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Abstract: The shortage of water stands as a global challenge, prompting considerable focus on the
management of water consumption and irrigation. The suggestion is to introduce a smart irrigation
system based on wireless sensor networks (WSNs) aimed at minimizing water consumption while
maintaining the quality of agricultural crops. In WSNs deployed in smart irrigation, accurately
determining the locations of sensor nodes is crucial for efficient monitoring and control. However, in
many cases, the exact positions of certain sensor nodes may be unknown. To address this challenge,
this paper presents a new localization method for localizing unknown sensor nodes in WSN-based
smart irrigation systems using estimated range measurements. The proposed method can accurately
determine the positions of unknown nodes, even when they are located at a distance from anchors. It
utilizes the Levenberg–Marquardt (LM) optimization algorithm to solve a nonlinear least-squares
problem and minimize the error in estimating the unknown node locations. By leveraging the known
positions of a subset of sensor nodes and the inexact distance measurements between pairs of nodes,
the localization problem is transformed into a nonlinear optimization problem. To validate the
effectiveness of the proposed method, extensive simulations and experiments were conducted. The
results demonstrate that the proposed method achieves accurate localization of the unknown sensor
nodes. Specifically, it achieves 19% and 58% improvement in estimation accuracy when compared to
distance vector-hop (DV-Hop) and semidefinite relaxation-LM (SDR-LM) algorithms, respectively.
Additionally, the method exhibits robustness against measurement noise and scalability for large-
scale networks. Ultimately, integrating the proposed localization method into the smart irrigation
system has the potential to achieve approximately 28% reduction in water consumption.

Keywords: wireless sensor networks; smart irrigation; water consumption; node localization;
Levenberg–Marquardt method; nonlinear least-squares

1. Introduction

The global challenge of water scarcity is a pressing issue. Consequently, there is
considerable emphasis on water consumption and irrigation management. Conventional
agricultural irrigation involves a significant amount of water usage [1]. Hence, there is a
growing need to explore smart agriculture approaches designed to diminish water con-
sumption without compromising the quality of agricultural crops. Smart irrigation, driven
by advancements in technology, holds great promise for optimizing water consumption
and increasing crop productivity. One of the key technologies enabling smart irrigation is
wireless sensor networks (WSNs) [2]. These networks comprise spatially distributed sensor
nodes that collect and transmit data on environmental conditions such as soil moisture,
humidity, and temperature. In the context of smart irrigation systems, WSNs play a crucial
role in monitoring and controlling these environmental parameters, facilitating efficient
water usage and targeted crop management [3]. WSNs offer several advantages in the
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domain of smart irrigation. Firstly, they enable real-time and continuous monitoring of
environmental variables, allowing farmers to receive decisions concerning irrigation sched-
ules, fertilizer application, and pest management. This data-driven approach enhances
precision irrigation practices by enabling tailored interventions at the individual plant
level. Secondly, WSNs eliminate the need for manual data collection, reducing labor costs
and improving operational efficiency. Additionally, WSNs provide a scalable and cost-
effective solution, as they can be deployed over large agricultural areas, covering extensive
farmlands [4–6].

Accurate localization of sensor nodes within the WSNs is crucial for achieving the
desired precision and effectiveness of smart irrigation systems. Node localization is the
process of identifying the physical positions of the sensor nodes within the network. Precise
node localization enables spatially aware monitoring and control, allowing for targeted
actions based on the specific conditions of different areas within the agricultural field [7,8].
For example, localized data on soil moisture levels can be utilized to implement irrigation
strategies that precisely deliver water where and when it is needed, minimizing wastage
and optimizing plant growth.

The localization of sensor nodes in WSNs has been a subject of extensive research due
to its critical role in various applications, including smart irrigation systems. Traditional
localization techniques rely on Global Positioning System (GPS) receivers or manual sur-
veying methods, which may not be feasible or economical for large-scale deployments.
Moreover, these methods often assume that the positions of all nodes are known or can
be accurately measured. However, in practical scenarios, it is common to have a subset
of nodes with known positions while the locations of other nodes remain unknown or
imprecisely known [9,10].

The problem of localizing unknown nodes in WSNs has garnered significant attention
due to its relevance in various applications [11–17]. In the context of smart agriculture,
accurate localization of the unknown nodes allows for complete coverage and spatially
aware decision-making. This capability permits precise and controlled water distribution
to designated regions within agricultural fields. Through accurate identification of sensor
node positions, the system adjusts irrigation strategies in response to real-time data, en-
suring targeted water delivery at optimal times and locations. Such localization accuracy
effectively minimizes water waste, mitigates the risk of over-irrigation, and facilitates
customized irrigation scheduling. By estimating the coordinates of the unknown nodes
based on their range measurements to anchor nodes with known positions, the overall
network performance can be improved, resulting in more effective resource allocation and
optimized irrigation strategies [18].

In this paper, we address the challenge of localizing unknown sensor nodes in WSN-
based smart irrigation systems. We propose a new localization method that can minimize
the error in node localization. The proposed method utilizes multi-hop localization concept
presented in [9] to accurately determine the positions of unknown nodes, even when they
are located at a far distance from anchors. The range measurements are derived from
the estimated distances between pairs of sensor nodes, typically obtained from received
signal strength (RSS) measurements. By formulating the problem as a nonlinear least-
squares optimization task, the proposed method leverages the Levenberg–Marquardt (LM)
optimization algorithm to reduce the error in estimating the node locations. Through
extensive simulations and experiments, we demonstrate the effectiveness and scalability of
the proposed method. The results highlight its potential for practical implementation in
real-world smart irrigation applications, ultimately contributing to sustainable resource
management and increased crop yields.

The motivation behind this research is twofold. Firstly, accurate localization of all sen-
sor nodes enables fine-grained monitoring and control, facilitating precise water allocation
and targeted interventions in smart irrigation systems. Secondly, the localization method
presented in this paper can be extended to various applications beyond smart irrigation,
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where the availability of accurate node positions is essential for efficient operation and
decision-making. The key contributions of this work can be summarized as follows:

1. Proposing a new localization method to localize unknown nodes in WSN-based smart
irrigation systems using range measurements and the LM optimization algorithm.

2. Demonstrating the effectiveness of the proposed method through extensive simula-
tions and experiments, highlighting accurate node localization amidst measurement
noise and even when nodes are situated far from anchors.

3. Highlighting the scalability of the proposed method for large-scale networks, show-
casing its potential for practical implementation in real-world scenarios.

4. Calculating the reduction in water consumption achieved through the implementation
of the proposed localization method in the smart irrigation system.

Table 1 provides a comprehensive list of the abbreviations and definitions utilized in
this paper.

Table 1. Abbreviation list.

Abbreviation Definition

WSNs Wireless Sensor Networks
GPS Global Positioning System
TOA Time of Arrival
TDOA Time Difference of Arrival
RSS Received Signal Strength
ITT Iterative Triangulation and Trilateration
DV-Hop Distance Vector-Hop algorithm
LM Levenberg–Marquardt algorithm
SDR-LM Semidefinite Relaxation-LM

The rest of this paper is structured as follows: Section 2 offers an overview of related work
on node localization techniques in WSNs. Section 3 details the proposed method along with
problem formulation and the mathematical framework for localizing unknown nodes using
range measurements. This section also outlines the steps of the LM optimization algorithm.
Section 4 presents the simulation setup and experimental results and discussion. In conclusion,
Section 5 summarizes the paper and suggests potential avenues for future research.

2. Related Work

In this section, we provide a summary of the existing literature on node localization
techniques in WSNs. Localization plays a crucial role in WSNs by enabling spatial aware-
ness and precise monitoring in various applications, including smart irrigation systems.
Numerous methods and algorithms have been proposed to address the node localization
problem, aiming to achieve accurate and efficient localization results. We categorize the
related work into three main approaches: range-based, range-free, and hybrid localization
techniques [19–28].

Range-based localization techniques rely on distance or range measurements between
sensor nodes to estimate their positions [19–22]. The authors in [19] consider the RSS method
for location identification. In [20], an unconventional localization method employing the
least-squares method was presented. The localization of target nodes is achieved in [21]
through the combined utilization of angle-of-arrival (AOA) and RSS measures. In [22]
the authors use time-of-arrival (TOA), time-difference-of-arrival (TDOA), and the Chan
algorithm to coordinate the unknown sensors. For instance, the well-known GPS is a range-
based localization technique widely used in outdoor environments. However, GPS is not
suitable for obstructed environments, making it less practical for smart irrigation systems.
Moreover, equipping each sensor node with GPS receivers incurs significant expenses.

Range-free localization techniques, on the other hand, do not rely on distance mea-
surements but instead exploit connectivity information between sensor nodes to estimate
their positions [23,24]. One common range-free approach is the centroid algorithm, which
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calculates the centroid of a set of anchor nodes to estimate the position of a target node [23].
Another range-free method is the distance vector-hop (DV-Hop) algorithm, which utilizes
hop-count information and communication range to estimate distances between nodes [24].
These range-free techniques are often computationally efficient but may sacrifice localiza-
tion accuracy compared to range-based methods.

Hybrid localization techniques aim to combine the strengths of both range-based and
range-free approaches to achieve more accurate and robust localization results [25,26]. These
methods typically leverage both distance measurements and connectivity information. For
instance, the iterative triangulation and trilateration (ITT) algorithm combines triangulation
using distance measurements and trilateration using range-free connectivity information [25].
By leveraging the complementary nature of these two approaches, hybrid techniques can
improve localization accuracy and overcome the limitations of individual methods [26].

The work in [9] proposes a regularized least-squares multi-hops localization algorithm
specifically designed for WSNs. The algorithm aims to improve localization accuracy
by incorporating both range-based and range-free localization techniques. The authors
recognize the limitations of individual localization methods and propose a hybrid approach
that integrates the advantages of range-based and range-free techniques. They introduce
a regularization term to the least-squares optimization problem, which helps to mitigate
errors and uncertainties in range measurements and connectivity information. By iteratively
solving the optimization problem, the algorithm estimates the positions of unknown
nodes based on the observed range measurements and connectivity information from
neighboring nodes. While the work in [10] focuses on addressing the localization challenge
in WSNs, our proposed approach complements this work by specifically targeting the
localization of unknown sensor nodes in WSN-based smart irrigation systems. Our method
leverages range measurements and the LM method to minimize localization errors and
enable accurate positioning of the unknown nodes. Through extensive simulations and
experiments, we showcase the effectiveness and scalability of our approach, contributing
to the body of knowledge in localization techniques for smart irrigation applications.

While various localization techniques have been proposed for WSNs, few studies
specifically address the problem of localizing unknown nodes in the context of smart
irrigation systems. The localization methods developed for smart irrigation systems often
rely on known anchor nodes with GPS receivers or manual surveys. However, outfitting
every sensor node with GPS receivers incurs significant costs. Moreover, in practical
scenarios, the locations of some sensor nodes may be unknown or imprecisely known. This
presents a unique challenge that requires specialized localization algorithms to estimate
the positions of these unknown nodes. In this work, we propose a new method that
addresses the challenge of localizing unknown sensor nodes in WSN-based smart irrigation
systems. By utilizing range measurements and leveraging the LM optimization algorithm,
our method aims to minimize the error in estimating the node locations. Through extensive
simulations and experiments, we demonstrate the effectiveness and scalability of the
proposed method, showcasing its potential for practical implementation in real-world
smart irrigation applications.

In the following section, we present the problem formulation and describe the mathe-
matical framework for our proposed localization method. We then provide details on our
approach, emphasizing the utilization of the LM algorithm for accurate node localization.

3. Proposed Localization Method

A smart irrigation system based on WSNs presents a contemporary and forward-
thinking approach to achieving efficient and sustainable irrigation practices. This system
integrates a network of N sensors strategically positioned within the soil, plants, and
environment to monitor and gather crucial data concerning soil moisture, temperature,
humidity, rainfall, and other pertinent parameters. Within our WSN, the locations of K
sensor nodes are known, while the exact positions of the remaining M = N − K nodes
are unknown. Nonetheless, we can overcome this challenge by employing a nonlinear
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least-squares approach to predict the locations of the unknown M nodes. The locations of
these sensor nodes must be determined from the distances to nearby nodes (for example,
estimated from the strength of signals received from those nodes).

This section introduces the proposed method for localizing unknown sensor nodes in
WSN-based smart irrigation systems using estimated range measurements. The proposed
method effectively determines the positions of unknown nodes, even when they are dis-
tanced from anchors. The procedures of the proposed method are divided into two stages:
the first stage is to formulate distance estimation into a nonlinear least-squares problem.
Then, in the second stage, we apply the LM optimization algorithm to address this problem
and minimize errors in estimating the unknown node locations. The next two subsections
explain these procedures.

3.1. Nonlinear Least-Squares Problem Formulation

The distance measurements can be represented by an undirected graph, as shown
in Figure 1. In this figure, the number of vertices in the graph is N. The first M = N − K
vertices represent the nodes with unknown positions. These nodes are denoted as the free
nodes. The last K vertices are the nodes with known positions and are the anchor nodes.
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Figure 1. Network model example with 9 anchor nodes (squares), 21 free nodes (circles), and 98 edges.

The node coordinates are denoted as follows:

p1 = (x1, y1), p2 = (x2, y2), . . . , pN = (xN , yN), (1)

In Equation (1), the vectors p1, . . ., pN−K are the unknowns in the problem where the
vectors pN−K+1, . . ., pN give the positions of the anchor nodes that are known.

The RSS technique based on the radio propagation path loss model [27,28] is used to
estimate the distance between a free node and an anchor node. The RSS in dBm within the
log-normal shadow-fading model is expressed as [18]:

RSSdBm(dnm) = P0dBm(dr)− 10γlog10

(
dnm

dr

)
− Sσ (2)

where P0 represents the RSS at a reference distance dr, γ is the path loss exponent, dnm is the
true distance between mth free node and nth anchor node, and Sσ denotes the log-normal
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shadowing effects, which follow a Gaussian distribution with a mean of zero and a variance
of σ2. Using Equation (2), the estimated distance can be written as:

d̂nm = drlog−1
10

(
P0dBm(dr)− RSSdBm(dnm)

10γ

)
(3)

The edges in Figure 1 indicate the pairs of nodes for which a distance measurement is
available. There are L edges, denoted by (i1, j1), . . ., (iL, jL). The L distance measurements
are given as follows:

dl =
∥∥dil−djl

∥∥+ ε l , l = 1, 2, . . . , L (4)

where εl represents the measurement error.
To estimate the location of the free nodes, we minimize the error function as follows:

L

∑
l=1

(∥∥dil−djl

∥∥− dl
)2

=
L

∑
l=1

(√(
xil − xjl

)2
+
(

yil−yjl

)2
− dl

)2

(5)

Equation (5) represents a nonlinear least-squares problem with variables x1, x2, . . .,
xN−K and y1, y2, . . ., yN−K. Thus, we can conclude that our cost function f (u(l)) is as follows:

f
(

u(l)
)
=

√(
xil − xjl

)2
+
(

yil−yjl

)2
− dl (6)

In Equation (4), we consider the points at the l-th iteration. As a result, utilizing the
LM algorithm, we should try to minimize the following:∥∥∥ f

(
u(l)
)
+ D f

(
u(l)
)(

u − u(l)
)∥∥∥2

+ λ(l)
∥∥∥u − u(l)

∥∥∥2
(7)

where D represents the Jacobian matrix, as explained in the next section, and λ is the
regularization parameter.

Thus, from our minimizing function in (6) and (7), the unknown positions can be
formulated as a nonlinear least-squares problem. The solution of this problem is computed
as follows:

û = u(l) −
(

AT A + λ(l) I
)−1

AT f
(

u(l)
)

(8)

where I represents the identity matrix, (.)T is the matrix transpose, and A = D f
(

u(l)
)

.
The algorithm will continue to run until the termination condition is satisfied, which is:

∇g
(

u(l)
)
= 2AT f

(
u(l)
)
≤ 10−5 (9)

3.2. Levenberg–Marquardt Optimization Algorithm

A crucial step in executing the LM algorithm involves the computation of the Jacobian
matrix. Recall the definition of the Jacobian matrix, as follows:

D f (z) =


d f1
dm1

(z) d f1
dm2

(z)
d f2
dm1

(z) d f2
dm2

(z)
· · ·
· · ·

d f1
dmn

(z)
d f2
dmn

(z)
...

...
. . .

...
d fn
dm1

(z) d fn
dm2

(z) · · · d fn
dmn

(z)

 (10)

In the considered WSN, m1, m2, . . ., mn in (10) refer to x1, x2, . . ., xN−K and y1, y2, . . .,
yN−K, with function f (z) defined in (6). It is clear that the matrix D f (z) ∈ IRL×2(N−K), as
we have a row for each of the L edges, and we have 2(N − K) variables.
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Regarding the actual matrix entries themselves, there are four possible derivatives we
could require in each row, with the rest of the entries in that row being 0. The four possible
derivative expressions are listed in Equation (11):



d f (u(l))
dxil

d f (u(l))
dxjl

d f (u(l))
dyil

d f (u(l))
dyjl


=



(
xil

−xjl

)
√(

xil
−xjl

)2
+
(

yil
−yjl

)2

−
(

xil
−xjl

)
√(

xil
−xjl

)2
+
(

yil
−yjl

)2(
yil

−yjl

)
√(

xil
−xjl

)2
+
(

yil
−yjl

)2

−
(

yil
−yjl

)
√(

xil
−xjl

)2
+
(

yil
−yjl

)2


(11)

However, we can clearly notice that we have four possible conditions, as follows: both
nodes are anchors, one of the two nodes are anchors (either the first node in the edge or the
second node), and neither of the two nodes are anchors. In the following, we consider each
condition separately.

1. If the i-th edge contains nodes that are both anchors, the Jacobian matrix row is all
zeros, since both variables are known (assuming points at the l-th iteration):

∇ fi

(
u(l)
)T

=
[
0 0 · · · 0

]
(12)

2. If the i-th edge contains one anchor node, the Jacobian matrix row will contain the
derivatives with respect to the unknown node, with the rest of the entries in that row
being 0 (assuming points at the l-th iteration), node 2 as anchor:

∇ fi

(
u(l)
)T

=

[
0 0 · · · 0

d f (u(l))
dxil

0 · · · 0
d f (u(l))

dyil
0 · · · 0

]
(13)

3. Node 1 as anchor:

∇ fi

(
u(l)
)T

=

[
0 0 · · · 0

d f (u(l))
dxjl

0 · · · 0
d f (u(l))

dyjl
0 · · · 0

]
(14)

4. The final condition among the four occurs if the i-th edge contains no anchor nodes, in
which our Jacobian matrix row will contain the derivatives with respect to both of the
unknown nodes (i.e., a potential of four non-zero elements in the row), all assuming
points at the l-th iteration:

∇ fi

(
u(l)
)T

=

[
0 · · · d f (u(l))

dxil
· · · d f (u(l))

dxjl
· · · d f (u(l))

dyil
· · · d f (u(l))

dyjl
· · · 0

]
(15)

The Levenberg–Marquardt algorithm steps can be summarized as follows:

Step 1: In each iteration of the algorithm, we first compute f
(

u(l)
)

, and then the Jacobian

matrix D f
(

u(l)
)

row by row, with each row being evaluated for one of the four conditions
described above.
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Step 2: Next, within the iteration, the code computes both ∥∇g(u)∥ and û, in order to

evaluate f (û) in comparison with f
(

u(l)
)

. Depending on this calculation, the algorithm

updates u(l+1) and λ(l+1) as follows:

u(l+1) =

 û, i f ∥ f (û)∥2 <
∥∥∥ f
(

u(l)
)∥∥∥2

u(l), otherwise
(16)

λ(l+1) =

 β1λ(l) i f ∥ f (û)∥2 <
∥∥∥ f
(

u(l)
)∥∥∥2

β2λ(l), otherwise
(17)

Step 3: If ∇g
(

u(l)
)
= 2AT f

(
u(l)
)
≤ 10−5, then the algorithm will terminate out of the

loop and return the calculated estimated coordinates of the unknown sensor nodes.
Step 4: If the condition in step 3 is not satisfied, go to step 1. The following flow chart
summarizes the proposed method steps and is indicated by Figure 2.
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4. Results and Discussion

In this section, MATLAB (R2022b) programming is used to execute the proposed
method to predict the estimated coordinates of the unknown sensor nodes in the considered
WSN. The algorithm will continue to run until the termination condition, ∇g

(
u(l)
)
≤ 10−5,

is satisfied. The first input argument N is the number of nodes in the network, and it varies
according to the considered network scale. This includes K = 9 anchor nodes, positioned
as in Figure 1. The N − 9 free nodes are placed randomly in a square area with size
100 × 100 m2. Two nodes are connected by an edge if their distance is less than or equal
to normalized R. Figure 1 presents an example with N = 30 and the node communication
range, R = 40 m. The first output argument E is an L × 2 array, specifying the L edges. The
two entries of row l are il and jl, the nodes connected by edge l. The output argument is an
N × 2 array with the coordinates of the N nodes. Typical values of β1 and β2 are β1 = 0.8
and β2 = 2. Table 2 summarizes the simulation parameters.

Table 2. Simulation parameters.

Parameter Value

Simulation area 100 × 100 m2

Number of nodes, N
N = 50 for small-scale network
N = 100 for medium-scale network
N = 200 for large-scale network

Number of anchor nodes, K 9
R 40 m
Path loss exponent, γ 3
Reference distance dr 1 m
P0 −30.45 dBm
Variance, σ2 5 dB
β1 0.8
β2 2

4.1. Effect of Network Scale

In this subsection, we study the effects of network scale on the performance of the
proposed method.

4.1.1. Small-Scale Network

We consider a small-scale network with N = 50 nodes, 9 of them are anchor nodes
with known and fixed locations as follows: [(0, 0), (50, 0), (100, 0), (0, 50), (50, 50), (100,
50), (0, 100), (50, 100), (100, 100)]. The free 41 nodes are placed randomly in a square area
with size 100 × 100 m2. Figure 3 presents the estimation of the sensor coordinate using the
proposed method. The open circles (blue) are the exact positions, while the filled circles
(green) are the estimated positions. This figure indicates the accuracy of the proposed
method in estimating the unknown location of the free nodes.
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4.1.2. Medium-Scale Network

In this part, we check the accuracy of the proposed method when increasing the
number of network nodes to N =100 nodes. For fair comparison, we use 9 anchor nodes at
the same location as in the small-scale case, i.e., there are 91 unknown free nodes. Figure 4
shows the estimated positions versus the exact positions, considering a medium-scale
network (N = 100). This figure indicates the accuracy of the proposed method, even for a
large number of free nodes.
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4.1.3. Large-Scale Network

Now we consider a large-scale network with N = 200 nodes, as shown in Figure 5.
The obtained result in this figure ensures the ability of the proposed method to accurately
estimate the position of the free nodes, even for a large-scale network.
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Figure 6 presents the cost function versus number of iterations for the three network
scenarios. As expected, the large-scale network requires the largest cost function compared
to the other networks.
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4.2. Effect of Changing the Anchor Node Locations

In this subsection, we study the effect of changing the position of the anchor nodes on
the accuracy of position estimation using the proposed method. The 9 anchor nodes new
location is located around the network center, as follows: [(20, 20), (50, 20), (80, 20), (20, 50),
(50, 50), (80, 50), (20, 80), (50, 80), (80, 80)].

Figure 7 presents the least-squares estimate of the sensor coordinate using the three
network scenarios considered above, i.e., N = 50 (a), 100 (b), and 200 (c). This figure
indicates that the accuracy of the proposed method is affected by changing the anchor
node’s location. However, the reduction in estimation accuracy is small, which ensures
the robustness of the proposed method. The anchor node’s new location is around the
network center; therefore, its accuracy becomes less than that at network boundaries. This
figure also shows that as the number of free nodes increases from 50 to 200, the proposed
method’s estimation accuracy decreases.
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4.3. Performance Comparison

In this subsection we compare the performance of the proposed method with other
localization algorithms presented in the literature, such as improvement of the DV-Hop
algorithm [9] and SDR+LM algorithm [9]. For fair comparison, we use the average localiza-
tion error (ALE) presented in [10] and given as:

ALE = ∑N−K
i=1

√
(x̂i − xi)

2 + (ŷi − yi)
2

N − K
(18)

where N − K represents the number of free nodes (unknown position nodes), (xi, xyi)
and (x̂i, ŷi) are the exact and the estimated locations, respectively of node i.

Figure 8 presents a comparison between the proposed method and the algorithms
presented in [9,10] using the above-mentioned parameters and the large-scale network case.
As explained above, the open circles (blue) are the exact positions, while the filled circles
(green) are the estimated positions, and the black straight line that connects between the
two circle types represents the positioning error. This figure indicates that the proposed
method achieves the lowest localization error when compared to the other algorithms.
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SDR+LM algorithm [10] (c).

In Figure 9, we study the effect of changing the number of anchor nodes on the
accuracy of the location estimation of the proposed method. We consider the case of
N = 200 nodes and R = 40. This figure presents the ALE versus the number of anchor nodes
for the proposed method and the localization algorithms cited above [9,10].
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The depicted figure illustrates a clear trend wherein the ALE diminishes with an
increase in the number of anchor nodes. This observation can be attributed to the deliberate
augmentation of anchor nodes within the network, while keeping the total number of
nodes constant. This augmentation is intended to reduce the hop count between the
anchors and unknown nodes. As a result, the estimated distance between an anchor and an
unknown node more accurately corresponds to the actual distance, leading to a decrease
in the average positioning error. Additionally, the figure demonstrates that the proposed
method yields a lower localization error compared to all other algorithms considered in the
comparison. At a number of anchor nodes of 9, the proposed method achieves 19% and
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58% improvement in estimation accuracy, respectively, when compared to the above-cited
localization algorithms [9,10]. Where these algorithms estimate the positions of unknown
nodes based on the observed range measurements and connectivity information from
neighboring nodes, this reduces the estimation accuracy and increases the computational
accuracy of these algorithms, while the proposed method is based on the LM estimation
algorithm, which is more accurate than range-free localization algorithms.

4.4. Water Consumption Calculation

Accurate sensor node localization is integral to the efficient functioning of a smart
irrigation system and plays a crucial role in optimizing water consumption. In a smart
irrigation network based on WSNs, precise knowledge of sensor node locations enables
targeted and controlled water distribution to specific areas of agricultural fields. By accu-
rately determining the positions of sensor nodes, the system can adapt irrigation strategies
based on real-time data, ensuring that water is delivered precisely where and when it is
needed. This localization precision minimizes water wastage, prevents over-irrigation,
and allows for the implementation of tailored irrigation schedules. Consequently, the
synergy between accurate sensor node localization and water consumption in a smart
irrigation system leads to improved resource efficiency, reduced environmental impact, and
sustainable agricultural practices. Due to the accuracy achieved by the proposed method,
it is expected that smart irrigation with the proposed method can reduce the amount of
water consumption when compared to other methods.

The efficacy of irrigation relies on monitoring environmental conditions and plant
requirements. This is due to the fact that plant water requirements are influenced by factors
such as temperature, moisture levels, precipitation, and soil moisture. The values of these
factors depend mainly on the accuracy of sensor node localization. Therefore, it is expected
that the implementation of the smart irrigation system using the proposed method will
result in a reduction in water consumption compared to alternative methods.

Figure 10 illustrates a comparison among the methods examined in this paper concern-
ing water consumption during one day for a small-scale network [1,29,30]. In this figure,
we considered a pump with a capacity of 50 liters per hour, and the conventional irrigation
system requires one hour for irrigation; therefore, it consumes 50 liters. On the other hand,
the smart irrigation methods function four times a day, according to Figure 6 presented
in [30], with different irrigation times, according to the considered method, as presented in
Table 3 [1,29,30]. The analysis of the data was conducted utilizing SAS software [1] which
determined the irrigation time for each irrigation method. This time represents the time
during which the irrigation valve was on, according to the sensor reading.

Table 3. Irrigation time and consumed water for the considered irrigation methods.

Irrigation Method Irrigation Time Consumed Water

Conventional irrigation 60 min 50,000 mL
Smart irrigation using
DV-Hop algorithm [9] 4 × 12 min = 48 min 40,000 mL

Smart irrigation using
SDR+LM algorithm [10] 4 × 12.9 min = 51.6 min 43,000 mL

Smart irrigation without using
localization method [30] 4 × 13.2 min = 52.8 min 44,000 mL

Smart irrigation using
proposed method 4 × 10.8 min = 43.2 min 36,000 mL

As depicted in Figure 10, it becomes evident that the smart irrigation system employ-
ing the proposed method can substantially diminish the volume of water consumed in
comparison to alternative methods. Specifically, it attains an impressive 28% reduction
in irrigation water consumption when compared with the conventional irrigation tech-
nique. The accurate estimation of the sensor node positions ensures the delivery of water
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precisely where and when it is needed. In contrast, smart irrigation systems utilizing
the DV-Hop algorithm [9], the SDR+LM algorithm [10], and the smart irrigation system
without using localization method in [30] achieve approximately 20%, 14%, and 12% reduc-
tions, respectively, in the amount of water consumed when compared to the conventional
irrigation technique.
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Figure 10. Water consumption comparison between the proposed method and the localization
algorithms [9,10,30].

5. Conclusions

This paper addressed the challenge of localizing unknown sensor nodes in WSN-based
smart irrigation systems, underscoring the pivotal role of accurate node localization for
efficient monitoring and control. The proposed method, leveraging range measurements
and the Levenberg–Marquardt optimization algorithm, emerged as a robust solution, mini-
mizing errors in estimating the unknown node locations. Quantitative analysis revealed
compelling results, showcasing the proposed method’s superior performance. Specifically,
it achieved an impressive 19% and 58% enhancement in estimation accuracy compared to
DV-Hop and SDR+LM localization algorithms, respectively. Extensive simulations and
experiments across various network scales demonstrated not only the accuracy but also
the scalability of the method, affirming its effectiveness even in large-scale scenarios. The
numerical results unequivocally establish that the proposed method significantly improves
estimation accuracy, substantiating its superiority over existing localization methods. This
research provides concrete evidence of the method’s potential, emphasizing its practical
applicability and potential for achieving a substantial 28% reduction in water consumption
in smart irrigation systems where the accurate estimation of sensor node positions ensures
the delivery of water precisely where and when it is needed.

Future research includes exploring the influence of environmental factors on localiza-
tion accuracy, integrating additional sensing modalities for enhanced precision, investigat-
ing scalability for larger networks, and developing energy-efficient algorithms to prolong
network lifespan.
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