each month [13]. If a pixel is identified as water
in any satellite images acquired during a given month, it is considered as water in the
corresponding monthly dataset. All the water pixels are aggerated by month, representing
the monthly maximum SWE. To derive the JRC monthly maximum SWE, we utilized the
Google Earth Engine Editor platform [20]. The detailed process is illustrated in Appendix A.

In this study, we gathered monthly maximum SWE data from April 1984 to December
2018 (417 months) for each of the 70 HUCs in the New England region. In an ideal case
of no missing SWE data, we would have 29,190 satellite images for all the HUCs. Only
10,290 satellite images, or 35%, were available. A screening process was conducted to
eliminate images with missing data pixels exceeding 10%. This procedure aligns with the
methodology discussed in [14], which employed a 5% threshold for the same purpose.
Thus, for our study area, 10,258 images were used.

In Figure 1a, we depict the number of JRC images for each HUC throughout the whole
collection period of 417 months. The count ranges from 96 to 227, with an average of
147 images. It is evident that the availability of JRC images exhibits significant variability
across different HUCs, with a pronounced concentration of these images observed in the
southern New England region.
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2.3. The US Geological Survey Daily Streamflow Discharge

Streamflow discharges are measured by the US Geological Survey (USGS) in real-time
and averaged daily. Daily average streamflow data were accessed through the USGS
National Water Information System (NWIS; https://waterdata.usgs.gov/nwis) using [21].

In total, 474 stream gages were collected for this study and an upward trend of the
number of stream gages was observed during the study period. The number of stream
discharge data varies by HUC, ranging from 61 to 417 with a mean of 276 months (see
Figure 1b). The number of stream gages also varies by HUC, ranging from 1 to 32, with
a mean of 8 stations. In certain HUCs, such as the northern New England region (eight
HUCs) and Long Island Sound (one HUC), the absence of stream gage stations precluded
their inclusion in the analysis, and, thus, these regions were excluded from the study.
Furthermore, two consecutive days of streamflow discharge from one gage (gage 01103025)
revealed negative discharge values. These anomalous values, deemed to be near zero
and indicative of measurement errors or inconsistencies, were deleted for the sake of data
integrity and accuracy.

As shown in Figure 2, a tradeoff between the number of gages and sample size is
evident. As sample size increases, the number of gages with that specific sample size
decreases. Out of the total 474 gages, only 175 have complete records spanning 417 months,
while all 474 gages have at least 61 months of data. In the ridge regression in Section 3, we
use only the 308 gages that have at least 200 months of data.
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2.4. Pairing JRC Data with USGS Streamflow Discharge Data

To establish a complementary dataset for the JRC monthly maximum SWE, we em-
ployed a methodology based on the calculation of daily streamflow discharge anomaly. As
shown in Figure 3, firstly, for each month, the daily streamflow discharge was obtained. If,
on any given day, the daily streamflow discharge exceeded the corresponding multi-year
monthly mean discharge, the daily streamflow discharge anomaly was obtained. The
multi-year monthly mean discharge was computed from April 1984 to December 2018.
Following this, we selected the maximum day streamflow discharge anomaly (SFDA) per
month to pair it with the JRC monthly maximum SWE.
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To ensure sufficient data for further analysis, we paired the JRC monthly maximum
SWE with the USGS maximum day SFDA, retaining only the months where the paired
dataset spans 30 months or more. In the following context, we use the paired SWE and
SFDA to refer to the dataset.

In Figure 4, the time series plot shows SWE and SFDA within the same HUC 01060002.
The SWE data exhibit a significant number of missing values. With the available data, the
correlation between SWE and SFDA from each gage was denoted by the Spearman’s r (as
seen in parentless).

Water 2024, 16, x FOR PEER REVIEW 5 of 15 
 

 

2.4. Pairing JRC Data with USGS Streamflow Discharge Data 
To establish a complementary dataset for the JRC monthly maximum SWE, we em-

ployed a methodology based on the calculation of daily streamflow discharge anomaly. 
As shown in Figure 3, firstly, for each month, the daily streamflow discharge was ob-
tained. If, on any given day, the daily streamflow discharge exceeded the corresponding 
multi-year monthly mean discharge, the daily streamflow discharge anomaly was ob-
tained. The multi-year monthly mean discharge was computed from April 1984 to Decem-
ber 2018. Following this, we selected the maximum day streamflow discharge anomaly 
(SFDA) per month to pair it with the JRC monthly maximum SWE. 

 
Figure 3. Flowchart of the process to obtain the maximum day streamflow discharge anomality 
(SFDA) per month. 

To ensure sufficient data for further analysis, we paired the JRC monthly maximum 
SWE with the USGS maximum day SFDA, retaining only the months where the paired 
dataset spans 30 months or more. In the following context, we use the paired SWE and 
SFDA to refer to the dataset. 

In Figure 4, the time series plot shows SWE and SFDA within the same HUC 
01060002. The SWE data exhibit a significant number of missing values. With the available 
data, the correlation between SWE and SFDA from each gage was denoted by the Spear-
man’s r (as seen in parentless). 

 

 

Figure 4. Time series and correlations between SWE and SFDA in HUC 01060002 (location shown 
in the left corner with the red contour). Spearman’s r is calculated and shown next to the gages in 
the legend; values are marked as * when the sample size is less than 30. 

3. Methods 
3.1. Correlation Analysis 

The present study employed a methodology similar to [14] but for a different domain, 
and instead of monthly averages of SFD we use SFDA to investigate the correlation with 
SWE. We opted to focus on HUCs that contained a minimum of three gages within their 

Figure 4. Time series and correlations between SWE and SFDA in HUC 01060002 (location shown in
the left corner with the red contour). Spearman’s r is calculated and shown next to the gages in the
legend; values are marked as * when the sample size is less than 30.

3. Methods
3.1. Correlation Analysis

The present study employed a methodology similar to [14] but for a different domain,
and instead of monthly averages of SFD we use SFDA to investigate the correlation with
SWE. We opted to focus on HUCs that contained a minimum of three gages within their
boundaries. This process guarantees a minimum number of gages to represent the spatial
variations in a HUC at the expense of reducing their number.

To explore relationships between SWE and SFDA, we paired SWE and SFDA obtained
from all gages in the study area individually. Spearman’s r was calculated between each
paired SWE and SFDA, with the condition that the paired dataset contained a minimum
of 30 data points. This criterion was applied to ensure that the correlation analysis was
conducted with enough data for robust and meaningful results. In total, these two criterions
reduced the number of HUCs for analysis, resulting in 45 HUCs meeting this selection
criterion. Spearman’s r is a non-parametric measure of the monotonicity of the relationship
between the paired datasets, which is expressed as:

r =
cov(R(x), R(y))

σR(x)σR(y)
(1)

where x and y are the paired SFDA and SWE, R(x) and R(y) are rank transformed variables,
cov(R(x), R(y)) is the covariance of the rank variables, and σR(x) σR(y) are the standard
deviations of the rank variables. The Spearman’s r ranges from −1 to 1, where −1 indicates
a strong negative correlation, 1 indicates a strong positive correlation, and 0 indicates
no correlation.
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3.2. Modeling SWE Using Ridge Regression
3.2.1. Data Transformation

SWE and SFDA were both transformed to ensure the variances were stabilized be-
fore the modeling. The Box–Cox transformation was used for transforming the remote
sensing-derived hydrological variables [2]. The Box–Cox transformation is useful due to its
various approaches, for instance, square roots, logarithms, and squares [22]. In this study,
we applied the square roots for the SWE. Since SFDA contains non-positive values, the
logarithm transformation was applied after a shift to ensure all the values were positive.

3.2.2. Model Selection

Stream gages displaying these high correlations with SWE can serve as valuable can-
didates for modeling SWE. The screening of such stream gages for SWE modeling involves
the application of ridge regression, a regularization technique within linear regression.
Ridge regression plays a pivotal role in enhancing model performance by addressing chal-
lenges related to multicollinearity in the dataset and facilitating variable selection [23,24].
It achieves this by constraining coefficients using a regularization term, thereby helping
to identify significant predictors while keeping others close to zero. The mathematical
equation of the ordinary (unconstrained) linear regression is expressed as:

βX = y (2)

where X is the matrix (n × p) of transformed SFDA, n is the number of observations, p is
the number of stream gages, β =

[
β1 β2 . . . βp

]T is a vector of weights, y = [y1 y2 . . . yn]
T is

a vector of transformed SWE, and T denotes the transpose.
The cost function of the above linear regression, J(β), is the sum of squares of

errors (SSE):
J(β) = MSE(β) = (βX − y)T(βX − y) (3)

For ridge regression, a regularization term is added; thereby, the cost function, Jr(β),
of a ridge regression, is expressed as:

Jr(β) = (βX − y)T(βX − y) + λβT β (4)

where λ is a regularization parameter that controls the regularization strength.
The solution to the ridge regression, as proposed by [25], is as follows:

β(λ) =
(

XTX + λI
)−1

XTy (5)

where β(λ) are weights of the ridge regression, and I is the identity matrix.

3.2.3. Model Set-Up, Training, and Evaluation

For each HUC, SWE was paired with SFDA from all gages in the study area and the
missing values in each gage were imputed using their medians. To ensure the robustness
of our analysis, we exclusively considered gages with a data record spanning more than
200 months for pairing with each respective HUC, reducing the gages to 308. This objective
aims to maintain the dataset’s integrity and serves to mitigate the influence of noise arising
from the imputation of missing values, which was performed using the median. Then,
the SFDA was standardized; thereby, the values are centered around the zero mean with
one standard deviation. In our analysis, we employed ridge regression for each of the
45 HUCs. To facilitate this process, we divided each dataset into two subsets: a training set
comprising 80% of the data and a test set containing the remaining 20%.

To determine the optimal value of the regularization parameter (λ), we employed a
fivefold cross-validation procedure. This involved evaluating λ over a range from 1 to 100.
Once the optimal λ was identified through cross-validation, it was subsequently utilized in
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the ridge regression model to train the data, ensuring the most effective regularization for
each HUC.

The model was evaluated on the test set using root-mean-square error (RMSE), nor-
malized RMSE (NRMSE) and R squared (R2). They are expressed as:

RMSE =

(
(βX − y)T(βX − y)

n

)1/2

(6)

NRMSE =
RMSE

y
(7)

R2 = 1 − (βX − y)T(βX − y)

(y − y)T(y − y)
(8)

where y is the average observed SWE.
The Nash–Sutcliffe efficiency index (Ef), as proposed by Nash and Sutcliffe, is another

metric for assessing the goodness-of-fit for models (1971). Ef can be applied to different
model types without the constraints of the assumptions of linear models. For linear and
unbiased models, Ef aligns with the R2 since Ef is sensitive to the bias and Ef equals to zero
if the relative bias reaches 40% [26].

4. Results
4.1. Correlations between SWE and SFDA

Figure 5 illustrates the variation in Spearman’s r across different HUCs, displaying
a broad range of values spanning from negative to positive. Some HUCs exhibit strong
positive correlations exceeding 0.7. Upon arranging the HUCs in ascending order based on
the size of their respective basins, there appears to be no discernible correlation between
the magnitude of the correlation coefficient and the size of the basins.
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In Figure 6, we present the maximum correlation achieved in each HUC under two
distinct conditions: SWE and SFDA of gages located inside of each HUC and the same
correlation but considering all gages in the study area. The results illustrate notable
differences between the two scenarios, suggesting that the hydrological boundary plays
a crucial role in influencing the correlation strength. As depicted in Figure 6, most of
the correlations are weak for SWE and SFDA in the same HUC, which is consistent with
findings from previous studies [14,27]. Furthermore, the correlations within the same HUC
tend to exhibit lower values compared to those observed outside of the reference HUC.
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This finding suggests that when the hydrological boundary is not a restrictive factor, the
correlations between SWE and SFDA tend to be higher.
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4.2. Ridge Regression Model Performance

Ridge regression was constructed for each HUC using SFDA of all the gages (308 in
total) in the study area.

The training sample size ranges from 80 to 181 by HUC. Figure 7 presents performance
metrics obtained from each ridge regression model, which are RMSE, NRMSE, and R2.
The RMSE values exhibit a broad range, with larger values in the coastal HUCs. Most of
the HUCs have an RMSE below 10. NRMSE shows a good fit, with 44 out of 45 HUCs
achieving values below 0.1. The R2 scores reveal that 42 out of 45 models achieve R2 scores
greater than 0.7. The Ef results are consistent with the R2 values due to the marginal relative
bias, ranging from −0.02 to 0.3. Overall, ridge regression models showed promising results
across most HUCs, though performance varied by HUCs.
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In Figure 8, we showed the scatter plots of six models as an example to show their
goodness of fit on the test data. The first row consists of three models with the highest R2

scores, where most of the points align closely with the diagonal line (1:1 line), demonstrating
a high degree of consistency between predicted and observed SWE. In contrast, the second
row shows three models with the lowest R2 scores. While some data points still appear
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clustered around the diagonal line, the presence of outliers significantly affects the overall
model fit.
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4.3. Interpolated Time Series of SWE

In HUC 01010005, the trained ridge regression model was used to interpolate the
missing values in SWE to create the full time series. As shown in Figure 9, the predicted
and observed SWE distributions are closely aligned with a noticeable shift. Additionally,
the predicted SWE distribution is more concentrated around 6.5 km2, while the observed
SWE distribution centers around 8 km2. This shift was also seen in most HUCs. To address
this discrepancy, one potential solution involves introducing a constraint that penalizes
deviations in the weights from the observed mean [28,29].
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Figure 10a is an example of using the above-mentioned model to interpolate the time
series of SWE from 2010 to 2018. The model filled the gaps in the observed SWE with
predicted values and completed the time series. It is noted that the model demonstrated its
capability to successfully interpolate even in cases of substantial data gaps. Furthermore,
the model captured the dynamic nature of SFDA, encompassing fluctuations rather than
being limited to monotonic trends. It is evident that the model tends to predict lower
values, displaying a noticeable skew towards the lower end of the distribution.
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As seen in Figure 10b, the weights are distributed across the study domain, with most
gages displaying low weights (depicted as yellow dots), while only one gage outside of the
reference HUC exhibits high weights (depicted as green dots). Several factors could impact
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the gage’s importance, including complex hydrological interactions, intricate flow paths,
and various environmental factors despite their geographical distance from the analyzed
HUC. Additionally, data quality, including the reliability and accuracy of measurements,
might elevate the gage’s importance in the model. Furthermore, model configuration,
regularization strength, and outliers can also play a role in determining the weights of
the gages.

5. Discussion
5.1. Data Limitations and Challenges

The analysis above is subject to various data limitations and challenges that can
significantly impact the selection and performance of different modeling methods. In this
study, we encountered several key data limitations in both JRC monthly maximum SWE
and the streamflow discharge data.

The JRC monthly maximum SWE serves as a critical data source for understanding
the temporal distribution and the statistics of water surfaces. However, its reliability is
inherently influenced by satellite imagery availability which, in turn, depends on weather
conditions. Cloud cover and atmospheric conditions can hinder the acquisition of satellite
images, leading to gaps or missing data in the JRC water history dataset. When significant
portions of the data are missing, the ability to produce meaningful temporal patterns is
compromised, affecting the overall performance of the model.

Streamflow discharge data is a fundamental component in statistical modeling, as it
directly reflects the water flow in the rivers and streams. However, obtaining accurate and
reliable streamflow data can be challenging for various reasons. One significant challenge
arises from the manual intervention of streamflow discharge data. Human error in data
entry could introduce inaccuracies and inconsistencies, leading to potential outliers or noise
in the dataset. Such inconsistencies might affect the quality of results and the reliability of
the models.

5.2. Alternative Methods for Exploring the SWE-SFDA Relationship

Alternative methods, including lasso regression, were also explored in this study.
Lasso regression is a regularization technique that shares similarities with ridge regression;
the primary advantage of lasso regression is its ability to perform feature selection by
shrinking less important coefficients to exactly zero [30]. As a result, lasso can effectively
eliminate irrelevant variables from the model, leading to a sparse model with a reduced
number of features. Despite its usefulness in feature selection, lasso regression may not be
the most suitable approach for estimating surface water extent in certain scenarios. This is
because, in some cases, setting coefficients to exactly zero led to unrealistic SWE estimates.

5.3. Additional Factors in the SWE-SFDA Relationship

In this study, we primarily focused on streamflow discharge anomaly as a feature
for estimating surface water extent. The advantage of this is that there is a long record of
data collected since 1984 at high temporal resolution. Moreover, with the long record, it is
possible to consider, for instance, relationships that are conditional to seasons. However, it
is important to acknowledge that additional factors, such as river characteristics (e.g., river
width, slope, and depth), hydro-meteorological conditions, and annual/seasonal variations
can significantly impact the relationship between streamflow discharge anomaly and
surface water extent. Incorporating these additional features can enhance the performance
of the model by capturing the complexity of hydrological processes influenced by the river’s
physical characteristics. Moreover, the influence of climate change further compounds the
impact on the seasonal patterns, thereby affecting the overall seasonality of streamflow
discharge [31]. It is crucial to recognize that the non-stationarity of hydro-meteorological
variables, induced by climate change, has significant implications for both annual and
seasonal patterns [32–34].
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By combining all these factors into the modeling process, we can gain a more compre-
hensive understanding of the hydrological system, leading to improved relationships and
a deeper insight into the hydrological patterns within each HUC. Future research efforts
could explore the integration of these factors and consider seasonal variations to refine the
models and better represent real-world conditions.

6. Conclusions

In this paper, we conducted a comprehensive investigation to explore the relationship
between surface water extent and streamflow discharge anomaly. Through the implementa-
tion of ridge regression, we established a robust relationship between streamflow discharge
anomaly and surface water extent for most of the HUCs in the New England region.

Two distinctive aspects of our approach are introduced. Firstly, we derived streamflow
discharge anomaly to match JRC surface water extent. By aligning and combining these
datasets, we obtained a more refined representation of hydrological behavior within each
HUC. This anomaly-based approach allowed us to focus on hydrological deviations and
anomalies, providing a deeper insight into the variations and dynamics of streamflow
discharge across the study domain. Secondly, we used a ridge regression model with
streamflow discharge anomaly from selected gages for each HUC. This allowed us to
capture the interconnected nature of hydrological processes, providing an understanding
of how streamflow discharge anomaly varies across different regions. Ridge regression
effectively identified the gage stations that contribute to the most to the relationship with
each HUC. It assigned significant weights to the important predictors, a robust method for
feature selection.

Additionally, our study addressed the impact of data limitations and the potential
influence of additional factors, such as river characteristics, on the relationship between
surface water extent and streamflow discharge anomaly. While exploring alternative
modeling techniques, including lasso regression, we found that ridge regression remained
more effective for our dataset.

In conclusion, our study provides insights into the relationship between surface water
extent and streamflow discharge anomaly. These distinctive aspects, combined with the
robust ridge regression approach, provide an understanding of hydrological behavior.
Furthermore, gap-filled Landsat-derived surface water extent time series establish essential
baselines for water resource management, inundation mapping, and land-use decisions.

Future research efforts will be focused on (1) exploring the integration of diverse
datasets and considering additional factors to further enhance the correlation between
surface water extent and streamflow discharge anomaly and (2) improving the screening of
the stream gages that carry more weight in determining surface water extent estimates and
investigating geospatial correlations or patterns. The potential applications of this research
extend to surface water extent mapping, especially during times when satellite imagery is
unavailable. Advancements in data collection and analysis techniques will enable more
accurate and insightful estimates, supporting better water resource management and
decision-making.
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Appendix A

Google Earth Engine Editor platform was used to derive the surface water extent.
Each month, satellite images are available, with each pixel classified as water, non-water,
or no data. To obtain the surface water extent, we aggregated the total number of pixels
classified as water. By applying the polygon of each HUC, we obtained the surface water
extent per HUC. As a filtering criterion, we set a threshold of 10% for images with a high
ratio of no-data pixels. No-data pixels are attributed to cloudy weather conditions when the
satellite’s optical sensors cannot penetrate through the clouds. We employed this screening
process to ensure the high quality of JRC data.
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