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Abstract: Climate change has intensified the risk of extreme precipitation, while mountainous areas
are constrained by complex disaster mechanisms and difficulties in data acquisition, making it
challenging for existing critical rainfall threshold accuracy to meet practical needs. Therefore, this
study focuses on Yunnan Province as the research area. Based on historical flash flood events, and
combining remote sensing data and measured data, 12 causative factors are selected from four
aspects: terrain and landforms, land use, meteorology and hydrology, and population and economy.
A combined qualitative and quantitative method is employed to analyze the relationship between
flash floods and triggering factors, and to calibrate the parameters of the RTI (Rainfall Threshold
Index) model. Meanwhile, machine learning is introduced to quantify the contribution of different
causative factors and identify key causative factors of flash floods. Based on this, a parameter η

coupling the causative mechanism is proposed to optimize the RTI method, and develop a framework
for calculating county-level critical rainfall thresholds. The results show that: (1) Extreme rainfall,
elevation, slope, and other factors are direct triggers of flash floods, and the high-risk areas for flash
floods are mainly concentrated in the northeast and southeast of Yunnan Province. (2) The intraday
rainfall has the highest correlation with the accumulated rainfall of the previous ten days; the critical
cumulative rainfall ranges from 50 mm to 400 mm. (3) The county-level critical rainfall threshold
for Yunnan Province is relatively accurate. These findings will provide theoretical references for
improving flash flood early warning methods.

Keywords: flash flood; triggering factors; RTI; critical rainfall threshold; Yunnan province

1. Introduction

Global climate warming has led to an increase in extreme precipitation, resulting in one
of the most severe flood disasters—flash floods. Flash floods occur mainly in mountainous
areas with complex terrain, caused by heavy rainfall, and can trigger disasters such as
debris flows and landslides [1]. They are characterized by their suddenness, short duration,
rapid onset, and high destructiveness [2], causing serious damage to the national economy,
people’s lives, and property. For example, on 21 August 2023, a major flash flood disaster
in Luga Town, Jinyang County, Sichuan Province, China, resulted in 52 deaths and missing
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persons. In July 2022, heavy rain-induced floods in multiple regions of Iran caused over
100 deaths and missing. Therefore, how to enhance flood disaster resilience, especially
improving the accuracy of key measures for flash flood early warning and forecasting, has
become a focal point in the field of disaster risk reduction.

Since the 20th century, both domestic and international research has been conducted
on the prevention of flash flood disasters, primarily focusing on its core technology of early
warning and forecasting. The United States established the Flash Flood Guidance System
(FFGS) in 1969, which is currently one of the most widely used flash flood warning systems
in the world [3]. Japan, being prone to various geological disasters, has conducted extensive
research on landslide and debris flow warnings. For example, in 1984, the Japanese
government established guidelines for determining critical rainfall thresholds for debris
flow disasters. In addition, the Sediment Disaster Prevention Law, implemented since 2001,
actively promotes the establishment of sediment disaster monitoring and early warning
systems [4]. In 1990, scholars in Taiwan, China, proposed that an early warning system
is a primary condition for debris flow prevention. Since 2000, the Taiwan Soil and Water
Conservation Bureau has utilized a debris flow warning system to establish a mechanism
and platform for issuing debris flow warnings. In mainland China, research on flash flood
disaster warnings started relatively late [5]. In 2006, following the State Council’s approval
of the “National Plan for Flood and Debris Flow Disaster Prevention”, a comprehensive
strategy for flash flood disaster prevention was established, emphasizing a “prevention-
first, integrated prevention and control, emphasis on non-engineering measures, and a
combination of non-engineering and engineering measures” approach to flash flood disaster
prevention [6].

Early warning indicators are critical values derived from rainfall information and dis-
aster conditions for specific disaster prevention objects. They generally include three types:
critical rainfall, critical water level, and critical flow rate [7–9]. Currently, research on early
warning indicators has become more refined. The determination methods have evolved
from complete empirical approaches to semi-empirical and semi-theoretical methods, and
further, to dynamic early warning. Static early warning indicator analysis involves various
methods, including statistical induction, empirical analysis, and hydrological methods. It
mainly analyzes the correspondence between rainfall elements and flash flood disasters.
These methods are simple to calculate and widely applied in operational settings [10,11].
Dynamic critical rainfall thresholds take into account real-time soil moisture. When the
peak flow at the watershed’s outlet section reaches the flow threshold, the required rainfall
amount is estimated. Bournas et al. [12] used the Flash Flood Guidance (FFG) method
in Greece to predict flash floods, conducting sensitivity analysis on threshold runoff and
soil moisture conditions, which allowed for advanced warning time. Ye et al. [13] utilized
the Xin’anjiang model to obtain the dynamic critical rainfall threshold for flash floods and
successfully applied it in the Pihe Basin in Anhui Province. Liu et al. [14] proposed a flash
flood dynamic critical rainfall warning method based on a distributed hydrological model,
and successfully applied it in the Suichuan River Basin. Furthermore, some experts have
attempted to employ both hydrodynamic models and machine learning. Tufano et al. [15]
used a two-dimensional hydrodynamic model to generate flood inundation maps and
obtained the risk range by overlaying the layers. Janizadeh et al. [16] utilized various
machine learning methods to assess flash flood susceptibility in the Tafresh watershed in
Iran. He established a geographic spatial database containing 320 historical flood events.
Combining this database with eight selected flood-influencing factors, he found that the
Average Decision Tree (ADT) method outperformed other methods. In summary, research
on dynamic critical rainfall thresholds in China started relatively late. The purely empirical
method, despite lacking clear physical mechanisms, has relatively low data requirements
and is commonly applied in un-gauged areas. The semi-empirical and semi-theoretical
methods are in a developmental stage, with the primary approaches currently being the
water level–flow inverse method and the comprehensive multi-factor rainfall warning
index method.
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The water level–flow inverse method primarily involves simulating flood processes
using different hydrological models to determine the critical flood level. Subsequently,
by considering cross-sectional characteristics and the hydrological-flow relationship, the
critical flow is obtained, allowing for the reverse calculation of the warning rainfall. Then,
considering the cross-sectional characteristics and the hydrological–flow relationship, the
critical flow is obtained, allowing for the reverse calculation of the warning rainfall. For
example, Zhang et al. [17] established the water level–flow relationship using the Manning
formula. Subsequently, they introduced the HEC-HMS model to reverse calculate the
critical rainfall for flash flood disasters in small watersheds. Yuan et al. [18] analyzed the
influence of antecedent soil moisture conditions (ASMC) and rainfall patterns on critical
rainfall and calculated the critical rainfall thresholds corresponding to different scenarios.
Rainfall is the main triggering factor for flash floods, including rainfall amount, intensity,
and duration. Flash floods are closely related to factors such as intraday rainfall, antecedent
rainfall, and rainfall intensity. The triggering rainfall (intensity) is an essential factor [19].
L. Alfieri et al. [20], based on the European Precipitation Index for Catchments (EPIC),
determined the threshold for extreme accumulated rainfall in flash flood-prone small water-
sheds, and this threshold demonstrates good predictive accuracy. The Rainfall Triggering
Index (RTI) method, proposed by Jan [21], is a mudflow disaster defense method that
has been successfully applied in practice. This method primarily takes into consideration
rainfall factors related to flash floods, such as rainfall intensity, antecedent rainfall, and
accumulated rainfall, to determine the warning indicators.

Relevant researchers often concentrate on small watersheds, using their historical
flood events to determine warning indicators through the construction of critical area maps
or empirical frequency methods. They also explore the application of the RTI model. Nam
et al. [22] predicted landslides and mudflows by calculating rainfall triggering indices
that reflect accumulated rainfall and rainfall intensity, and provided real-time forecasts
using rainfall information. Guo et al. [23] calculated the composite warning indicators
for the Beizhangdian small watershed, and subsequently determined the critical values
corresponding to different warning information. Peng et al. [24] employed the rainfall-
driven index method, at the village level, to establish the relationship between rainfall
intensity and effective accumulated rainfall. Ma et al. [25] introduced the rainfall triggering
index β and, based on different triggering factors, used either the RTI method or the I-D
method to analyze the accumulated warning rainfall in Yunnan Province. Obviously, the
RTI model has been applied in China and has achieved certain early warning effectiveness.

The RTI method not only considers multiple rainfall factors but also improves the
linear I-R model. It has low data requirements and mainly infers critical rainfall based on
the relationship between flash floods and rainfall. However, this method focuses too much
on flash floods’ driving factors and ignores the influence of regional geography, hydrology,
er al., resulting in less-than-ideal practical early warning effectiveness. In recent decades,
researchers, both domestically and internationally, have conducted in-depth studies on
the concept, formation, development, and evolution of flash flood disasters. They mainly
analyze key influencing factors such as rainfall characteristics, topography, soil types, and
vegetation cover to enhance the accuracy of defense against flash flood disasters. With
the continuous development of modern science and technology, high-resolution remote
sensing data are widely used to explore the characteristics of study areas and watersheds
prone to flash flood disasters for risk assessment. Subraelu. et al. [26] combined eight
satellite image-derived parameters to predict the flash flood-vulnerable zones in Arid
Region, Fujairah City, UAE. Mohamed et al. [27] explored methods for determining the
weights of hazard and vulnerability factors, such as topography, geology, and hydrology,
utilized to calculate the risk of flash floods in Egypt. Hamid. et al. [28] digitized ten factors,
including elevation, slope, land use, terrain wetness index, etc., and then created a flash
flood map to estimate the flash flood sensitivity. The underlying surface parameters are
an important basis for flash flood risk prediction. Satellite remote sensing can provide
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effective basic information for data-deficient areas, which is advantageous in reducing the
uncertainty of early warnings [29].

Remote sensing data alleviate the constraints of the natural environment, expanding
the scope of data collection and providing valuable foundational information for data-
deficient areas [30]. Ruzza et al. [31] evaluated the potential of Sentinel-1 SAR imagery in
tracking floods during flood events in the Philippines. El-Magd et al. [32] utilized Landsat-8
imagery and other remote sensing data to explore the impact of flash floods on industrial
areas. Bui et al. [33] utilized a GIS database, combined with 12 influencing factors, to
construct a prediction model and validated it. With the development of modern information
technology, how to integrate remote sensing data to explore the disaster mechanisms of
flash floods, thereby improving the accuracy of traditional warning methods, is a crucial
issue that urgently needs to be addressed in flash flood disaster defense efforts. Therefore,
this study focuses on Yunnan as the research area, utilizing historical flash flood events,
combined with remote sensing data and field measurements. Through quantifying the
contributions of triggering factors in flash floods, the study introduces the coupling factor
η for disaster mechanisms to optimize and improve the RTI method. Subsequently, a
framework for calculating county-level critical rainfall threshold for flash floods has been
developed. Yunnan is a region prone to flash floods in China. With the increasing frequency
of extreme weather events in the future, improving the accuracy of flash flood warning in
Yunnan Province can provide theoretical references for coping with future disasters. This
research will provide theoretical reference and insights for the ongoing flash flood disaster
defense efforts in China.

2. Study Area and Data
2.1. Research Area

Yunnan is located in the southwestern border of China, between 97◦31′ E and 106◦12′ E
longitude and 20◦08′ N and 29◦16′ N latitude, with a total area of 394,100 km2, accounting
for 4.1% of the total national area. It has 16 prefecture-level administrative regions and
129 county-level administrative regions. The total population is 48.583 million, with a
population density of 123.3 people per square kilometer, and a GDP of CNY 2.3223 trillion.
Yunnan is located on a low-latitude plateau, characterized by many mountains, high
mountains, steep slopes, and complex topography. The annual rainfall ranges from 100 mm
to 1500 mm, with more rain in the south and less in the north, distinct wet and dry seasons,
and uneven distribution of precipitation in time and space, especially concentrated in the
wet season.

Influenced by topography, landforms, climate, etc., Yunnan frequently experiences
small-scale regional heavy rainstorms and single-point heavy rainstorms, making it a
heavily flash flood-affected area in China. In summer, Yunnan is greatly affected by the
southwest and southeast monsoons, with a high occurrence of short-term regional heavy
rainfall and sustained low-intensity rainfall, making it susceptible to serious flash floods.
According to data from 2011 to 2016, more than 350 people died or went missing due to
flash floods. Over 90% of these flash floods occurred between the months of June and
September, with July being the most frequent month for such disasters, accounting for
approximately 45% of the annual flash flood events. The areas with higher density of flash
flood occurrences are mainly in the northeast, northwest, and southeast. Among them,
Honghe Prefecture and Zhaotong City experienced a higher number of flash flood incidents
(Figure 1).
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Figure 1. Location of the research area and distribution of flash floods (2011–2016).

2.2. Data

The flash flood disasters mainly come from officially authorized and verified statistics,
including information from the Ministry of Water Resources and various provincial water
resources departments. This study is primarily constrained by insufficient data. There was
a higher occurrence of flash floods in Yunnan Province from 2011 to 2016; we compiled flash
flood disaster data for Yunnan Province from 2011 to 2016, including the occurrence time,
location, and the number of missing and deceased individuals. Simultaneously, we collected
the intraday 24 h accumulated rainfall data for each event, along with the corresponding
rainfall intensity, to analyze the rainfall before and after flash flood occurrences. The
geomorphic type is primarily classified based on elevation, including plains, plateaus, hills,
and mountains. Additionally, subcategories such as small, medium, large, and extreme are
further defined based on the degree of undulation. Table 1 shows the factors causing flash
flood and their data sources.

Table 1. Factors causing flash flood and their data sources.

Characteristics Name Source

Topographic
Digital Elevation Model (DEM) Shuttle Rador Topography Mision (SRTM)

Slope
Geomorphic type

Chinese Academy of Sciences Resource and
Environmental Science Data CenterLand

Soil type
Soil Texture

Land use status

Meteorological Maximum 3 h rainfall Chinese Meteorological Dataset
Maximum 24 h rainfall

Hydrological Distribution of water systems Chinese Vector Format Datasets
Socio-economic Population Chinese Academy of Sciences Resource and

Environmental Science Data CenterGross Domestic Product (GDP)
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3. The County-Level Flash Flood Warning Framework Coupled with the
Disaster-Causing Mechanism
3.1. The Framework for the County-Level Critical Rainfall Threshold

This article focuses on the calibration and optimization of the RTI model, mainly
using remote sensing data and measured data to introduce the parameter η associated
with causative mechanisms, in order to address the insufficient consideration of causative
factors in the traditional RTI model. The study develops a framework for county-level
critical rainfall warning thresholds. Specifically, to overcome the limitation of the traditional
RTI model that mainly focuses on rainfall factors, we propose a coupled disaster-causing
mechanism parameter, η. This involves initially standardizing influencing factors such as
terrain and landforms, land use, meteorology and hydrology, and population and economy.
Subsequently, η is obtained through a weighted process, leading to the improvement of the
cumulative rainfall (Pa) to ηPa. This modification aims to present an enhanced RTI model.
The research area is Yunnan Province, where 12 key causative factors are identified. A
combined qualitative and quantitative method is used to analyze the relationship between
flash floods and triggering factors. Machine learning is used to quantify the contribution of
causative factors, and the parameter η is proposed to modify the previous n-day cumulative
rainfall Pa to ηPa. As the flash flood triggering index β for most events in Yunnan Province
is greater than 5, the preceding rainfall is chosen as the independent variable, and the
rainfall on the current day is taken as the dependent variable for regression analysis. The
preceding rainfall days, denoted as i, are determined using the maximum linear correlation.

The RTI cumulative probability is calculated using the Weibull empirical frequency
method. The lower and upper bounds of the rainfall warning are established as the lower
bound line (RTI10) and upper bound line (RTI90), respectively. These bounds divide the
possibility of flash flood occurrence into high, moderate, and low categories. The warning
value for Yunnan Province is set as RTI50, and R50 is taken as the critical rainfall indicator
Rc. The range of warning rainfall for Yunnan Province is determined accordingly. Finally,
using ArcGIS 10.8, the critical rainfall thresholds in Yunnan Province are divided at the
county level, obtaining the flash flood warning thresholds for each county. This contributes
to the development of a framework for calculating county-level critical rainfall threshold.
The specific approach is shown in Figure 2.
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3.2. RTI Model and Parameter Calibration Method

Flash flood disasters are primarily associated with heavy rainfall. First, we refer to
the definition of rainfall events as outlined by Jan et al. [21]. Rainfall events are primarily
determined based on the magnitude of hourly rainfall. The start time of rainfall is consid-



Water 2024, 16, 376 7 of 15

ered when it exceeds 4 mm, and the end time is when it is less than 4 mm and continues so
for 6 h. The peak of the hourly rainfall represents the flash flood occurrence. The rainfall
preceding the onset of this rainfall is referred to as antecedent rainfall. The division of
rainfall events is depicted in Figure 3.
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The RTI model, proposed by Jan et al. [21], is a method for determining the indicators
for flash flood warnings by considering factors related to flash floods such as rainfall inten-
sity, antecedent rainfall, and accumulated rainfall. It is currently widely operationalized in
disaster defense efforts. The model is the product of two indicators: rainfall intensity (I) in
mm/h and accumulated rainfall (Rt) in mm. The specific equation is as follows:

RTI = I × Rt (1)

Rt = R0 + Pa = R0 + ∑n
i=1 αiRi =

n

∑
i=0

αiRi (2)

where:

I: rainfall intensity in mm/h.
Rt: the accumulated rainfall before the occurrence of a flash flood in mm.
R0: the accumulated rainfall from the start of rainfall to the occurrence of the flash flood
in mm.
Pa: the accumulated rainfall in the n days before the start of the flash flood in mm.
i: the number of days used to calculate the pre-event rainfall.
α: the intraday rainfall weighting coefficient.

Indeed, this model only takes into account rainfall factors, while flash floods are
the result of multiple factors combined. Elevation, slope, land use, etc. play a pivotal
role in triggering flash floods. Therefore, we propose the parameter η that couples with
the disaster-causing mechanism. This parameter primarily improves the accumulated
rainfall Pa to ηPa, resulting in an enhanced RTI model. The specific calculation equation is
as follows:

η =
w1 f1 + w2 f2 + · · ·+ wi fi

f1 + f2 + · · ·+ fi
(3)

where:

fi: the average value of the i-th disaster-causing factor;
wi: the weight of the i-th disaster-causing factor.

When calculating η, obtain disaster-causing factor information and analyze it through
remote sensing data, typically selecting no more than 15 factors, and obtain their disaster-
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causing weights using machine learning. Then, the standardized processing is conducted,
and the weighted sum is obtained. After determining the rainfall driving indicators,
the lower and upper boundary lines for flash flood rainfall warnings are established.
The probability of a flash flood occurrence is determined based on a linear relationship,
calculated using the following equation:

RTIp = RTI10

(
P − 0.1

0.8

)
(RTI90 − RTI10) (4)

where:

RTIP: the RTI value when the probability of a flash flood occurrence is P%.

The RTI of historical rainfall events (including both flash flood and non-flash flood
events) are sorted in ascending order. RTI10 is the value at the 10th percentile, calculated
using the Weber method [21]. RTI90 is the value at the 90th percentile. The probability
of a flash flood occurrence is then divided into different zones. when the RTI value for a
rainfall event is less than RTI10, the likelihood of a flash flood occurrence is low, whereas
if it exceeds RTI90, it indicates a high probability of a flash flood event. Combined with
the analysis of disaster-causing factors, the warning value is set at RTI50, where R50 is
RTI50 divided by 10 mm/h. The warning rainfall range is determined using a 50 mm
interval. Finally, the county’s warning indicators are obtained by combining the above with
ArcGIS 10.8.

In addition, this study also references the flash flood trigger index β proposed by Ma
et al. [25], which categorizes factors that trigger flash floods into short-term heavy rainfall-
induced and sustained low-intensity rainfall-induced factors. The calculation equation is
as follows:

β = R/R0 (5)

where:

R: the effective accumulated rainfall;
R0: the intraday rainfall.

4. Results and Analysis
4.1. Analysis of Disaster Causal Factors
4.1.1. Topography and Landforms

Topographic factors are important factors that trigger flash floods. Yunnan is located
in the transitional zone from the Qinghai–Tibet Plateau to the Yungui Plateau and Sichuan
Basin, with higher elevations in the northwest and lower elevations in the southeast,
gradually decreasing in altitude from north to south. According to Figure 4a–c, mountains
and plateaus account for 94% of the total area. The eastern part of Yunnan is mainly
composed of the Yungui Plateau, with an average elevation of around 2000 m. The terrain
is relatively gentle, characterized by rolling low hills. The northwest and northeast are the
southern extensions of the Qinghai-Tibet Plateau, with a distribution of large and medium-
sized undulating mountains and valleys, featuring significant differences in elevation.
The south gradually becomes gentler, with elevations ranging from 800 m to 1000 m.
Approximately 40% of the province’s mountainous areas have slopes greater than 25◦,
while in the northwest and northeast, this figure can reach 60% to 90%. Except for the
relatively gentle terrain in the east, where the frequency of flash floods is low, other regions
are characterized by mountainous areas with high elevations and a high risk of flash floods.
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4.1.2. Soil and Land Use

Loose soil and soil composition are the material source conditions for flash floods. Soil
types and land use reflect the impact of human activities on flash floods. Figure 4d–f depict
the soil conditions in Yunnan. Yunnan has various soil types, with ferrallisols, luvisols, and
skeletol primitive soils accounting for approximately 92% of the total soil area. Ferralisols
account for about 55%, mainly distributed in the southwest and east. The main soil types
in this region are red soil and red-yellow soil. Humans have converted gentle slopes such
as valley slopes into cultivated land, resulting in low vegetation cover and low organic
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matter content, making the soil prone to erosion and disintegration. Leaching soils belong
to forest soils and are mostly distributed in the high mountains of northwest and northeast
Yunnan. The forest coverage is high, making it less susceptible to erosion and loss from
heavy rainfall. In terms of soil texture, the majority of soils have a sand content of about
20% to 40%, mainly distributed in northwest and northeast Yunnan, accounting for about
40% to 60%. Most of the land used for agriculture, residential purposes, etc., which has
good water retention and is less prone to erosion, is located in soils with a clay content
greater than 40%. However, human activities have reduced the soil’s erosion resistance.

4.1.3. Meteorology and Hydrology

Rainfall and rainfall intensity are important water sources and driving conditions for
flash floods. Among them, the 24 h rainfall can reflect the distribution of rainfall, and the
3 h rainfall can reflect the rainfall intensity. Combined with Figure 4g–i, the maximum 24 h
rainfall ranges from 25 mm to 180 mm, while most areas have a 24 h rainfall of 50 mm to
100 mm. Yunnan has abundant rainfall during the flood season, especially in the eastern
and southern basins, where heavy rainfall often occurs, leading to flash flood disasters. The
range of 3 h rainfall is 16 mm to 124 mm, and its spatial distribution is basically consistent
with the distribution of 24 h rainfall. Obviously, the combination of rainfall and rainfall
intensity results in more localized and short-duration heavy rainfall, which can trigger flash
flood disasters. Yunnan has a dense river system, with high mountains and canyons in the
west, characterized by large drops and large changes in water flow. Therefore, during flash
floods, river water levels rise rapidly. Meantime, the density of the river system is high,
and there are many streams with flash flood potential.

4.1.4. Population and Economy

Population and economic characteristics mainly reflect the distribution of human
settlements and social property, which can provide a preliminary assessment of affected
people and the extent of economic losses after flash floods. Combined with Figure 4j–l,
the population distribution is more concentrated in the east and less in the west. From a
topographical perspective, areas with gentle terrain in valleys and basins have a higher
population density. The population in the northwest accounts for only 1.97% of the total
population, indicating significant differences in population distribution. Economic and
population distribution exhibit a positive correlation in spatial terms. In a few counties
in eastern and central Yunnan, the economic development level is relatively high, and
the population is concentrated. However, economic development lags behind population
growth. Conversely, in the southwestern and southeastern regions, the situation is reversed,
with a concentration of population and relatively lower economic development.

The occurrence of flash floods is influenced by highly complex environmental factors,
with various triggering factors interacting. Firstly, rainfall serves as a water source and
driving force for flash floods; extreme 24 h rainfall often occurs during heavy rain events
with high precipitation intensities, and is related to slope conditions of the terrain. Terrain
and topography are fundamental factors triggering flash floods, while complex geological
conditions exacerbate internal factors of flash floods [34]. In flash flood-prone areas, the
terrain usually has steep slopes, significant longitudinal channel gradients, and watershed
shapes that promote the convergence of water flow. Areas with significant terrain changes
and steep slopes have a higher risk of flash floods. Based on the above research results,
the frequency of flash floods is higher in the southeastern and northeastern regions of
Yunnan Province. This is primarily due to the lower elevation, dense population, and
significant human activities in these areas, which accelerate the occurrence of flash floods.
For example, although there are many high-altitude mountainous areas in the northwest of
Yunnan Province, the occurrence of flash floods is relatively low. However, the terrain in
this region undergoes significant changes, with high channel gradients and valley slopes.
Additionally, soil type is directly related to the occurrence of flash flood disasters. The
southeast of China is dominated by red soil, which is extensively cultivated, leading to
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a decrease in soil fertility and poor soil aggregation. The northeastern region has high
sand content in the soil and thick soil layers. Excessive development of red soil by human
activities has resulted in reduced particle cohesion and increased loose materials, making it
more prone to flash floods.

Human activities and economic development also play a key role in triggering flash
floods, affecting land use and resulting in low vegetation coverage. Furthermore, econom-
ically underdeveloped areas often lack adequate defense measures and complete early
warning systems, making it difficult to take timely and effective measures to reduce disaster
losses. Considering the above influencing factors, it is evident that the northwestern region
of China has significant terrain changes and a lower frequency of flash floods. This is
mainly due to lower rainfall, higher elevations, and greater forest coverage, with minimal
human influence. On the other hand, Nujiang Prefecture in the southwest is at higher
risk of flash floods due to location on windward slopes, significant terrain changes, and
abundant precipitation. The central region has gentle slopes, resulting in a lower risk of
flash floods.

4.2. Critical Warning Indicators for Flash Flood Disasters
4.2.1. Rainfall Triggering Index (RTI)

First, divide the rainfall events; that is, calculate the 1 h rainfall intensity in flash flood
events. Then, calculate the effective accumulated rainfall (Rt), which includes antecedent
accumulated rainfall and event-specific accumulated rainfall. The previous rainfall affects
the soil moisture content, which in turn affects the soil’s permeability, pore water pressure,
and shear strength. The closer the soil is to saturation, the less rainfall is required to trigger
a flash flood. To calculate the RTI (Rainfall Triggering Index) for each flash flood event, you
should gather the accumulated rainfall for the preceding 10 days and the rainfall on the
day of the event. Then, multiply the effective accumulated rainfall by the rainfall intensity.

In the RTI model, the main parameters involved are α, i, and η. α is the intraday
rainfall weighting coefficient, which is related to factors such as soil moisture content
and underlying surface conditions. In this case, the measured value of α is 0.78 [35].
The parameter i represents the number of days of antecedent rainfall, and it is determined
through a multiple regression analysis. η is primarily determined through machine learning
by analyzing the disaster contributions of triggering factors, selecting key triggering factors,
standardizing them, calculating the multi-year average values of these triggering factors,
and finally using Equation (3) to compute it.

Based on the above research, historical flash flood events and corresponding rainfall
factors are further organized to calculate the β index. Since the majority of flash flood
events in Yunnan Province have β values greater than 5, this study mainly considers the
influence of previous rainfall. Taking the accumulated rainfall in the previous period as the
independent variable and the rainfall on the day as the dependent variable, linear functions
(Y = aX + b), exponential functions (Y = aebX), logarithmic functions (Y = alnx + b), and
power functions (Y = aXb) are used for regression analysis. The correlation between the
rainfall on the day and the accumulated rainfall in the previous period is shown in Table 2,
with i representing the value corresponding to the maximum coefficient of determination
(R2). Clearly, the accumulated rainfall in the previous 10 days has a significant impact on
flash flood occurrences. The linear correlation between Pa10 and the rainfall on the day is
the strongest, and the relationship is expressed as:

Pa10 = 6.3979R0 + 11.247 (6)

Table 2. Correlation between intraday rainfall and accumulated rainfall.

Pa1 Pa2 Pa3 Pa5 Pa6 Pa7 Pa9 Pa10 Pa12 Pa13

Linear functions 0.4192 0.7746 0.7684 0.7819 0.7801 0.7961 0.8004 0.8020 0.8001 0.8017
Exponential functions \ \ 0.4959 0.6164 0.6034 0.6162 0.6530 0.6540 0.6538 0.6494
Logarithmic functions 0.2275 0.3779 0.3870 0.3960 0.4026 0.4209 0.4112 0.4099 0.4098 0.4082

Power functions \ \ 0.3551 0.4441 0.4292 0.4505 0.4690 0.4662 0.4626 0.4578
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4.2.2. Calculation of Warning Indicators

After calculating the RTI for each flash flood event, combined with the critical zone
analysis of the possibility of flash flood occurrence, warning thresholds are established.
Firstly, events that meet the condition β > 5 are selected, and the RTIs are arranged in as-
cending order. The Weber empirical frequency method is used to calculate the accumulated
frequency of the RTI at 10% as RTI10. Events with accumulated frequencies less than 10%
are excluded. Similarly, the RTI at 90% is taken as RTI90. The results are RTI10 = 60 mm2/h
and RTI90 = 1300 mm2/h. The possibility of flash flood occurrence is divided into three
zones: when the RTI of a precipitation event is <RTI10, the possibility of flash flood occur-
rence is very low; when RTI10 < RTI < RTI90, it belongs to the intermediate possibility zone
of flash flood occurrence; when RTI > RTI90, the possibility of flash flood occurrence is very
high. The RTIs for flash flood events are shown in Figure 5.

Water 2024, 16, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 5. Distribution of RTI values for flash flood events. 

 
Figure 6. Zoning map of flash flood occurrence probability. 

4.3. Determination of County-Level Flash Flood Warning Indicators 
Based on the characteristics of the disaster-causing factors, a flash flood risk zoning 

is established. The high-risk areas include the northeastern and southeastern regions of 
Yunnan Province, while the moderate-risk areas are in the northwestern and southwest-
ern regions. The remaining areas have relatively low risk. Chinese flood disaster defense 
is organized at the county level. For practical convenience, based on the improved RTI 
model, this study, after obtaining gridded critical rainfall data for flash floods in Yunnan 
Province, integrates county-level administrative boundary data. It utilizes the zonal sta-
tistics tool in ArcGIS 10.8 to calculate the grid mean values for different counties. This 
approach aims to derive the critical rainfall thresholds for each county in Yunnan Prov-
ince. Eight rainfall ranges from 50 mm to 400 mm are divided into counties, establishing 
the county-level critical rainfall warning index in Yunnan Province, as shown in Figure 7. 
Among these, there are more than thirty high-risk flash flood counties, primarily located 
in the northeastern part of Zhaotong City, the southeastern regions of Wenshan Prefec-
ture, and Honghe Prefecture. The counties with higher flash flood risks include Suijiang 
County, Shuifu County, and Yanjin County in the northeast of Yunnan; Pingbian County, 

Figure 5. Distribution of RTI values for flash flood events.

According to Equation (4), RTI50 is obtained as 680 mm2/h and RTI70 as 990 mm2/h.
Through comprehensive analysis, RTI50 is determined as the warning indicator. Then,
RTI50 is divided by 10 mm/h to obtain the critical rainfall warning indicator Rc (mm),
where R50 is 68 mm. Consequently, the critical accumulated rainfall range is determined to
be 50 mm to 400 mm, with an interval of 50 mm and divided into 8 intervals. The critical
zone is shown in Figure 6.
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4.3. Determination of County-Level Flash Flood Warning Indicators

Based on the characteristics of the disaster-causing factors, a flash flood risk zoning
is established. The high-risk areas include the northeastern and southeastern regions of
Yunnan Province, while the moderate-risk areas are in the northwestern and southwestern
regions. The remaining areas have relatively low risk. Chinese flood disaster defense is
organized at the county level. For practical convenience, based on the improved RTI model,
this study, after obtaining gridded critical rainfall data for flash floods in Yunnan Province,
integrates county-level administrative boundary data. It utilizes the zonal statistics tool
in ArcGIS 10.8 to calculate the grid mean values for different counties. This approach
aims to derive the critical rainfall thresholds for each county in Yunnan Province. Eight
rainfall ranges from 50 mm to 400 mm are divided into counties, establishing the county-
level critical rainfall warning index in Yunnan Province, as shown in Figure 7. Among
these, there are more than thirty high-risk flash flood counties, primarily located in the
northeastern part of Zhaotong City, the southeastern regions of Wenshan Prefecture, and
Honghe Prefecture. The counties with higher flash flood risks include Suijiang County,
Shuifu County, and Yanjin County in the northeast of Yunnan; Pingbian County, Maguan
County, and Hekou County in the southeast of Yunnan; Changning County and Lancang
County in the western part; and Bijiang County and Gongshan County in the northwest
of Yunnan.
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In conjunction with the RTI, most of the flash flood high-risk counties have relatively
low critical rainfall warning thresholds. When these thresholds are reached, it is necessary
to issue corresponding warnings to mitigate the losses caused by flash flood disasters.

5. Conclusions

This study explores the correlation between flash floods and triggering factors and
qualitatively analyzes the focus areas with high flash flood risk. Taking into account regional
variations in influencing factors, an improved RTI method is developed by incorporating
the disaster mechanism parameter η, leading to the development of a county-level critical
rainfall warning model; in conjunction with the analysis of warning thresholds, the critical
rainfall warning indices for Yunnan Province’s counties have been established. Complex
influencing factors provide the driving conditions, material conditions, and precipitation
conditions for flash flood disasters. The northeastern and southeastern regions of Yunnan



Water 2024, 16, 376 14 of 15

Province have a higher risk of flash floods. Rainfall factors directly trigger flash flood
disasters. The county-level critical rainfall warning model, which incorporates disaster
mechanisms, exhibits a high level of accuracy. The accumulated rainfall in the ten days
before a flash flood event has the highest correlation with the rainfall on the day of the
event. The accumulated rainfall mainly affects soil moisture content, permeability, etc. The
critical rainfall warning range for Yunnan is from 50 mm to 400 mm, and this range is used
to determine county-level flash flood critical rainfall warning indices. There are more than
30 high flash flood risk counties (areas) with low critical rainfall warning indices, indicating
a high risk of flash flood occurrences in mountainous areas.

In the future, we will further delve into the mechanisms of flash flood disasters,
quantitatively identify triggering factors, and, in combination with the latest multi-event
flash flood incidents, revise critical accumulated rainfall values. This is to provide a
theoretical foundation for improving flash flood disaster defense strategies.
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