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Abstract: Climate change and urbanization have led to an increase in the amount of water flowing into
traditional drainage systems, which results in frequent urban flooding. Low–Impact Development
(LID) facilities, with their distributed feature, are one of the important means to mitigate flooding
and have been widely used. In this paper, based on integrated catchment management (ICM), we
compare the abatement of runoff, flooding, and ponding under two durations of rainfall and eight
different return periods with runoff as the control objective (RACO) and flooding as the control
objective (FACO) for the deployment of LID facilities. The waterlogged area of FACO is higher by
a range of 92.462 m2 to 24,124.39 m2 compared to RACO. Both percentage reduction of overflow
volume and runoff volume tend to decrease gradually with the increase in the return period. For
the percentage reduction of runoff volume per unit area, sometimes RACO is greater than FACO,
and sometimes vice versa, while for the percentage reduction of overflow volume per unit area, the
range where FACO exceeds RACO is between 0.29 to 10.95 (%/ha). The cost of FACO has decreased
by 4.94% to 46.20% compared to RACO. This shows that FACO’s LID deployment method can fully
utilize the capacity of LID facilities to mitigate inundation, reducing the cost of LID facilities to a
certain extent.

Keywords: spatial layout of LID; urban flooding; comparison of runoff and flooding control; life
cycle cost analysis

1. Introduction

In recent years, urbanization has been advancing, and the increase in extreme weather
caused by global warming and the urban heat island effect has put a great deal of pressure
on traditional stormwater management systems [1], resulting in more frequent urban
flooding, which has caused great economic losses and human casualties [2]. Since low–
impact development (LID) facilities use green infrastructure (permeable pavement, green
roof, rain garden, etc.), which can restore urban hydrology to the predevelopment function
to a certain extent [3], LID facilities are currently used as an auxiliary method to mitigate
the problem of urban flooding in combination with the traditional gray facilities [4].

There have been several multifaceted studies of LID facilities that have used runoff as
a control objective. Muttil et al. [5] studied the recharge efficiency of LID facilities, such as
infiltration trenches, in urban areas under climate change. Gilroy and McCuen [6] used a
spatial and temporal model to analyze the effects of the location and number of LID facilities
on runoff and flow. Guo [7] proposed a quantitative method (using long–term runoff
statistics as an indicator) for evaluating the LID program. Aguayo et al. [8] developed an
application that allows for detailed mapping of thousands of plots to address urban runoff–
related issues to evaluate the cost of LID facilities. Joksimovic and Alam [9] calculated the
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full life–cycle cost and evaluated the cost efficiency of LID portfolio scenarios targeting
runoff control based on the stormwater management model (SWMM) in accordance with
the costing tool and guidance document. Bhaskar et al. [10] examined changes in basic flow
regimes, such as flow due to LID facilities, under urbanization by comparing forest and
urban LID watersheds. Leimgruber et al. [11] conducted sensitivity analysis and evaluation
of green roof, infiltration trench, and bioretention basin parameters under long–term and
single rainfall events based on the SWMM model under the influence of water balance of
runoff volume, evapotranspiration, and groundwater recharge. Eckart et al. [12] adopted a
multi–objective optimization simulation of the coupled model of SWMM and Borg MOEA
with the goal of reducing peak flow, runoff volume, and cost of objective optimization
simulation to evaluate LID facilities. Liu et al. [13] assessed water quantity impacts of
BMP and LID facilities using runoff volume abatement. Wang et al. [14] considered the
cost–effectiveness of bioretention facilities under climate change and urbanization using
peak runoff combined with TSS.

Meanwhile, there have been many studies on the effectiveness of LID in mitigating
urban flooding using runoff as the control objective. Jemberie and Melesse [15] analyzed
the effects of individual and combined LID facilities on runoff based on SWMM using
different rainfall distribution patterns and different durations of rainfall to evaluate the
effectiveness of mitigating flooding. Li et al. [16] developed a multi–objective optimization
design framework to analyze the effectiveness of detention ponds and LID facilities in
improving water quality and controlling flood risk. Tansar et al. [17] explored the effect
of LID facilities on flood control at the spatial scale by placing LID facilities in the upper,
middle, and lower reaches of a region under different rainfall scenarios. Suresh et al. [18]
analyzed the effect of LID facilities on the control of runoff depth and peak runoff in
micro–urban watersheds to quantify the extent of their reduction in flooding in the context
of climate change. Sin et al. [19] proposed a curve number approach to evaluate flood
mitigation using storage and infiltration facilities. Luan et al. [20] simulated LID facilities
in a typical mountainous area to analyze their flood mitigation effect. Dos Santos et al. [21]
compared LID facilities with conventional drainage systems using a life cycle evaluation
of the environmental and hydrological impacts of LID facilities in highly urbanized areas.
Kumar et al. [22,23] combined SWMM with NSGA–II for multi–objective optimization
to evaluate the effectiveness of LID facilities in mitigating urban flooding using runoff
indicators and costs as optimization objectives. The abovementioned studies on LID facility
flood mitigation were all evaluated using runoff volume, depth, and peak flow rate as
evaluation metrics. The use of runoff as a control index for evaluating the flood mitigation
of LID facilities may result in a situation where LID facilities may be deployed in areas that
do not generate overflow or small overflow.

To solve the above problems, this paper adopts two control objectives for LID deploy-
ment: one is to take runoff as the control objective (RACO), which means the reduction
effect of runoff is optimal, and the other is to take flooding as the control objective (FACO),
which means the reduction effect of overflow is optimal. The simulation is based on In-
foWorks ICM in eight different return periods and two types of rainfall durations to analyze
the abatement effects of LID deployment methods on runoff, flooding, and ponding under
the control objectives.

2. Materials and Methodologies
2.1. Study Area

The study area of this paper is in Chaoyang District, Beijing, China, with the central
coordinates of 116◦47′ E and 39◦95′ N. The study area has a total area of 119.64 ha, with an
east–west length of 1500 m and a north–south width of 1040 m. Summer is hot and rainy,
and when the rainfall is large, the research area relying on a pipe network for drainage is
prone to flooding. The schematic diagram of the research area is shown in Figure 1.
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Figure 1. Schematic of the study area.

2.2. ICM Model
2.2.1. ICM Model Generalization

InfoWorks ICM is urban integrated catchment drainage modeling software developed
by Wallingford, UK. It can solve time–consuming two–dimensional hydrodynamic prob-
lems through GPU–based parallel computation and is widely used in the fields of water
quality testing, assessment of the current status of urban drainage systems, urban flooding
risk assessment, etc. [24–26]. According to the topographic distribution and pipe network
distribution of the study area, the study area is finally generalized into 577 subcatchments,
577 junctions, 580 conduits, and 3 outfalls, and an ICM model is built. The catchment yield
and flow parameters are set according to different land use types. The land use types in
the study area include buildings, roads, green space, water systems, and comprehensive
land use. The ICM model and the land use distribution in the study area are shown in
Figure 2 below.
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Figure 2. (a) Schematic diagram of the ICM model; (b) land use distribution.

2.2.2. Parameter Calibration and Verification

Some of the parameters in this paper need to be calibrated and validated, and in this
paper, the Nash–Sutcliffe efficiency coefficient (NSE), Root Mean Square Error (RMSE), and
Percentage Bias (PBIAS) are used to quantify the degree of deviation between measured
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and simulated values, assessing simulation accuracy. The calculation formulas for three
indicators are given by the following Equations (1)–(3):

NES = 1 − ∑T
t=1

(
Qt

o − Qt
m
)2

∑T
t=1

(
Qt

o − Q0
)2 , (1)

PBIAS =
∑T

t=1
(
Qt

0 − Qt
m
)

∑T
t=1 Qt

0
, (2)

and

RMSE =

√
∑T

t=1
(
Qt

0 − Qt
m
)2

T
(3)

where Qt
o is the measured depth of observed inspection wells; Qt

m is the simulated depth
of observed inspection wells; Qo is the mean of all measured depths of observed inspec-
tion wells.

In this paper, the water levels of two inspection wells, J155 and J280, are observed.
The rainfall event on 21 August 2022, with a rainfall amount of 81.4 mm and a rainfall
duration of 548 min, is used to calibrate the model parameters. Additionally, the rainfall
event on 3 September 2022, with a rainfall amount of 10.2 mm and a rainfall duration of
206 min, is utilized to validate the model parameters. The process lines of the measured
and simulated water levels are shown in Figure 3 below. The calculation results of the three
indicators for J155 and J280 under the two rainfall events are presented in Table 1. The
model demonstrates a certain level of accuracy.
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Figure 3. Comparison of measured and simulated water level. (a): J155 inspection well for 21 August
2022 rainfall; (b): J280 inspection well for 21 August 2022 rainfall; (c): J155 inspection well for
3 September 2022 rainfall; (d): J280 inspection well for 3 September 2022 rainfall.

Table 1. The calculation results of three indicators.

Evaluation Metrics NSE RMSE PBIAS

J155 for 21 August 2022 0.938 0.077 −0.024
J280 for 21 August 2022 0.901 0.071 −0.073

J155 for 3 September 2022 0.927 0.010 0.040
J280 for 3 September 2022 0.902 0.008 −0.040

2.2.3. Design Storms

The design rainfall adopted in this model is calculated according to the design rain-
storm intensity formula of the Beijing local standard, “ Technical specification for construc-
tion and application of the mathematical model of urban flooding prevention and control
system” (DB11/T 2074–2022) [27]. The calculation formula is as follows (4). Two durations
of rainfall, 180 min and 1440 min, are used, along with eight different return periods: 2,
3, 5, 10, 20, 30, 50, and 100 a, respectively. The study area belongs to the Beijing II district.
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The design rainfall patterns and rainfall depths for durations of 180 min and 1440 min with
8 different periods are shown in Figure 4 and Table 2, respectively.

q =
1602 (1 + 1.037 lgP)

(t + 11.593) 0.681 , (4)

where q is the design storm intensity, L/(s·hm2); p is the return period of rainstorms (equals
2, 3, 5, 10, 20, 30, 50, or 100 a); t is the rainstorm duration (equals 180 or 1440 min).
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Figure 4. Design rainfall for eight different periods in the Beijing II district. (a) Designed rainfall
pattern for 180 min in the Beijing II district; (b) designed rainfall pattern for 1440 min in the Beijing
II district.

Table 2. Rainfall depth under different return periods and rainfall durations(mm).

Return Period 2a 3a 5a 10a 20a 30a 50a 100a

Short–duration 63.35 72.17 83.28 98.35 113.20 122.00 133.08 148.12
Long–duration 127.36 145.06 167.53 197.72 228.06 245.68 268.19 298.46

2.3. Two Different Targets Setting Up LID Facilities
2.3.1. Targeting Runoff

To better evaluate the effectiveness of LID facilities, this paper employs two different
approaches to deploy them: RACO and FACO.

Based on the study area of this paper, which includes commercial buildings, residential
buildings, office buildings, green spaces, gardens, and plazas, three types of LID facilities
are considered, namely rain gardens, green roofs, and permeable pavements. Rain gardens
are paved on existing green spaces, gardens, or larger open spaces around buildings;
green roofs are distributed on commercial, residential, and office buildings; and permeable
pavements are paved on open spaces, sidewalks, open parking lots, plazas, and public
places around buildings. In this paper, the parameters of the LID facilities are set according
to the literature [28], as shown in Table 3.

Only surface runoff due to rainfall is considered (i.e., runoff due to snowmelt and
subsurface runoff are not considered). The rainfall generated falls to the ground and
generates runoff over the entire rainfall area. Therefore, runoff reduction is an area–wide
indicator. The more the LID facilities are installed, the more effective the runoff reduction
will be. The installation of LID facilities through RACO means that rain gardens, green
roofs, and permeable pavements are installed in all areas where LID facilities can be
implemented based on the type of land use in the study area, as shown in Figure 5a. The
total areas of rain gardens, green roofs, and permeable pavements in the RACO method
are 11.17 ha, 28.02 ha, and 14.28 ha, respectively.
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Table 3. LID facility parameter Settings.

Process Layer Parameter Rain Garden Green Roof Permeable Pavement

Surface layer

Berm Height/mm 250.00 50.00 0.00
Vegetation Volume 0.10 0.60 0.00
Surface Roughness 0.24 0.80 0.01
Surface Slope/% 5.00 0.20 0.50

Soil layer

Thickness/mm 900.00 100.00 150.00
Porosity 0.18 0.18 0.50

Field Capacity 0.10 0.10 0.20
Wilting Point 0.03 0.03 0.00

Conductivity/(mm·h−1) 18.00 18.00 720.00
Conductivity Slope 10.00 10.00 10.00
Suction Head/mm 90.00 90.00 90.00

Storage layer

Thickness/mm 0.00 — 600.00
Void Ratio 0.75 — 0.75

Seepage Rate/(mm·h−1) 12.70 — 12.70
Clogging Factor 0.00 — 180.00
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2.3.2. Targeting Flooding

When rainfall exceeds the capacity of the drainage network, flooding and ponding
occur. The deployment method of RACO is to install LID facilities wherever possible, which
is effective for runoff abatement but may be less effective for node overflow abatement. The
reason is that there will be no overflow near the node of the subcatchments to arrange LID
facilities; the control effect on runoff is obvious, but the control effect on the node overflow
is not apparent. The deployment of LID facilities in the form of FACO should focus on
the subcatchments near the nodes where overflow occurs. This approach achieves a larger
flooding control effect with a smaller investment in LID facilities.

For FACO, the design rainfall for different return periods is first into the ICM. The
overflow nodes in the original pipe network are targeted, the upstream pipe nodes where
overflow nodes are located are tracked. LID facilities are then placed in the subcatchments
where the tracked nodes are located. With each additional level of subcatchments upstream
of each overflow node, the area of the LID layout increases exponentially due to the
presence of pipe network branches. In other words, the higher the level of subcatchments,
the larger the area of drainage and flooding facilities involved, the higher the costs, and
the less effective the control of overflow from the nodes. Therefore, subcatchments above
Level 3 are not paved. The type and area of LID facilities to be paved in different levels of
subcatchments depend on the type of land use. For FACO, the area of the three types of
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LID facilities laid is shown in Table 4, and the extent of LID laid for a return period of 20 a
under short duration is shown in Figure 5b. The flow chart of the laying process is shown
in Figure 6.
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Table 4. Area of LID facility deployment for FACO (ha).

Duration of
Rainfall

Return
Period

Rain Garden
(ha)

Green Roof
(ha)

Permeable
Pavement (ha)

Total Area
(ha)

Short–
duration

2 a 1.29 4.05 1.39 6.74
3 a 1.32 5.25 1.88 8.44
5 a 1.59 6.87 2.52 10.99

10 a 3.20 10.75 3.75 17.70
20 a 6.38 14.35 5.33 26.06
30 a 6.62 15.81 6.35 28.78
50 a 7.19 16.65 7.29 31.12
100 a 7.20 17.62 7.81 32.63

Long–
duration

2 a 1.42 5.18 1.85 8.45
3 a 1.81 6.04 2.13 9.98
5 a 2.07 9.02 3.64 14.73

10 a 5.30 13.30 4.81 23.41
20 a 6.64 15.31 5.78 27.74
30 a 6.86 16.02 6.38 29.25
50 a 7.06 17.02 7.09 31.16
100 a 7.18 17.90 8.54 33.62

2.4. Cost of LID Facilities

Some studies evaluate LID facilities not only from the aspects of runoff and flooding
but also from economic perspectives [29–31]. To assess the economic viability of LID
facilities deployed through two kinds of targets, this paper adopts the whole life cycle to
calculate the cost of LID facilities, which is divided into two parts: unit infrastructure cost
and unit maintenance cost. According to references [28], the cost settings for three kinds
of LID facilities are shown in Table 5. According to references [29], the LID facility cost
calculation formula is expressed in the following Equation (5):

A = S·B + n·S·C, (5)

where A is the total cost of LID facilities; B is the unit infrastructure cost of LID facilities; C
is the unit maintenance cost of LID facilities; S is LID facilities layout area; n is the life cycle
of LID facilities, and the life cycle of this paper is 30 a.
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Table 5. LID facility cost.

LID Facility Unit Infrastructure Cost
(Yuan·m−2)

Unit Maintenance Cost
(Yuan·m−2·a−1)

Rain Garden 800 55
Green Roof 200 6

Permeable Pavement 780 8.7

2.5. Evaluation Index

Due to the difference in the area of the LID facilities laid out as RACO and FACO,
this paper adopts the percentage reduction of runoff volume per unit area as the runoff
evaluation index and the percentage reduction of overflow volume per unit area as the
flooding evaluation index. The formula is as follows (6):

Pi =
Ai
Si

Ai =
Ci – Bi

Ci
, i = 1, 2, (6)

where P1 and P2 are the percentage reduction of runoff volume and the percentage reduction
of overflow volume per unit area, respectively; S is the area of LID facilities; A1 and A2
are the percentage reduction of runoff volume and the percentage reduction of overflow
volume, respectively; C1 and C2 are the total volume of runoff and the total volume of node
overflow generated through the original pipe network, respectively; B1 and B2 are the total
volume of runoff and the total volume of node overflow after LID facilities are installed at
two targets, respectively.

3. Results
3.1. Comparison of Runoff Control Effect

To better analyze the layout of LID facilities aiming at optimal runoff control and
optimal overflow control effects, this paper adopts eight different return periods. Under
two durations of rainfall (180 min and 1440 min), the results of runoff volume, node
overflow volume, and the area of ponded water are obtained by simulating InfoWorks ICM.
The article analysis flowchart is shown in Figure 7.
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Figure 8a shows the comparison of runoff control effect per unit area for LID deploy-
ment methods of RACO and FACO. Under short–duration and long–duration rainfall
conditions, with an increase in the return period, the runoff reduction effect for both RACO
and FACO shows a decreasing trend, and the FACO displays a local fluctuation increase.
The percentage reduction of runoff volume per unit area for FACO under short–duration
rainfall conditions is 0.81% at maximum and 0.63% at minimum, and for RACO, it is 0.76%
at maximum and 0.61% at minimum. In both cases, the reduction in runoff per unit area is
greater for short–duration rainfall compared to long–duration rainfall.
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3.2. Comparison of Flooding Control Effect

Figure 8b shows the abatement of the total overflow volume per unit area for LID
facilities deployed in RACO and FACO. It can be observed from the figure that the percent-
age reduction of overflow volume per unit area for both RACO and FACO decreases with
the increase in return period for both durations of rainfall, and the percentage reduction
of overflow volume per unit area for the short–duration rainfall is better than that for the
long–duration rainfall. Regarding the percentage reduction of overflow volume per unit
area, the range by which FACO is higher than RACO is between 0.29 and 10.95 (%/hm−2).
The percentage reduction of overflow volume per unit area for FACO under short–duration
rainfall conditions is 12.80% at maximum and 1.73% at minimum, and for RACO, it is 1.87%
at maximum and 1.22% at minimum.

The maximum overflow flow rate at the nodes Is shown In Figures 9–11. Both FACO
and RACO methods have a certain effect on the overflow flow rate at the nodes of the
original pipe network. The maximum overflow flow is mainly concentrated below 1 m3/s,
and there are overflow nodes in both the original pipe network and the FACO method
at different return periods. RACO has no overflow in short–duration rainfall with return
periods of 2 and 3 a and no overflow in long–duration rainfall with return period of 2 a.

To approximate the same overflow volume as FACO, the area of the LID facility laid
out as RACO is adjusted, and the cost comparison between the two is shown in Table 6
below. The cost of FACO has decreased by 4.94% to 46.20% compared to RACO. Both
costs increase with increasing return period, with RACO costs varying from 6.61 × 107 to
4.23 × 108 Yuan for short–duration rainfall and from 1.37 × 108 to 4.23 × 108 Yuan for long–
duration rainfall. FACO costs vary from 6.15 × 107 to 3.25 × 108 Yuan for short–duration
rainfall and from 7.37 × 107 to 3.33 × 108 Yuan for long–duration rainfall.

Table 6. Comparison of costs when RACO and FACO overflow volumes are the same.

Return Period FACO–Short
(Yuan)

RACO–Short
(Yuan)

FACO–Long
(Yuan)

RACO–Long
(Yuan)

2 a 6.15 × 107 6.61 × 107 7.37 × 107 1.37 × 108

3 a 7.18 × 107 8.99 × 107 8.94 × 107 1.48 × 108

5 a 9.14 × 107 1.37 × 108 1.23 × 108 1.74 × 108

10 a 1.58 × 108 2.43 × 108 2.31 × 108 2.43 × 108

20 a 2.66 × 108 3.12 × 108 2.81 × 108 3.07 × 108

30 a 2.88 × 108 3.60 × 108 2.95 × 108 3.70 × 108

50 a 3.15 × 108 3.97 × 108 3.11 × 108 4.07 × 108

100 a 3.25 × 108 4.23 × 108 3.33 × 108 4.23 × 108
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3.3. Comparison of Ponding Control Effect

The ponding results obtained using InfoWorks ICM to simulate are shown in Figures 12–14.
As can be seen from the image, the water is mainly concentrated on the road and spreads on the
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road. When the return period is relatively small, ponding begins to appear on the west side of
the study area. With the increase in the return period, ponding gradually appears on the east,
south, and north sides of the study area, spreading rapidly, and the ponding area gradually
increases. The area of FACO is higher by a range of 92.462 m2 to 24,124.39 m2 compared to
RACO. The difference between FACO’s ponding area and RACO’s is more noticeable when the
return period is small, and the difference is smaller when the return period is large.

Figure 15 shows the ponding areas of FACO and RACO for different water depths
under two types of rainfall durations for the eight return periods. Under short–duration
rainfall, the ponding area of RACO greater than 0.5 m does not change during the return
periods of 10 a to 20 a and 50 a to 100 a; under other conditions, the ponding areas of FACO
and RACO with different water levels increase with the increase in the return period. The
water depth of the ponding in the study area is mainly below 0.15 m. The ponding area
of RACO under short–duration rainfall below 0.15 m is 134,666.65 m2 and 146,251.81 m2

under long–duration rainfall; the ponding area of FACO under short–duration rainfall
with a water depth below 0.15 m is 134,728.45 m2 and 146,803.21 m2 under long–duration
rainfall. At the same return period, the area of ponding gradually decreases with increasing
water depth. At the same water depth, the area of ponding for FACO and RACO gradually
approaches with an increasing return period.
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4. Discussion

As the amount and duration of rainfall increase, the soil layer at the LID facility
gradually becomes saturated, and infiltration capacity diminishes. As a result, runoff and
overflow abatement are higher in the low return period than in the high return period [23].
There may be two reasons why short–duration rainfall is more effective than long–duration
rainfall in reducing runoff and overflow. The first reason is that LID facilities become
less effective as rainfall increases, and the second reason is that at the beginning of the
rainfall period, the infiltration capacity is strong, and the peak of the short–duration rainfall
precedes the rainfall, while the peak of long–duration rainfall lags rainfall. The amount of
rainfall is smaller and persists for a longer period in the early stage of the rainfall period.
So, before the peak of rainfall, the soil may be close to saturation, and the reduction effect
on runoff and overflow will be greatly reduced.

The area of LID facilities to be deployed with FACO depends on the type of land
use contained in the subcatchments where the LID facilities are deployed and the nodes
in the original network where the overflow occurred. For example, in a return period of
20 a, the newly generated overflow points are located downstream of the overflow points
generated in the return period of 10 a. The LID facilities in the subcatchments upstream
of the overflow point in the return period of 20 a have already been deployed and only
need to be deployed in the subcatchments where the newly generated overflow points are
located. At the same time, due to the different land use types in the subcatchments, the
area of newly deployed LID facilities may be small, so the area of LID facilities may vary
depending on the study area, resulting in runoff abatement fluctuating with the change in
the return period.

RACO distributes LID facilities throughout the study area at all locations where LID
facilities can be placed, but there may be locations where LID facilities do not generate
overflow or generate a small amount of overflow, resulting in wasted LID facilities. FACO
distributes LID facilities in the subcatchments upstream of the nodes that generate overflow,
which allows for the full capacity of the LID facilities to be utilized. When the overflow
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volume of the two is approximately the same, FACO’s LID facilities are installed in a
smaller area than RACO’s, and accordingly, the cost of FACO is less than that of RACO.
FACO provides better attenuation of overflow volume per unit area than RACO. As the
number of overflow–generating nodes in the network increases with the increase in the
return period, the area of LID facilities in FACO will continue to approach that of RACO.
Therefore, the difference between the two in terms of abatement of overflow volume per
unit area will gradually decrease.

Urban pipe networks are usually built on both sides of roads. When the rainfall exceeds
the carrying capacity of the urban pipe network, overflow from inspection wells will first
produce ponding on low–lying roads and then spread out from the roads. The northwest
trunk pipeline in the study area has a thin pipe diameter and weak drainage capacity, and
the problem of ponding occurs first. Due to certain errors in the topographic data and
the topography of the current study area, after the topographic data are adjusted, some of
the square grids will be low–lying to form localized depressions. With the increase in the
return period, the overflow flow will gradually increase, but the water is not overflowing
from the depressions to the surrounding spread. With the increase in the return period, the
area of LID facilities laid using RACO and FACO gradually becomes close to each other.
So, at a return period of 20 a or less, there is a significant difference in the area of the two
ponding, and at return periods greater than 20 a, the two ponding areas gradually approach
each other.

The results of this paper on the deployment of LID facilities for the sources of flooding
are consistent with the results of WANG et al. [32].

5. Conclusions

Under the duration of rainfall of 180 min and 1440 min, this paper adopts eight
different return periods and uses the InfoWorks ICM model to analyze the layout of LID
facilities aiming at runoff control and flooding control from three aspects: runoff, flooding,
and ponding. Conclusions are drawn as follows:

1. This paper verifies the control effect of LID facilities on runoff, flooding, and ponding,
which is better in a low return period than in a high return period and better in short
durations than in long durations. With the increase in the return period, the soil
gradually approaches saturation, which will gradually weaken the capacity of LID
facilities.

2. Under return periods of less than 5 a, FACO can fully utilize the capacity of LID
facilities to reduce the waterlogged area. FACO and RACO have very small or even
close to zero ponding areas at short–duration rainfall with a return period of less than
5 a and at long–duration rainfall with a return period of less than 3 a. However, the
LID placement area of RACO is much larger than that of FACO. The extra area of
LID facilities of RACO compared to FACO cannot utilize the capacity of LID facilities,
which results in wastage.

3. At return periods greater than 20 a, the deployment of LID facilities to alleviate
flooding with FACO has no significant advantage over RACO. Under return periods
of less than 20 a, the reduction of flooding per unit area through FACO is much larger
than RACO, while at return periods greater than 20 a, the difference between FACO
and RACO narrows down.

4. FACO has a better economy for the mitigation of urban flooding. When the overflow
volume of FACO and RACO is approximately the same, FACO can reduce the waste of
LID facilities to a certain extent due to its deployment in the subcatchments upstream
of the overflow point, and its deployment area and cost are lower than that of RACO.

5. The deployment of LID facilities using FACO is suitable for return periods below
5 a, while LID facilities are often used as auxiliary measures. Therefore, for return
periods exceeding 5 years, engineering measures such as network renovation and
pump station construction should be adopted to alleviate urban flooding. This study
only selects the central urban area of Beijing as the research area. The application of
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FACO to different urban areas to analyze the methodology more comprehensively is
subject to further research. The proposed FACO deployment method has shown better
results compared to RACO, but it may not be the optimal solution. The combination
of FACO and optimization algorithms requires further research.
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FACO flooding as the control objective
RACO runoff as the control objective
LID low impact development
Short–duration rainfall of short duration (180 min)
Long–duration rainfall of long duration (1440 min)
SWMM storm water management model
ICM integrated catchment management
NSE nash–sutcliffe efficiency
RMSE root mean square error
PBIAS percentage bias
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