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Abstract: The Yellow River basin serves as an important economic belt and industrial base in
China, featuring numerous industrial parks. However, alongside its economic significance, the basin
struggles with significant water environmental challenges. This study analyzed the operational
status, influent water quality, and energy consumption of 63 centralized wastewater treatment plants
(WWTPs) from 54 major industrial parks in the Yellow River basin. The scale of these WWTPs was
primarily within the range of 1 × 104~5 × 104 m3/d, with an average hydraulic loading rate of
53.8%. Aerobic treatment processes are predominant. The influent concentrations of chemical oxygen
demand (COD), biochemical oxygen demand (BOD), ammonia nitrogen (NH3-N), total nitrogen (TN),
and total phosphorus (TP) in the WWTPs exhibited a right-skewed distribution. The BOD/COD
ratio of the WWTPs fluctuated between 0.1 and 1.6, and 75% of the WWTPs showed a COD/TN ratio
lower than eight. The average BOD5/TN was 2.7, and the probability of influent BOD5/TP > 20 was
84.6%. A significant linear correlation exists between the influent BOD and COD concentrations,
while moderate linear relationships are also observed among NH3-N, TN and TP, emphasizing
the importance of maintaining appropriate nitrogen and phosphorus levels for efficient pollutant
removal. The average electricity consumption of WWTPs in the Yellow River basin in 2023 was
1.1 kWh/m3. It is important to upgrade these WWTPs and reduce their energy consumption. Further
strengthening the construction of industrial wastewater collection and treatment facilities based
on regional characteristics is recommended to promote the high-quality development of industrial
wastewater treatment in the Yellow River basin.

Keywords: industrial wastewater treatment plant; Yellow River basin; construction and operational
status; influent water quality; energy consumption

1. Introduction

Water is a vital natural and strategic resource, directly related to the sustainable
development of both the economy and society. Globally, water scarcity poses a pressing
challenge, projected to affect two-thirds of the world’s population by 2025 [1]. The Yellow
River ranks as the fifth largest river in the world and serves as an important water source
in northern China [2]. Approximately 15% of China’s agriculturally irrigated land and 12%
of its population rely on the Yellow River for water supply [3]. Furthermore, it facilitates
long-distance water supply to key regions such as Beijing, Tianjin and Hebei [4]. Ecological
preservation and green development in the Yellow River basin are two of China’s major
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national strategies. The Chinese government issued the “Outline of Ecological Protection
and High-Quality Development Plan for the Yellow River Basin” in 2021, emphasizing
environmental improvement and sustainable development [5].

The Yellow River basin is not only an important ecological barrier and economic
region in China but also an important energy, chemical industry, raw material and basic
industrial base. It accommodates a large number of high-energy-consuming and high-
pollution industries and has become an important industrial infrastructure cluster [6,7].
Factor endowments and development circumstances determine that traditional industries
in the Yellow River basin primarily thrive on resource mining and processing, shaping a
resource- and energy-reliant industrial framework based on coal, oil, natural gas, metal
mining and processing [8–10].

Industry is the main driver of economic and social development in the Yellow River
basin, concurrently serving as a key contributor to water resource consumption and water
environmental pollution. The accelerated pace of economic expansion has exacerbated the
risks of water resource depletion and water pollution in this region. The per capita water
resource of the Yellow River basin is 905 m3, approximately one-third of the national per
capita water, and below the standard for water-scarce areas (1000 m3) [11,12]. Over the past
two decades, the total water consumption in the basin has increased from 112.74 billion m3

in 2000 to 125.87 billion m3 in 2020, accompanied by a rise in wastewater discharge from
9.06 to 21.3 billion tons [13]. Industrial wastewater discharge accounts for nearly one-third
of the total wastewater discharge in this area. In recent years, escalating tensions stemming
from carrying capacity shortages, water shortages, and water environment issues in the
Yellow River basin have become prominent [3,14]. According to the 2022 China Ecological
Environment Status Bulletin, 2.3% of the 263 water quality sections across the Yellow
River were categorized as below Class V, significantly surpassing the national average
of 0.7% [15]. The contradiction between water supply and demand, coupled with water
pollution problems, has gradually become an important factor impeding the sustainable
economic and social development of the Yellow River basin.

Industrial parks represent a ubiquitous aspect of global industrial development [16].
With China’s rapid urbanization and industrialization, the development of industrial parks
has been accelerated in recent decades. China currently has 2543 industrial parks, with
approximately a quarter situated within the Yellow River basin [17]. The establishment
of shared infrastructure, such as centralized wastewater treatment plants (WWTPs) in
industrial parks, is a global practice and constitutes a fundamental strategy to promote
industrial symbiosis [18,19]. Centralized industrial WWTPs are centrally managed facilities
or independently operated units that specialize in treating industrial wastewater originating
from industrial parks as well as neighboring enterprises or industrial facilities. Given
the concentration of industrial activities in diverse industrial parks, the construction of
centralized industrial WWTPs is growing rapidly. The number of centralized industrial
WWTPs and their wastewater treatment capacities in 2017 were 3.6 times and 3.2 times
those of 2007, respectively [20]. Centralized industrial WWTPs play an important role in
controlling industrial water pollution and maintaining the safety of the water environment
in the Yellow River basin, which serves as an indispensable safeguard for promoting the
green and high-quality development of industrial parks.

Current research on centralized industrial WWTPs mainly focuses on the process
design or improvement of individual or multiple plants, as well as suggestions for supervi-
sion and management policies [21–23]. However, comprehensive analyses and research
on centralized WWTPs in industrial parks in the Yellow River basin have been absent.
This study took 63 centralized WWTPs in 54 national and provincial industrial parks in
the Yellow River basin as the research objects and investigated aspects including the scale
and operation of the WWTPs, the characteristics and correlations of the main pollutants
in the influent, and their energy consumption and operational costs. The objective is to
identify challenges in the construction and operation of centralized WWTPs in industrial
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parks in the Yellow River basin and to provide insights for the high-quality development
of industrial wastewater treatment in the basin.

2. Methods
2.1. Data Collection

The Yellow River basin includes nine provincial districts, namely Qinghai, Sichuan,
Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi, Henan and Shandong. In this study,
54 industrial parks in the Yellow River basin were selected as the research objects due to
their importance among all parks. Specifically, all selected parks are classified as national
or provincial and have centralized industrial WWTPs instead of sharing with municipal
WWTPs or treating water separately. Figure 1 depicts the geographical locations of 54 in-
dustrial parks in the Yellow River basin. The leading industries in these industrial parks
included the petrochemical industry, the coal chemical industry, the fine chemical industry,
the smelting industry, the pharmaceutical sector and the pesticide industry. The research
objects comprised a total of 63 centralized WWTPs located within these industrial parks.
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Considering the provincial administrative divisions and the geographical division of
the upper, middle and lower reaches of the Yellow River basin, in this study, 43 centralized
industrial WWTPs were identified in the upper reaches of the Yellow River basin, encom-
passing Gansu, Ningxia and Inner Mongolia, while 11 centralized industrial WWTPs were
situated in the middle reaches, spanning Shaanxi and Shanxi, with an additional 9 central-
ized industrial WWTPs located in the lower reaches, including Henan and Shandong.

Overall, the operation and water quality data of 63 centralized industrial WWTPs in
2023 were obtained from surveys. However, due to the diverse operating realities, the water
quality index varied between parks, and some of the data were missing or abnormal. Thus,
all the data were pretreated and screened to eliminate outliers, and a random sampling
survey was carried out to ensure the reliability of the data.

2.2. Data Analysis

In this study, the construction and operational status were analyzed considering
regional distribution, design processing capacity, actual wastewater treatment volume,
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and wastewater treatment processes. The influent quality parameters of 63 centralized
industrial WWTPs, including the chemical oxygen demand (COD), biochemical oxygen
demand (BOD), ammoniacal–nitrogen (NH3-N), total nitrogen (TN) and total phosphorus
(TP), were analyzed, as their concentrations and ratios are vital for wastewater treatment
process selection and design. Influent water quality characteristics were measured, and a
correlation analysis was conducted. Statistical analyses on the wastewater influent quality
at industrial WWTPs in the Yellow River basin were performed by OriginPro 8.5 (developed
by OriginLab Corporation, Northampton, MA, USA).

3. Results and Discussion
3.1. Operating Status
3.1.1. Treatment Capacity of Centralized Industrial WWTPs

The quality of industrial wastewater was characterized by its complexity and sig-
nificant variations in concentration. Centralized industrial WWTPs, as specialized units
dedicated to handling complex industrial wastewater, play a crucial role in industrial
wastewater treatment. In 2023, the 63 centralized industrial WWTPs of the major cities
in the Yellow River basin had a total designed processing capacity of 123.06 × 104 m3/d,
accounting for approximately 4.34% and 5.29%, respectively, in terms of both the number
and processing capacity compared to China’s overall statistics on centralized industrial
WWTPs. Centralized industrial WWTPs could be divided into five grades according to their
processing capacity: ≥10 × 104, 5 × 104~10 × 104, 1 × 104~5 × 104, 0.5 × 104~1 × 104 and
<0.5 × 104 m3/d. The distribution of centralized industrial WWTPs in the Yellow River
basin is shown in Table 1. The centralized industrial WWTPs in the Yellow River basin were
primarily designed with a capacity ranging from 1 × 104 to 5 × 104 m³/d. These facilities
constitute 68.25% of the total number of centralized industrial WWTPs and contribute
approximately 71.03% to the overall design processing capacity in the Yellow River basin.
Only a few of the centralized industrial WWTPs had a capacity greater than 5 × 104 m3/d.
These two categories accounted for only 6.35% of the total number in the Yellow River basin
but represented a significant portion (24.79%) of the total designed processing capacity.
The proportion of centralized industrial WWTPs with a capacity less than 1 × 104 m3/d
accounted for 25.40% of the total quantity. However, their designed processing capacity
only represented 4.19% of the Yellow River basin’s total.

Table 1. The number and treatment capacity of centralized industrial WWTPs in the Yellow River Basin.

Water Treatment Capacity
(104 m3/d)

Number

Gansu Ningxia Inner Mongolia Shaanxi Shanxi Henan Shandong

<0.5 6 0 4 0 2 0 0
0.5~1 2 1 0 0 1 0 0
1~5 9 12 6 5 2 4 5

5~10 0 1 1 1 0 0 0
≥10 0 0 1 0 0 0 0

In different regions, the construction of centralized industrial WWTPs in the upper
reaches of the Yellow River basin was relatively well developed, with a total of 43 plants
and a combined processing capacity of 81.55 × 104 m3/d. In the middle reaches of the
Yellow River basin, there were a total of 11 centralized industrial WWTPs with a combined
processing capacity of 18.01 × 104 m3/d. In the lower reaches, there were nine centralized
industrial WWTPs with a total processing capacity of 23.5 × 104 m3/d.

The hydraulic loading rate refers to the proportion between the actual volume of
wastewater treated and the designed treatment capacity during a specific operational
period. It is a fundamental metric that reflects the stable functioning of WWTPs. Figure 2
illustrates the wastewater treatment conditions of the centralized industrial WWTPs in
the Yellow River basin. The average hydraulic loading rate of the centralized industrial
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WWTPs in the Yellow River basin in 2023 was 53.8%. There were significant variations in the
hydraulic loading rates among different cities, ranging from 10% to 112.5%. Notably, Jiyuan,
Liaocheng and Heze exhibited the highest hydraulic loading rates at 112.5%, 100% and
100%, respectively. Conversely, Wuwei, Bayannur and Lanzhou demonstrated the lowest
hydraulic loading rates at 10%, 12.01% and 17.45%, respectively. In terms of geographical
distribution, the average hydraulic loading rates of major cities located in the upper,
middle and lower reaches of the Yellow River basin were recorded as 43.94%, 48.09% and
81.23%, respectively.
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Figure 2. Wastewater treatment status of centralized industrial WWTPs in the Yellow River basin.

In summary, most centralized industrial WWTPs in the Yellow River basin were small
to medium-sized facilities with a processing capacity of less than 5 × 104 m3/d. However,
their wastewater collection rates exhibited a relatively low level. Notably, around 95.45%
of the centralized industrial WWTPs had a wastewater treatment rate below 90%. The
actual water volume treated by the centralized industrial WWTPs fell significantly below
its designed capacity, indicating a substantial potential for enhancing wastewater treatment
utilization. The load rate of the centralized industrial WWTPs in the lower reaches of
the Yellow River basin significantly exceeded that in the middle and upper reaches. The
operational capacity of Jiyuan, Liaocheng and Heze’s industrial wastewater treatment
plants was either at or over their limits, indicating a pressing need for the further expansion
of these facilities.

3.1.2. Wastewater Treatment Process

The predominant treatment processes used in the centralized industrial WWTPs were
aerobic and anaerobic biological treatments. In the Yellow River basin, 91.84% of these plants
combined two or more of these processes. The continuous advancement of water quality
improvement objectives has led to increasingly stringent emission limits for water pollutants,
resulting in the growing adoption of advanced treatment processes. Consequently, 36.73%
of the centralized industrial WWTPs had implemented advanced treatment processes. The
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main emphasis of this article is on the analysis of centralized industrial WWTPs that utilize
biological treatment systems. In the Yellow River basin, aerobic biological treatment processes
were predominantly utilized in a significant proportion (55.1%) of the centralized industrial
WWTPs. The primary processes used were the anaerobic–anoxic–oxic (AAO) process, the
anaerobic–oxic (AO) process, an oxidation ditch, and the membrane bioreactor (MBR) process.

3.2. Characteristics of Influent Quality
3.2.1. Influent Quality of Industrial, Centralized WWTPs

The concentrations of five basic water quality parameters of the 63 centralized indus-
trial WWTPs in the Yellow River basin are presented in Figure 3a. The average influent
COD, BOD, NH3-N, TN and TP concentrations were 323.3, 145.9, 30.2, 53.9 and 3.4 mg/L,
respectively, while the median influent COD, BOD, NH3-N, TN and TP concentrations
were 252.0, 116.4, 28.1, 44.7 and 2.9 mg/L, respectively. For all the parameters, the average
concentration is higher than the median concentration, exhibiting a right-skewed distribu-
tion for the influent quality. The 5~95% ranges of the influent COD, BOD, NH3-N, TN and
TP concentrations were 70.0~1050.7, 22.9~435, 5.7~66.1, 7.4~87.0 and 0.2~8.1 mg/L, respec-
tively. This considerable fluctuation in water quality fully reflects the complex composition,
wide variation, and unpredictable characteristics of industrial wastewater. The 25~75%
ranges of the influent COD, BOD, NH3-N, TN and TP concentrations of the centralized
industrial WWTPs were 167.4~355.6, 60.0~155.0, 15.9~43.6, 25.7~56.7 and 1.5~5.0 mg/L,
respectively. These data indicate that the influent COD and BOD concentrations were
relatively low, which might lead to an insufficient carbon source for the biological processes
of the WWTPs and consequently inhibit the removal of nitrogen and phosphorus [24]. A
possible explanation for the relatively low COD and BOD concentrations is that the studied
industrial parks are generally large in scale and have complex industrial structures. The
composition of the wastewater produced by enterprises in different industries varies, and
after being mixed into the centralized WWTPs, COD and BOD concentrations are likely to
decrease due to mutual dilution. Therefore, it is necessary to carry out classified collection
through the industry- and quality-based treatment of wastewater in large industrial parks.
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Figure 3. Wastewater influent quality of centralized industrial WWTPs: (a) in the Yellow River basin
and (b) in the upper, middle and lower reaches.

The influent water quality of the centralized industrial WWTPs showed regional varia-
tions in the Yellow River basin, as illustrated in Figure 3b. Generally, the mean and median
concentrations of parameters in the upper reaches (including Gansu, Ningxia and Inner
Mongolia) were marginally higher than those in the middle reaches (including Shaanxi
and Shanxi) and the lower reaches (including Henan and Shandong), likely attributable
to the heightened industrial activity in the region. This increased industrialization also
correlates with the greater volume of data for the upper reaches, resulting in a wider range
of variation in the pollutant concentrations.
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3.2.2. Ratios of Water Quality Parameters

The ratios of different water quality parameters of the centralized industrial WWTPs
in the Yellow River basin were calculated, and the analyzed results are shown in Figure 4.
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Figure 4. Ratios of water quality parameters of centralized industrial WWTPs in the Yellow River
basin. (a) BOD/COD; (b) COD/TN; (c) BOD/TN; (d) BOD/TP; and (e) TN/TP.

The BOD/COD ratio can reflect the biodegradability of sewage. When the BOD/COD
ratio is between 0.4 and 0.6, the biodegradability of the wastewater is considered good, and
lower values indicate that the wastewater is poorly biodegradable [25]. The BOD/COD
ratio of the WWTPs fluctuates between 0.1 and 1.6, with an average value of 0.5 and
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a medium value of 0.4, which means that 50% of the influent of the WWTPs was not
favorable for biological treatment (Figure 4a). The overall biodegradability of the influent
was poor as the studied industrial parks are mainly focused on chemical, metallurgical,
pharmaceutical and other industries, which usually produce non-degradable or refractory
organic pollutants.

COD represents a constraining factor in the process of denitrification. Effective deni-
trification can be achieved when the influent COD/TN ratio falls between 8 and 12, and if
the COD/TN ratio is too low, the carbon source is considered insufficient and additional
supplementation is required [26]. As shown in Figure 4b, the COD/TN ratio ranges from
0.6 to 49.4; however, 75% of the WWTPs showed values lower than 8, revealing that insuffi-
cient carbon sources are a vital problem for centralized industrial wastewater treatment.
In fact, 37 of the 63 centralized industrial WWTPs surveyed in this study have been using
additional carbon sources to effectively remove nitrogen and phosphorus from wastewater,
resulting in a total additional carbon source consumption of 17,372.5 ton per year.

The BOD/TN ratio can also reflect whether there is enough organic matter in the
wastewater influent for the efficient removal of TN. The carbon source is considered
adequate when BOD/TN > 4 [27]. Figure 4c shows that the range of the BOD/TN ratio is
0.8~15.8, the average value is 2.7, and the median value is 3.7. Similar to COD, 80.8% of the
BOD/TN ratios for the WWTPs were below four, once again proving the lack of carbon
sources in the wastewater from the industrial parks in the Yellow River basin.

The BOD/TP ratio can be used to assess the feasibility of biological phosphorus
removal. Generally, a BOD/TP ratio greater than 20 ensures good phosphorus removal
efficiency [28]. As presented in Figure 4d, the BOD/TP ratio varies significantly from
8.9 to 529.4, with an average value of 63.9 and a medium value of 32.0. Only 15.4% of
WWTPs exhibited a BOD/TP ratio less than 20, indicating that phosphorus could be
effectively removed during biotreatment.

From Figure 4e, the centralized industrial WWTPs had a TN/TP ratio between 3.0 and
126.6. The balance of C, N and P in the influent is the key to effective biological treatment
processes. It is generally believed that when the BOD/TN/TP ratio is between 100:5:1 and
100:10:1, an aerobic process is the most efficient, and when the BOD/TN/TP ratio is 250:5:1,
an anaerobic process is the most efficient [26]. In this study, the TN/TP ratio of 72.3% of the
WWTPs exceeded 10, which did not meet the optimum conditions for microbial growth.

Overall, the centralized industrial WWTPs in the Yellow River basin exhibit challenges,
including low concentrations of COD and BOD, limited biodegradability and imbalanced
compositions of C, N and P in their wastewater influent, all of which hinder the effect of
the biological treatment process. Pretreatment techniques to improve biodegradability and
additional carbon sources are essential, but substantial carbon source consumption not
only diverges from the objectives outlined in the Global Sustainable Development Goals
but also amplifies the financial strain of operational costs.

3.2.3. Correlation of Influent Water Quality Parameters

Based on the influent levels of BOD, COD, NH3-N, TN and TP in the centralized
industrial wastewater treatment plants (WWTPs) within the Yellow River basin, a linear re-
gression analysis was conducted using the least squares method. The relationships among
these water quality parameters, along with the corresponding regression equations and
correlation coefficients (R2), are presented in Figure 5 and Table 2. Figure 5a demonstrates a
significant linear correlation between BOD and COD (R2 = 0.73118), while the associations
between NH3-N (R2 = 0.12457) and TN (R2 = 0.24157) are moderate. In contrast, no linear
correlation is observed between BOD and TP (R2 = 0.05991). The correlation analysis of
COD and BOD reveals a proportional relationship, where the COD concentration increases
with rising BOD levels. Figure 5b illustrates weak linear relationships between COD
and NH3-N (R2 = 0.1309), TN (R2 = 0.10026), and TP (R2 = 0.11159), respectively. Addi-
tionally, Figure 5c demonstrates a clear correlation between NH3-N and TN (R2 = 0.426),
underscoring the necessity of controlling influent NH3-N and enhancing nitrification and
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denitrification efficiency to achieve effective total nitrogen removal in WWTPs. A general
linear relationship is found between NH3-N and TP (R2 = 0.26939) as well as TN and TP
(R2 = 0.22071) from Figure 5c,d. Thus, maintaining appropriate nitrogen and phosphorus
levels is crucial for the efficient removal of pollutants.
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Table 2. Correlation and regression analysis of influent water quality parameters.

Index COD NH3-N TN TP

BOD Y = 2.3079x + 20.544
R2 = 0.73118

y = 0.0435x + 24.028
R2 = 0.12457

y = 0.11587x + 30.322
R2 = 0.24157

y = 0.00472x + 2.7249
R2 = 0.05991

COD y = 0.02323x + 22.626
R2 = 0.1309

y = 0.02913x + 35.744
R2 = 0.10026

y = 0.00306x + 2.3627
R2 = 0.11159

NH3-N y = 1.0262x + 14.548
R2 = 0.426

y = 0.07964x + 1.0196
R2 = 0.26939

TN y = 0.04608x + 1.3470
R2 = 0.22071

3.3. Energy Consumption and Operational Cost

The statistical results for energy consumption, operational costs and their correlation
in the centralized industrial WWTPs in the Yellow River basin are presented in Figure 6.
The energy consumption of the WWTPs primarily comprises electricity consumption and
fuel energy consumption, with electricity consumption constituting the largest share. The
carbon emissions resulting from the wastewater treatment process represent approximately
1~2% of China’s total carbon emissions [29]. A narrow distribution of electricity consump-
tion is observed in Figure 6; the 25~75% range of energy consumption is 0.7~1.1 kWh/m3,
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while the average and median values are 1.1 and 2.5 kWh/m3, respectively. In 2020, the
national median electricity consumption for municipal WWTPs was 0.36 kWh/m3, while
the median electricity consumption for municipal WWTPs in major cities within the Yellow
River basin varied from 0.26 to 1.11 kWh/m3, with approximately 66.8% of the WWTPs in
the Yellow River basin exceeding the national median value [30]. The intricate composition
of pollutants and the limited biodegradability of industrial wastewater necessitate the
utilization of additional treatment units, particularly certain physicochemical technologies
that consume more energy compared to biotreatment methods, in centralized industrial
WWTPs. Consequently, it is understandable that their energy consumption surpasses
that of municipal WWTPs. Moreover, the relatively low influent COD concentration also
contributes to the high energy consumption to a certain extent. Nevertheless, the general
operational energy consumption of industrial WWTPs in the Yellow River basin remains
on the high side, indicating potential for optimization and enhancement. To reduce en-
ergy consumption, measures such as adopting energy-efficient technologies, optimizing
treatment processes and investing in renewable energy sources can be implemented.
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Electricity consumption not only stands out as a significant contributor to carbon emis-
sions in WWTPs but also substantially contributes to the operational costs of these facilities.
As shown in Figure 6, the 25~75% range of operational costs is 0.2~1.1 USD/m3, while
the average and median values are 1.1 and 0.5 USD/m3, respectively. An apparent linear
correlation between the operational cost and the electricity consumption was obtained,
with R2 = 0.56133, further confirming that electricity consumption contributes significantly
to operational costs. Thus, it is imperative to take effective measures such as improving the
influent water quality and optimizing the treatment process to save energy and reduce the
cost of the centralized industrial WWTPs in the Yellow River basin.

4. Conclusions

The scales of the centralized WWTPs of industrial parks in the Yellow River basin
were generally small, mainly ranging from 1 × 104 to 5 × 104 m3/d, and the average
hydraulic loading rate of the 63 WWTPs was 53.81%, surpassing the national average
level. The hydraulic loading rate demonstrated a certain scale effect. However, there was a
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noticeable regional disparity in the development of wastewater treatment facilities, with
slower progress in the construction of facilities in the upper and middle reaches. Both
the treatment capacity and collection rate of wastewater require further enhancement.
Aerobic biological treatment processes dominated in the Yellow River basin, with their
usage accounting for 55.1% of the all plants. The predominant processes include the AAO,
AO, oxidation ditch and MBR processes.

The influent pollutant concentrations of the centralized industrial WWTPs in the
Yellow River basin displayed a positively skewed distribution overall. The substantial
fluctuation in water quality indices, coupled with challenges such as poor biodegradabil-
ity, insufficient carbon sources and imbalanced nitrogen-to-phosphorus ratios, warrants
particular attention. Consequently, emphasis should be placed on controlling the influent
water quality during forthcoming upgrades and renovations. Furthermore, the energy
consumption of the centralized industrial WWTPs in the Yellow River basin exceeded the
national median value. Optimizing the operation of these plants is important to enhance
their operational stability and efficiency.

This study only conducted an overall analysis of the water quality characteristics of
centralized WWTPs operating in major industrial parks in the Yellow River basin. Given
the limitations in data acquisition, it is recommended that subsequent studies continue
to enhance the analysis of industrial parks with different water treatment processes and
various effluent discharge standard limits, thereby helping to improve the stability of
effluent water quality from centralized industrial wastewater treatment facilities.
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