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Abstract: Intense climate change and rapid urbanization have increased the risk of urban flooding,
seriously affecting urban economic and social stability. Enhancing urban flood resilience (UFR)
has required a new solution to cope with urban flood disasters. In this study, taking Yingtan city
as an example, a system of indicators for evaluating UFR was constructed, with 17 representative
indicators, comprising three subsystems: socio-economic, ecological, and infrastructural. A hybrid
model combining Fuzzy Analytic Hierarchy Process (FAHP), Entropy Weight Method (EWM), and
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was applied, to develop an
index-based measurement to compare and evaluate UFR, and Gray Relational Analysis (GRA) was
used to discover the main factors affecting UFR. In addition, the natural discontinuous method was
innovatively used to divide the UFR grade interval into levels, and the grade change was evaluated
based on the TOPSIS method. The results showed that (1) From 2010 to 2022, the UFR in Yingtan City
increased by 80.69%, and the factors affecting UFR were highly correlated with urban infrastructure
development; however, the ecological resilience in the subsystem showed a fluctuating downward
trend because of the influence of the surface area of lakes and rivers; (2) The grades of UFR for Yingtan
City increased from Level III (2010 and 2016) to Level IV (2022), with local financial expenditures and
the age structure of the population being the main factors currently limiting the development of UFR.
The study provides a theoretical basis for the construction of an indicator system for assessing the
UFR of Yingtan and proposes practical improvement directions for UFR.

Keywords: urban flood resilience; evaluation analysis; FAHP–EWM; TOPSIS; limiting factor; Yingtan city

1. Introduction

In the past few decades, the urbanization process in various countries around the
world has maintained a rapid growth trend, and the proportion of impermeable surfaces is
gradually increasing, inevitably leading to an increased risk of flooding in urban centers
due to extreme rainfall [1]. At the same time, the occurrence of urban meteorological
disasters has intensified due to climate change, which is mainly characterized by global
warming [2]. More than 100 major flood disasters occur globally every year, causing huge
losses to human life and property in flood-affected cities and seriously affecting urban
economic and social stability [3]. It is estimated that the direct economic losses caused by
floods in China from 1990 to 2018 came to over CNY 4 trillion [4]. China is the one of the
countries in the world with a high incidence of floods and waterlogging, and devastating
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flood disasters have occurred in recent years, such as the flooding in Beijing city in 2012 [5]
and in Zhengzhou city in 2021 [6].

Much research has been conducted in the last few years on flood hazards and disaster
reduction methods, using approaches such as flood strategies [7] and flood risk simula-
tion [8]. Considering the changing precipitation patterns and the damage caused by heavy
rainfall in recent years, traditional safety concepts and disaster prevention measures are
no longer sufficient to meet the needs of current and future urban development. The
assessment and improvement of urban resilience are attracting a great deal of attention
from researchers [9], and the concept of resilience has been widely used in many fields
and disciplines. In 1973, a Canadian scholar first introduced the concept of resilience into
the field of ecology [10]. Resilient cities refer to cities that have a strong ability to resist
and absorb external interference, to quickly adapt to environmental changes, to maintain
functional and system structure stability, and to promote rapid recovery in the face of
disasters. There are new opportunities for urban flood prevention and disaster reduction
by building resilient cities. The concept of urban flood resilience (UFR) has been proposed:
responding to flood disasters with urban resilience construction, which enables a city to
quickly restore its original socio-economic characteristics after a flood, thereby avoiding
casualties and reducing economic losses [11].

Based on the concept of the resilient city, many assessment methods have been pro-
posed to evaluate and analyze UFR; these include index systems, system function curves,
and quantitative modeling. Index-based resilience assessment is the most commonly used
method [12]. In addition, UFR has been studied by many scholars, using more sophisticated
models such as the PSR framework, the socio-economic-natural complex ecosystem [13],
and the system dynamics model [14]. Many models have also been built based on local
demand for evaluating urban flood resistance capacity [15,16]. It is believed that UFR
is closely related to a city’s economic development level. As the driving force for urban
development, economic level directly affects urban infrastructure investment, flood control,
disaster relief investment, per capita income, and industrial structure [17]. At the social
level, as citizens are the main implementers of the concept of urban resilience, it is par-
ticularly important to actively mobilize citizen participation, integrate resources, break
down psychological barriers, and form a collaborative management mechanism for a whole
society. The age distribution, learning ability, and employment status of residents provide
support for urban economic development, which has an important impact on disaster resis-
tance and is directly related to a city’s resilience to floods. The infrastructure level is the
key to ensuring the normal operation of a city during disasters: urban drainage networks,
road conditions, and green coverage are considered important factors that affecting urban
resilience [13]. However, there is currently no standard method suitable for assessing the
UFR of any city since it is affected by many factors.

To understand the level of urban flood resistance, it is usually necessary to select
multiple relevant indicators from different perspectives, to construct an evaluation frame-
work. In the absence of standards for these indicators, multi-criteria decision-making
(MCDM) methods can serve as a comprehensive evaluation or goal-ranking technique [18].
Numerous existing studies have used MCDM to explore urban flood issues. For instance,
Lee et al. constructed an MCDM tool based on socio-economic development and climate
change in a certain area of Seoul, South Korea to assess local flood vulnerability [19]. Sanaz
Hadian et al. drew a flood risk map of Mazandaran Province, Iran, based on MCDM and
analyzed the local residents’ ability to cope with flood disasters [20]. Kelly et al. devel-
oped a large-scale flood risk assessment tool based on MCDM and analyzed flood risks in
Australia [21]. From past research, it can be seen that MCDM can be flexibly applied accord-
ing to regional characteristics and research purposes. For multi-criteria decision making,
the determination of indicator weights is very important. In previous studies, subjective
weighting methods have been frequently used [22,23], but subjective weighting methods
(such as AHP) are just improvements on the basis of hierarchical evaluation methods. Since
they rely on the subjective scoring matrix of the respondents, their evaluation results are
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still relatively subjective [24]. On the other hand, EWM is an objective weighting method
that assigns weights to indicators based on the amount of information they contain. This
study adopts a method combining FAHP and EWM to reduce the subjective influence of
the fuzzy hierarchical evaluation method. In addition, understanding the main factors
limiting the development of flood resilience is a prerequisite for improving resilience levels.
Previous studies have used the Geographical Detector Model to find indicators that restrict
the development of flood resilience on a spatial scale [25]. GRA is a data analysis method
that measures the geometric correspondence between factors [26]. This study uses the GRA
method to explore the limiting factors of flood resilience on a temporal scale.

This study selected Yingtan City as the research subject. In 2022, Lee et al. conducted
a study on the ecological resilience of the middle Yangtze River urban agglomeration,
in which the ecological resilience of Yingtan City was at a moderate level [27]. In the
same year, Yao et al. found that the sensitivity to flash floods in the northeastern part of
Jiangxi Province was high, and Yingtan City, located in this region, was susceptible to flash
floods [28]. At present, scholars have conducted a small amount of research on the resilience
and flood disasters of Yingtan City, but the amount of research on the flood resilience of
Yingtan City is relatively low. As part of the first batch of sponge city demonstration cities
in China, it is crucial for it to implement the concept of flood resilience.

Previous studies have constructed various evaluation frameworks in search of stan-
dard assessment methods [29,30], but, due to the characteristics of the research area and the
internal complexity of flood resilience, there are still gaps in flood resilience research from
different perspectives and regions [31]. This study constructed an evaluation framework
from three dimensions: social recovery, ecological recovery, and infrastructure recovery,
using FAHP–EWM and TOPSIS as the measurement methods for UFR. The prominent
contributions of this study are to quantify the urban flood resilience capacity by integrating
indicators of socio-economic recovery, ecological recovery, and infrastructure recovery
in Yingtan City and to find factors that restrict flood resilience from a temporal scale. In
addition, under the guidance of the constructed evaluation framework, this study divided
the levels of various indicators based on statistical data from all cities in China and further
used the TOPSIS method to evaluate the flood resistance capacity of Yingtan City in the
target year, which better guided the future development of Yingtan City’s flood resistance
capacity. This is another contribution. The research results aim to construct an applicable
flood risk analysis strategy, providing theoretical support for the improvement of flood
resilience in Yingtan City.

The rest of this article is organized as follows. Section 2 introduces the study area
and data. Section 3 describes the basic approach and the analysis steps of UFR evaluation.
Then, in Section 4, we analyze the evolution characteristics of UFR in Yingtan from 2010 to
2022 and the UFR grades in three different years, utilizing the TOPSIS method.

2. Study Area and Data Sources
2.1. Study Area

Yingtan City, situated in the northeastern part of Jiangxi Province (Figure 1), stands
at the crossroads where the Wuyi Mountains transition into the Poyang Lake Plain. Span-
ning coordinates from 27◦35′–28◦41′ N to 116◦41′–117◦30′ E, the city covers an area of
3556.7 square kilometers, encompassing Yuehu District, Guixi City, and Yujiang County. As
of 2022, the city boasted a population of 1.155 million people and a GDP of CNY 123.76 bil-
lion. Yingtan City has numerous reservoirs. The city center is located in the middle and
lower reaches of the Xinjiang River, where floods are mainly discharged through the Xin-
jiang River and its tributaries. The current flood control engineering system is primarily
based on dikes. The large reservoirs that have been built upstream are all located in the
upper reaches of the Xinjiang River. Since the city center of Yingtan is not within the catch-
ment area controlled by the upstream reservoirs, the regulation capacity of the upstream
reservoirs has a relatively small impact on the peak flow of the important flood control
sections in the city. The Wuhu Reservoir, located downstream to the west of the city center,
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along with its tributaries and the lakes and wetlands formed on the west side, can absorb
the incoming water from the city. The northeastern region where Yingtan City is located
is one of the three major storm centers in Jiangxi Province, and it has suffered from flood
disasters multiple times in history. In the 74 years since 1949, Yingtan City has experienced
10 significant flood disasters, with a total direct economic loss of nearly CNY 10 billion.
The most severe incident occurred from 16 to 20 June 2010, when a storm triggered a flash
flood, causing a rapid rise in river levels. The disaster affected 571,000 people citywide,
and more than 200,000 houses were flooded. The direct economic loss from this disaster
reached as high as CNY 6.846 billion.
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Figure 1. Geographic location of the study area.

Since the advent of China’s reform and opening up, rapid urbanization has given
rise to a spectrum of challenges. Urban systems have become increasingly susceptible to
both natural disasters and societal crises, each capable of posing a potentially destructive
threat to the city. In response, China introduced the concept of sponge cities to fortify urban
resilience against flood disasters. Yingtan City secured its position as one of the pioneering
demonstration cities for sponge city construction in 2021. This endeavor encompasses a
broad spectrum, spanning from high-level planning and project design to on-site construc-
tion, with a primary focus on infrastructure and low-impact development to address these
challenges. However, the socio-economic framework and ecological equilibrium of the city
also serve as pivotal factors in mitigating floods. Hence, it remains crucial to delve into
Yingtan City’s flood resilience from a holistic perspective.

2.2. Data Sources

This study collected urban construction, socioeconomic, and other related data related
to Yingtan City from 2010 to 2022. The data were sourced from the China City Statistical
Yearbook https://data.cnki.net/ (accessed on 11 October 2023), China Urban Construction
Statistical Yearbook https://www.mohurd.gov.cn/ (accessed on 11 October 2023), and
Yingtan City National Economic and Social Development Statistical Bulletin https://data.
cnki.net/ (accesseed on 11 October 2023), which contain information provided by relevant
units in Yingtan City. For individual missing data, interpolation and supplementation were
carried out based on adjacent years. Specifically, the population age structure indices for
2013, 2014, and 2018 were obtained through interpolation.

https://data.cnki.net/
https://www.mohurd.gov.cn/
https://data.cnki.net/
https://data.cnki.net/
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3. Methodology
3.1. Overall Framework

As shown in Figure 2, this article establishes an overall assessment system for UFR based
on the UFR evaluation framework. The content is divided into three parts: (1) the construction
of the UFR evaluation framework, consisting of three primary indicators—social resilience,
ecological resilience, and infrastructure resilience—and 17 secondary indicators; (2) the use
of Gray Correlation Analysis to validate the rationality of the UFR evaluation framework’s
indicator weights, along with an analysis of the contributions of indicators to regional UFR; (3)
an analysis of the temporal evolution characteristics of UFR in Yingtan City and an assessment
of the changes in UFR levels there, based on the Technique for Order Preference by Similarity
to Ideal Solution method.
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Firstly, a UFR assessment indicator system was established, comprising three sub-
systems: socio-economic resilience, ecological resilience, and infrastructure resilience.
Subsequently, a combined subjective–objective approach (FAHP–EWM) was employed to
assign weights to 17 secondary indicators. On this basis, the evolution characteristics of
flood resilience levels in Yingtan City from 2010 to 2022 were explored using the TOPSIS
and GRA methods. In addition, to better guide the future development of flood resilience
in Yingtan City, we applied the Natural Breaks Method (NBM) to divide the resilience
levels into three annual intervals. Subsequently, the TOPSIS method was used to assess the
flood resilience level for the target years in Yingtan City.

3.2. Index System for UFR
3.2.1. Primary Indicators

Currently, the concept of urban safety resilience is underdeveloped, and its conno-
tations and domain extensions remain ambiguous [32]. Scholars’ assessments of urban
rain-flood resilience involve various aspects such as ecology, society, economy, environment,
and climate. However, there is still no standardized evaluation system [3,33]. Drawing on
previous research, it has been found that, when cities are unable to maintain their current
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state in the face of challenges, the social and economic structures have the flexibility to
create entirely new systems [34]. At the same time, social and economic conditions are
directly related to the resilience and recovery capabilities of cities in coping with flood
disasters [35]. The selection of social-economic resilience serves as a crucial dimension
within the UFR assessment framework. Some studies have indicated that the dimensions
of urban ecological resilience and infrastructure resilience are of significant importance
in assessing the recovery capability from flood events [36]. Urban areas with ecological
vulnerabilities are highly susceptible to flooding and waterlogging [37–39], highlighting the
crucial impact of ecology on the recovery capacity from urban waterlogging. Urban ecologi-
cal resilience, with its connotations of ecological resources and environmental restoration, is
a suitable dimension for assessment. Furthermore, when floods occur, urban infrastructure
plays a direct role in the discharge of rainwater. Some scholars have utilized hydraulic
models for scenario simulations, relying on urban infrastructure parameters to assess urban
waterlogging risk [40,41]. We have chosen infrastructure resilience as one of the assessment
dimensions, as it is closely associated with urban waterlogging recovery capabilities. This
study considers social resilience, ecological resilience, and infrastructure resilience as pri-
mary indicators, allowing for a more comprehensive analysis of the contribution of each
dimension to UFR and the constraints of each subsystem’s indicators.

3.2.2. Secondary Indicators

In order to accurately assess the UFR level of Yingtan City, this study referred to the
“Guidelines for the Evaluation of Safety Resilient Cities” (GB_T 40947-2021) and the other
relevant literature. Based on the actual conditions of the study area, indicators highly cor-
related with Yingtan City’s UFR were selected. Subsequently, the Delphi Expert Survey
Method was used to conduct a questionnaire survey on experts in relevant fields to screen
indicators. The questionnaire is detailed in Table S1. This study invited experts from the fields
of urban planning, emergency management, and urban water services. Their professional
knowledge and experience could comprehensively cover all aspects of the research, and they
had a deep understanding of the actual situation in Yingtan City. Their evaluation results
ensured the comprehensiveness and accuracy of the results. While ensuring the accuracy
and comprehensiveness of the evaluation results, excessive expert opinions may lead to
redundancy of information, which may affect the clarity and operability of the evaluation
results [42]. Therefore, this study selected a total of five experts for indicator screening. The
details of the expert group can be found in Table S2. Ultimately, the experts, considering the
three major attributes of urban rain-flood resilience and following the principles of scientific
validity, relevance, representativeness, and feasibility, conducted a detailed assessment and
screening of the indicators. Finally, 17 secondary evaluation indicators representing urban
socio-economic resilience, ecological resilience, and infrastructure resilience were selected,
establishing the UFR assessment indicator system for Yingtan City. The reasons for selecting
each secondary indicator are as follows.

As shown in Table 1, after expert evaluation and screening, six indicators—per capita
GDP (A1), local fiscal expenditure (A2), number of healthcare workers per 10,000 population
(A3), percentage of population aged over 60 and under 18 (A4), unemployment rate (A5),
and density of population (A6)—were selected to characterize the socio-economic resilience
of the city. Regional post-disaster recovery or reconstruction relies on local financial inputs,
and regions with strong economic dynamics are better equipped to deal with challenges. For
instance, the GDP volume in Zhengzhou City during the pre-, mid-, and post-incident stages
of the 2021 flood disaster exhibited a systematic change [43], indicating that per capita GDP
and local fiscal expenditure can largely reflect local flood recovery capabilities. Density of
population was considered due to its positive correlation with flood risk; higher population
density tends to lower resilience levels [44]. In regions with a higher proportion of socially
vulnerable groups, the proportion of flooded areas in the floodplain tends to increase [45].
Conversely, an increase in the number of individuals covered by health insurance can mitigate
this risk. Previous research has utilized the population age structure index and the number of
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healthcare workers to assess socio-economic resilience [46]. The ecological resilience (Table 1)
was assessed by combining five indicators: per capita public green area (B1), green coverage
rate of the built-up area (B2), the centralized treatment rate of the sewage treatment plant
(B3), the surface area of lakes and rivers (B4), and land development intensity (B5). In urban
development, different types of landscape exhibit significant differences in runoff generated
during rainfall events [47]. In highly developed regions, extensive areas of impermeable surfaces
increase the risk of urban flooding. In contrast, green spaces, as the primary permeable ground
in cities, effectively reduce the runoff coefficient during rainfall events, thereby decreasing the
probability of flood occurrence [48]. Therefore, the three secondary indicators of per capita
public green area, the green coverage rate of the built-up area, and the land development
intensity play a significant role in UFR. Urban water bodies possess natural storage capacity
and are indispensable indicators in waterlogging studies. Regions with a higher water area
tend to have a lower flood risk index [49]. Additionally, the urban centralized treatment rate of
the sewage treatment plant reflects the construction of sewage treatment facilities and the level
of urban sewage management. Given its attributes related to both infrastructure and ecology,
and to balance the number of elements in each primary indicator, sewage collection rate was
included in the ecological resilience dimension. The assessment of urban infrastructure resilience
(Table 1) was conducted by combining six indicators: number of hospital beds per ten thousand
population (C1), per capita refuge area (C2), density of road network in built district (C3),
communication coverage (C4), density of sewers in built district (C5), and central city pumping
capacity (C6). Density of sewers and pumping capacity are crucial indicators representing the
capability to discharge rainwater effectively [50,51]. In urban areas, rainfall-induced flooding
directly impacts the traffic condition of roads. Road density is highly correlated with flood
risk [52]. However, roads can also serve as drainage channels after extreme rainfall, accelerating
the discharge of accumulated water. Simultaneously, the recovery of transportation functions
in high-density road areas significantly expedites the reconstruction process. Communication
coverage, per capita refuge area, and the number of hospital beds per 10,000 population were
selected from an emergency perspective. Per capita refuge area includes urban parks, green
spaces, and elevated open squares that can be used as areas to mitigate flood disasters [53].

Table 1. Evaluation index system of UFR of Yingtan City.

Target
Layer Criterion Layer Index Layer Unit Serial Number Nature

Urban
flood

resilience

Socio-economic
resilience (A)

Per capital GDP CNY/person A1 +

Local fiscal expenditure 10,000 CNY A2 +

Number of healthcare
workers per 10,000

population
person A3 +

Percentage of population
aged over 60 and under 18 % A4 −

Unemployment rate % A5 −

Density of population persons/km2 A6 −

Ecological
resilience (B)

Per capita public green
areas m2 B1 +

Green coverage rate of
built-up area % B2 +

Centralized treatment rate
of sewage treatment plant % B3 +

Surface area of lakes and
rivers km2 B4 +

Land development
intensity % B5 −
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Table 1. Cont.

Target
Layer Criterion Layer Index Layer Unit Serial Number Nature

Urban
flood

resilience

Infrastructure
resilience (C)

Number of hospital beds
per 10,000 population sheet C1 +

Per capita refuge area m2 C2 +

Density of road network in
built district km/km2 C3 +

Communication coverage % C4 +

Density of sewers in built
district km/km2 C5 +

Central city pumping
capacity m3/s C6 +

Based on the positive and negative impacts of the 17 indicators on UFR, positive
and negative indices were assigned. Positive indices represent a positive correlation with
the level of UFR, while negative indices indicate a negative correlation. This assessment
resulted in a total of 13 positive indicators and 4 negative indicators.

3.3. Subjective and Objective Weight Calculation Method

The FAHP–EWM method has been validated to improve the accuracy of results in
previous studies [54]. Online survey questionnaires were administered to five experts in
construction, meteorology, emergency management, and related fields, obtaining initial
score judgment matrices for the primary and secondary indicators in the UFR assessment
framework. Subsequently, FAHP was used to calculate the relatively subjective weight
values, and EWM was employed to determine the final objective weights of the indicators.

The calculation steps of the Fuzzy Analytic Hierarchy Process (FAHP) are as follows:

(1) Constructing Judgment Matrix:

Following the hierarchy model, construct fuzzy judgment matrices layer by layer
based on expert scores. Each element in the matrix represents the fuzzy relationship of
the ith element relative to the jth element in the lower layer. In each layer, elements are
compared pairwise according to the 0.1~0.9 scale method, using the adjacent elements in
the upper layer as criteria to construct the fuzzy judgment matrix:

A =


a11 a12 · · · a1n
a21 a22 · · · a21
· · · · · · · · · · · ·
an1 an1 · · · ann


(2) Constructing the Fuzzy Consistency Judgment Matrix:

rij =

n
∑

k=1
aik −

n
∑

k=1
ajk

2n
+ 0.5, (i, j = 1, 2, · · · , n)

(3) Calculating Subjective Weights for Each Evaluation Criterion:

WFj = (w1, w2, · · · , wi)
where wi is the weight of the ith criterion, and the weight calculation formula is as follows:

wi =
n

∑
k=1

rik•
1

na
− 1

2a
+

1
n

, (i = 1, 2, · · · , n)

among a = n−1
2

(4) Consistency Index Check:
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When the consistency index (CI) is I(R, W∗) ≤ α, the judgment matrix can be classified
as a fuzzy consistent judgment matrix. Typically, a threshold value denoted as ‘α’ is used,
and it is commonly set to α = 1:

I(R, W∗) =
1
n2

n

∑
i=1

n

∑
j=1

∣∣rij+ wij − 1
∣∣ ≤ α

The calculation steps of the Entropy Weight Method (EWM) are as follows:

(1) Build the Initial Assessment Matrix:

Construct the initial matrix with m objects and n indicators:

X =
[
xij

]
m×n

(2) Standardization of Indicator Data:

Due to significant differences in the nature and units of various indicators, to eliminate
the influence of different units, the range method is used to standardize the data.

For positive indicators, the standardization formula is as follows:

x′ij =
xij − min

(
xij

)
max

(
xij

)
− min

(
xij

)
For negative indicators, the standardization formula is as follows:

x′ij =
max

(
xij

)
− xij

max
(

xij
)
− min

(
xij

)
In the formulas, xij represents the original data of the jth indicator for the ith unit, and

x′ij represents the standardized data for the jth indicator of the ith unit after processing;

(3) Calculate the Information Entropy Value (ej):

pij = x′ij

/
n

∑
i=1

x′ij

ej = −

[
n
∑

i=1
pij ln

(
pij

)]
ln(n)

, (i = 1, 2 · · ·m; j = 1, 2 · · · n)

In the formula, pij represents the proportion of the jth indicator for the ith. ej is the
information entropy for the jth indicator. The larger the entropy value (ej) for a particular
indicator, the smaller its weight in the evaluation; conversely, a smaller entropy value
implies a larger weight;

(4) Calculate the Objective Weights WEj =
(
w1, w2, · · · , wj

)
for Each Evaluation Criterion:

WEj =
(
w1, w2, · · · , wj

)
where wj is the weight for the jth indicator. The weight calculation formula is as follows:

wj =
(
1 − ej

)/ m

∑
j=1

(
1 − ej

)
among 0 ≤ wj ≤ 1;

(5) Determine the Comprehensive Weight of Indicators:

W =
wFjwEj

n
∑

j=1
wFjwEj
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In the formula, W is the comprehensive weight for the corresponding indicator, WEj is
the weight obtained from the entropy weight method, and WFj is the weight obtained from
the fuzzy analytic hierarchy process.

3.4. TOPSIS Comprehensive Evaluation Method

The fundamental idea of TOPSIS is based on a set of evaluation criteria, an established
ideal solution, and a negative ideal solution [55]. The method calculates the distances
between each alternative solution and the ideal and the most negative solutions. This
computation results in a comprehensive score for each alternative solution. Considering
the advantages of TOPSIS in the field of Multiple Attribute Decision Making (MADM), this
study adopts TOPSIS as the evaluation method for assessing the UFR of Yingtan City from
2010 to 2022. The specific steps are as follows:

(1) Define the multi-objective decision-making problem:

Ai =
(
xi1, · · · , xij, · · · , xin

)
, i = 1, · · · , m; j = 1, · · · , n

(2) Standardization of attribute properties:

x′ij =
xij − min

(
xij

)
max

(
xij

)
− min

(
xij

)
x′′

ij =
max

(
xij

)
− xij

max
(

xij
)
− min

(
xij

)
where x′ij represents positive indicators and x′′

ij represents negative indicators;

(3) Vector normalization of indicator data after processing:

R = rij =
xij√
m
∑

i=1
x2

ij

, i = 1, · · · , m; j = 1, · · · , n

(4) Calculate the Weighted Normalized Decision Matrix:

V = R · W = vij = wjrij, i = 1, · · · , m; j = 1, · · · , n

(5) Determine the Positive Ideal Solution A+ and Most Negative Solution A−:

A+ =
{

v+1 , v+2 , · · · , v+j , · · · , v+n ,
}
=

{(
max

i
vij|j ∈ J+

)
,
(

min
i

vij|j ∈ J−

)
|i = 1, 2, · · · , m

}

A− =
{

v−1 , v−2 , · · · , v−j , · · · , v−n ,
}
=

{(
min

i
vij|j ∈ J+

)
,
(

max
i

vij|j ∈ J−

)
|i = 1, 2, · · · , m

}
where J+ = {j = 1, 2, · · · , n|j} represents positive indicators and J− = {j = 1, 2, · · · , n|j}

represents negative indicators;

(6) Calculate the Euclidean distance to the Positive Ideal Solution D+
i and Most Negative

Solution D−
i :

D+
i =

√√√√ n

∑
j=1

(
vij − v+j

)2
, i = 1, · · · , m

D−
i =

√√√√ n

∑
j=1

(
vij − v−j

)2
, i = 1, · · · , m

(7) Calculate the proximity of the evaluation object to the most extreme solutions, i.e., the
relative closeness between the evaluation object and the most positive and negative
solutions. The calculation formula is
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C+
i =

D−
i

D+
i + D−

i
, i = 1, · · · , m

The urban resilience assessment results are expressed using the fitness degree, with
a range of values from 0 to 1. When the value is closer to 1, the degree indicates closer
proximity to the positive ideal point, implying a higher level of urban resilience. Conversely,
when the value is closer to 0, it indicates closer proximity to the most negative solution,
suggesting a lower level of urban resilience.

3.5. Gray Relational Analysis

Gray Relational Analysis (GRA) is a multi-criteria decision-making method based
on gray system theory. It is commonly used to analyze the correlation or measure the
contribution of evaluation factors to evaluation results in uncertain and fuzzy multi-criteria
data [56]. In this study, Gray Relational Analysis is employed to diagnose the important
factors that influence UFR based on the geometric correspondence data among various
indicators. A gray relational degree of an indicator in UFR greater than 0.5 indicates a
close correlation. Additionally, indicators with a gray relational degree greater than 0.7 are
considered significant factors that influence UFR [57].

3.6. Resilience Level Assessment
3.6.1. UFR Level Classification

The Natural Breaks Method is a univariate method based on cluster analysis. In cases
where the number of classes is predetermined, it iteratively calculates data breakpoints between
categories to minimize differences within the same category and maximize differences between
different categories. This method has been effective in vulnerability zoning along coastlines
and resilience-level assessments [58,59]. In this study, statistical yearbook data were collected
for Chinese prefecture-level cities and some county-level cities, from 2010 to 2022. Given that
indicators may fluctuate over different years, yearly data for each indicator in the assessment
framework were selected and outliers were removed. Subsequently, NBM was applied to
classify indicators such as population density and per capita GDP for all cities (as recorded
in the statistical yearbook) in China. For indicators not recorded in the statistical yearbook,
classification was based on national standards and technical specifications. A total of five levels
were classified, with Level 1 indicating low resilience to floods, Level 2 indicating relatively
low resilience, Level 3 indicating average resilience, Level 4 indicating relatively high resilience,
and Level 5 representing high resilience. To assess the resilience levels of Yingtan city in 2010,
2016, and 2022, three classification interval tables were generated. The classification interval for
2010 is provided below (Table 2), and the classification intervals for other years are detailed in
Supplementary Table S3 and Table S4. Using the assigned values corresponding to Levels I to V,
each indicator was assigned a five-level indicator value, as shown in Table 3.

Table 2. Classification of flood resilience index of Yingtan City in 2010.

Secondary Index Unit Level 1 Level 2 Level 3 Level 4 Level 5

Per capita GDP (A1) CNY/person 5304~19,750 19,750~33,137 33,137~52,480 52,480~83,425 83,425~175,125

Local fiscal expenditure (A2) 100 million
CNY 12.19~173.76 173.76~403.33 403.33~977.32 977.32~2061.51 2061.51~3302.89

Number of healthcare workers
per 10,000 population (A3) person 0~25 25~30 30~35 35~40 >40

Percentage of population aged
over 60 and under 18 (A4) % >25 20~25 15~20 10~15 0~10

Unemployment rate (A5) % 16.77~27.86 7.85~16.77 4.59~7.85 2.81~4.59 0~2.81

Density of population (A6) person/km2 8409~15,217 5883~8409 3671~5883 1893~3671 137~1893

Per capita public green
areas (B1) m2 0.43~7.11 7.11~11.21 11.21~15.50 15.50~23.30 23.30~41.92
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Table 2. Cont.

Secondary Index Unit Level 1 Level 2 Level 3 Level 4 Level 5

Green coverage rate of built-up
area (B2) % 1.92~18.80 18.80~29.22 29.22~36.71 36.71~43.19 43.19~57.89

Centralized treatment rate of
sewage treatment plant (B3) % 0.27~28.84 28.84~52.28 52.28~71.34 71.34~86.35 86.35~100

Surface area of lakes and
rivers (B4) km2 0~7 7~9 9~11 11~13 >13

Land development intensity (B5) % 15.75~41.67 7.23~15.75 2.82~7.23 1.05~2.82 0.02~1.05

Number of hospital beds per
10,000 population (C1) sheet 12.72~24.14 24.14~32.91 32.91~45.51 45.51~64.67 64.67~110.85

Per capita refuge area (C2) m2 0~0.5 0.5~1.5 1.5~2.5 2.5~3.5 >3.5

Density of road network in built
district (C3) km/km2 1.26~4.99 4.99~7.09 7.09~9.80 9.80~14.38 14.38~23.60

Communication coverage (C4) % 50~60 60~70 70~80 80~90 90~100

Density of sewers in built
district (C5) km/km2 0~4.94 4.94~8.13 8.13~12.11 12.11~20.45 20.45~40.76

Central city pumping
capacity (C6) m3/s 0~2 2~10 10~50 50~200 >200

Table 3. Index level values.

Index
Level A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 C6

I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
II 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
III 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
IV 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
V 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

3.6.2. Establishment of Resilience-Level Evaluation Model

(1) Constructing the Initial Evaluation Matrix A, based on the Indicator Level Values in Table 3:

A =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5


(2) Calculating the comprehensive weight values of the 17 evaluation indicators according

to FAHP–EWM:

After obtaining the weight of each indicator, the Ci of the five levels is calculated based
on Equations (12)–(21). A higher relative closeness value, closer to 5, indicates a better
performance. The results for Ci are presented in Table 4;

Table 4. Relative proximity of flood resilience ratings.

UFR Rating Di− Di+ Ci

I 0 0.1532 0
II 0.0383 0.1149 0.2500
III 0.0766 0.0766 0.500
IV 0.1149 0.0383 0.7500
V 0.1532 0 1
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(3) Establishing UFR level standards based on calculated relative closeness values for
each level, as shown in Table 5.

Table 5. UFR grade standard.

UFR Rating Ci

I 0 ≤ Ci < 0.25
II 0.25 ≤ Ci < 0.5
III 0.5 ≤ Ci < 0.75
IV 0.75 ≤ Ci < 1
V Ci = 1

4. Evaluation Index Set Analysis Results
4.1. Indicator Correlations

The gray correlation degrees of various dimensional indicators in Yingtan City were
computed. The results, as depicted in Figure 3, highlight that, among the three primary
evaluation indicators, the correlation between urban socio-economic resilience and urban
rain-flood resilience stands out as the strongest, scoring a high gray correlation degree of
0.921. Following closely is urban infrastructure resilience, demonstrating a degree of 0.808,
while urban ecological resilience exhibits the weakest correlation at 0.521. In the realm of
secondary evaluation indicators, several indicators—such as per capita GDP (A1), local
fiscal expenditure (A2), land development intensity (B5), the number of hospital beds per
10,000 population (C1), per capita refuge area (C2), density of road network in built district
(C3), density of sewers in built district (C5), and central city pumping capacity (C6)—all
display gray correlation degrees surpassing 0.75. Meanwhile, the remaining indicators also
show significant correlation, exceeding 0.58. This signifies a robust connection between
these evaluation indicators and the UFR of Yingtan City. Additionally, a comparison
between the comprehensive ranking of gray correlation degrees and the comprehensive
weight ranking obtained from FAHP–EWM reveals an alignment between the two (Figure 3).
This alignment serves to further validate the rationality behind the selection of evaluation
system indicators and the assignment of weights.
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4.2. Temporal Evolution of UFR

Based on the judgment matrix formed by the experts’ scoring of the indicators, the
subjective weights were first calculated (Equations (1)–(4)), then the objective weights were
calculated through the Entropy Weight Method (EWM) (Equations (5)–(10)). Subsequently,
the comprehensive weights of the indicators were determined by combining the subjective
and objective weight values (Equation (11)). All weight matrices had a consistency indicator
less than 0.1, passing the consistency test. Ultimately, the scores for socio-economic,
ecological, and infrastructure resilience for each research unit were obtained (Table S3).
Integrating the weight outcomes of the 17 indicators and the statistical data (Table S4), on
the basis of the TOPSIS method, the yearly UFR was charted in Yingtan City from 2010
to 2022, encompassing socio-economic resilience, ecological resilience, and infrastructure
resilience of subsystems. Furthermore, coupling the analysis of indicator GRA across
dimensions allowed a deeper investigation into the primary drivers impacting resilience
variations. Figure 4 visually depicts the temporal evolution characteristics of flood resilience
in the research area.
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4.2.1. Urban Flood Resilience

As illustrated in Figure 4, Yingtan City’s overall UFR exhibited an upward trajectory
from 2010 to 2022. The resilience increased from 0.1646 in 2010 to 0.8522 in 2022, marking an
impressive 80.69% surge. Examining the average gray correlation degree of UFR (Figure 3),
density of sewers in the built district (C5) emerged with the highest degree at 0.84, closely
followed by per capita GDP (A1) at 0.78. Several indicators demonstrated gray correlation
degrees exceeding 0.7, including local fiscal expenditure (A2), land development intensity
(B5), number of hospital beds per 10,000 population (C1), per capita refuge area (C2), density
of road network in built district (C3), and central city pumping capacity (C6). These findings
emphasize these indicators as pivotal factors driving the enhancement of flood resilience in
Yingtan City. However, it is noteworthy that, in both 2011 and 2019, UFR experienced slight
declines. Figure 5 shows that, in 2011, the indicator with the highest gray correlation was
C5. Upon analysis of statistical data and computations (Table S4), the reduction in drainage
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pipe network density by 0.12 km/km2 compared to 2010 was the primary contributor to
the 2011 UFR decline. In 2019, substantial disparities were observed in the gray correlation
degree values among different indicators (Figure 5). Notably, indicators with higher gray
correlation degrees were predominantly centered around infrastructure resilience. Overall,
delayed progress in infrastructure development stood out as the primary reason behind
the slight dip in flood resilience in 2019.
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4.2.2. Socio-Economic Resilience

As depicted in Figure 4, between 2010 and 2022, the socio-economic resilience of Eagle
Lake maintained its growth trend, as it increased by a total of almost 90%. The per capita
GDP (A1) and local fiscal expenditure (A2) stand as pivotal metrics in measuring a city’s
economic growth potential and explaining the regional recovery capability after flooding.
Based on the gray correlation information (Table 6), A1 and A2 consistently rank among
the top in gray correlation degree, of the six indicators, over the years. This suggests a
significant impact of A1 and A2 on Yingtan City’s socio-economic resilience. Additionally,
indicators such as the number of healthcare workers per 10,000 population (A3), percentage
of the population aged over 60 and under 18 (A4), unemployment rate (A5), and density of
population (A6) displayed a notable increase in gray correlation degrees from 2010 to 2017.
However, these indicators exhibited a gradual decline from 2017 to 2022, indicating their
advancement to relatively higher levels in 2017.

Table 6. Gray correlation degree of socio-economic resilience.

Index Gray Correlation Degree of Rising Period (2010–2022)

Per capita GDP (A1) 0.78
Local fiscal expenditure (A2) 0.77

Number of healthcare workers per 10,000 population (A3) 0.65
Percentage of population aged over 60 and under 18 (A4) 0.63

Unemployment rate (A5) 0.59
Density of population (A6) 0.60
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4.2.3. Ecological Resilience

As shown in Figure 4, from 2010 to 2020, Yingtan City experienced a decline in
ecological resilience, dropping from 0.65 to 0.14. However, by 2022, it rebounded to 0.3,
indicating a pattern of initial decrease followed by a subsequent recovery, resulting in
an overall decline of 58%. The surface area of lakes and rivers (B4) represents a city’s
innate water storage capacity during flood disasters. Gray correlation analyses from 2010
to 2020 (Table 7) highlight B4 as having the highest gray correlation degree, followed by
the green coverage rate of built-up area (B2) and the centralized treatment rate of the
sewage treatment plant (B3). This suggests that B2, B3, and B4 primarily contributed to
the decline in ecological resilience. Between 2020 and 2022, though, there was an uptick
in resilience. During this period, B4 ranked highest in gray correlation degree, followed
by the centralized collection rate of the sewage treatment plant (B3), boasting a gray
correlation degree of 0.73 (Table 7). B3 reflects the concentration of sewage collection in
a city, also indicating the city’s pipeline construction capacity. For Yingtan City, lacking
a fully segregated drainage system, B3 remains a pivotal factor in this resurgence. An
intriguing observation is the upward fluctuation in resilience in 2017. During that year, the
indicator with the highest gray correlation degree was per capita green area (B1). B1 reflects
changes in the runoff coefficient of urban underlying surface, which, when increased, helps
reduce internal flooding. This highlights that B1 primarily drove this fluctuation.

Table 7. Gray correlation degree of ecological resilience.

Index Gray Correlation Degree during
Rising Period (2010–2020)

Gray Correlation Degree during
Declining Period (2020–2022)

Per capita public green areas (B1) 0.69 0.60
Green coverage rate of built-up area (B2) 0.72 0.68

Centralized treatment rate of sewage
treatment plant (B3) 0.72 0.73

The surface area of lakes and rivers (B4) 0.75 0.82
Land development intensity (B5) 0.61 0.52

4.2.4. Infrastructure Resilience

As shown in Figure 4, the overall trend in infrastructure resilience from 2010 to 2022
depicted a consistent upward trajectory, marking a notable cumulative increase of 91.62%.
To delineate this trend further, it was segmented into three distinct phases: a period of
gradual growth, followed by fluctuations, and culminating in a phase of rapid advancement.
Between 2010 and 2016, infrastructure resilience demonstrated a slow but steady ascent.
Analyses of average correlation degrees for each indicator (Table 8) revealed that the density
of sewers in the built district (C5) held the highest gray correlation degree, at 0.81. Given
its role as the primary conduit for urban precipitation discharge, the drainage pipe network
could effectively address urban flood disasters. Hence, C6 stands as the most critical factor
influencing the gradual enhancement of infrastructure resilience. Over time, indicators
such as the number of hospital beds per 10,000 population (C1), per capita refuge area (C2),
communication coverage (C4), and central city pumping capacity (C6) displayed gradual
increases in gray correlation degree, showcasing their growing impact on infrastructure
resilience. From 2016 to 2020, infrastructure resilience experienced fluctuations. Gray
correlation analyses (Table 8) indicated that indicators C1, C2, C3, C5, and C6 boasted
correlation degrees surpassing 0.8, while C4 stood at 0.77, underscoring the significant
influence of all these indicators on infrastructure resilience. Between 2020 and 2022, a
rapid upsurge in infrastructure resilience was observed. Gray correlation analyses (Table 8)
highlighted C6 as the most influential factor, boasting the highest gray correlation degree,
while the other five indicators also contributed actively to the resilience enhancement.
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Table 8. Gray correlation degree of infrastructure resilience.

Index
Gray Correlation Degree
during Slow-Rise Period

(2010–2016)

Gray Correlation Degree
during Choppy Period

(2016–2020)

Gray Correlation Degree
during Rapid-Rise Period

(2020–2022)

Number of hospital beds per 10,000
population (C1) 0.69 0.80 0.56

Per capita refuge area (C2) 0.68 0.82 0.58
Density of road network in built

district (C3) 0.71 0.86 0.59

Communication coverage (C4) 0.62 0.77 0.51
Density of sewers in built district (C5) 0.81 0.88 0.70
Central city pumping capacity (C6) 0.68 0.83 0.58

5. Evolution of UFR Level

Considering the minimal fluctuation in resilience levels between consecutive years within
the study period, the analysis focused on three specific years in Yingtan City to assess flood
resilience grades. The flood resilience indicators for the assessment years are denoted as U1,
U2, and U3, corresponding to 2010, 2016, and 2022, respectively. Referring to Table 2, Table S5,
and Table S6 and statistical data (Table S4) allows for the determination of individual indicator
levels, as presented in Table 9. In this evaluation model, Level V of flood resilience is regarded
as the most desirable, while Level I represents the least favorable scenario. Hence, using an
evaluation model to analyze the years under assessment involves determining the values of
various indicators for each year. Then, Equations (12)–(21) are used to calculate how closely
the indicator value sequence of this assessment matches the most ideal and worst solutions,
as shown in Table 10. These results are compared against the grading standards provided in
Table 5 to determine the flood resilience level of the entity being evaluated.

Table 9. UFR index values.

Object A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 C6

U1 2 1 3 1 4 4 3 5 4 4 5 2 4 2 1 1 3
U2 3 1 3 1 3 3 3 4 5 4 5 2 5 1 3 1 3
U3 4 1 3 1 4 4 4 5 5 3 5 4 5 3 5 4 4

Table 10. Results of relative proximity calculations.

Object Di− Di+ Ci

U1 0.0582 0.1110 0.3439
U2 0.0673 0.1022 0.3971
U3 0.0960 0.0624 0.6061

After conducting our calculations, we determined the flood resilience alignment
in Yingtan City for the years 2010, 2016, and 2022. In 2010, the proximity was 0.3439,
categorizing it as Level III. By 2016, this proximity had increased to 0.3971, remaining
at Level III, yet showing a noticeable rise. Moving to 2022, the flood resilience level’s
proximity reached 0.6061, now positioned at Level IV. These findings indicate a gradual
improvement in flood resilience from 2010 to 2016, followed by a swift advancement from
2016 to 2022. This trend aligns with the temporal evolution observed in the previous section
on flood resilience levels.

Analyzing the data (Table 9) regarding flood resilience indicator levels spanning from
2010 to 2022, notable shifts are evident in three key metrics within Yingtan City: per capita
GDP (A1), communication coverage (C4), and the density of sewers in the built district
(C5). The increase in A1 values mirrors the city’s levels of livelihood capital, marking
a pivotal aspect for fortifying urban resilience against flood risks. This rise aligns with
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the steady growth of Yingtan’s key economic sector—the copper industry—propelling
the city’s per capita GDP to a leading national position. The surge in C4 values also
signifies China’s rapid strides in information technology. Yingtan City has achieved an
advanced level of mobile communication, furnishing an efficient conduit for disseminating
crucial information during flood emergencies. In 2021, as Yingtan was designated a model
sponge city, local authorities implemented various projects, including rainwater and sewage
diversion reforms alongside extensive drainage network construction. These efforts were
aimed at addressing urban flooding issues. Consequently, Yingtan City quickly advanced
to a leading national position in terms of its C5 level. Moreover, as of 2022, local fiscal
expenditure (A2) and percentage of the population aged over 60 and under 18 (A4) in
Yingtan City continued to lag behind. Areas such as the number of healthcare workers per
10,000 population (A3), the surface area of lakes and rivers (B4), and the density of road
networks in the built district (C3) still hold prospects for improvement.

6. Discussion and Conclusions
6.1. Comparison with Other Research

Urban flood resilience assessment, as a new method of urban risk management, enhances
the city’s ability to adapt to changes in the external environment. However, a city is a complex
system that includes social, economic, and environmental aspects [60]. Urban resilience is
also the result of the interaction of various factors, for which there is still a lack of a consistent
comprehensive evaluation framework. For example, Xia et al. used the EWM–TOPSIS
method to analyze the resilience changes of the Yangtze River Delta urban agglomeration
from the “Socio-Economic-Ecological-Infrastructure” dimension [25]. Liu et al. explored
the spatiotemporal evolution rules of urban resilience in more than 30 provincial capitals in
China from the “Socio-Economic-Technological-Ecological” perspective based on econometric
models [61]. Building on existing research, this study selected indicators highly related to
floods from the perspective of flood resilience and constructed a comprehensive evaluation
framework for flood resilience. Comparing the results of this study with previous research,
the flood resilience level of Yingtan City shows an annual upward trend, which is consistent
with the conclusion that the resilience level of most cities in China has been on the rise over
the past 20 years [25]. Due to global climate change and the increase in extreme weather,
from 2010 to 2020, the ecological recovery capacity of Yingtan City fluctuated significantly
and showed an overall downward trend, indicating poor ecological recovery capacity; this is
similar to the research results of Ji et al. [26]. In the subsequent analysis of influencing factors,
we confirmed previous research conclusions that local fiscal expenditure and the population
age structure index significantly impact urban flood resilience [33,62].

6.2. Improvement Strategy

Through the UFR evaluation framework, relevant departments such as the water man-
agement department and disaster management agencies in Yingtan City can understand
the local level of flood resilience construction and the contribution of each indicator to the
regional flood resistance capacity, providing a basis for disaster prevention. According
to the evaluation results of flood resilience levels, the current performance of Yingtan in
local fiscal expenditure and population age structure still poses challenges to the enhance-
ment of UFR. Simultaneously, there is room for further optimization in the number of
healthcare technicians per 10,000 people, watershed area, and road density in built-up
areas. In addition, the correlation between urban infrastructure and flood resilience in
Yingtan City is the highest. However, as a systematic evaluation, urban flood resilience
assessment has difficulty quantifying the details in some indicators, and the impacts of
management, maintenance, and emergency dispatch on resilience outcomes need to be
considered. For instance, leakage or blockage in the stormwater pipe system can lead to a
decrease in flood resilience [63], and the optimized allocation of flood control infrastructure
resources during the flood process can reduce flood risk [64]. To address these challenges,
the Yingtan government should adopt the following improvement measures:
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(1) The structure of fiscal expenditure needs optimization. By improving the efficiency of
public services, unnecessary expenditures can be reduced. Priority should be given to
ensuring investment in critical areas such as infrastructure construction, education,
and healthcare. In particular, efforts should be intensified in the construction of
flood control and disaster relief facilities, urban infrastructure transformation, and
technological innovation;

(2) The population age structure requires adjustment. Fertility policies should be opti-
mized to increase the number of young people, and talent introduction should be
enhanced to enrich the population structure. At the same time, emergency manage-
ment departments need to pay attention to the number and distribution of vulnerable
populations. In the event of a flood disaster, pre-set emergency plans should be
implemented to minimize the loss of life and property to the greatest extent possible;

(3) The water management department of Yingtan City should establish a comprehensive
maintenance system for the stormwater pipe system, conducting regular inspections
and maintenance to ensure the normal operation of the stormwater pipe system.
The emergency management department should ensure the optimized allocation of
emergency flood drainage resources during the flood process to reduce flood risk.

6.3. Limitations

Firstly, the assessment of UFR in China is still in the exploratory stage, and a unified
and mature set of indicators has not yet been established. Therefore, the assessment frame-
work and indicator selection in this study unavoidably suffer from some shortcomings.
Secondly, there are many types of MCDM methods; the FAHP–EWM–TOPSIS method
chosen in this study still has shortcomings. FAHP mainly considers the importance compar-
ison between upper- and lower-level indicators, but neglects the cross-relationships among
the indicators. Meanwhile, TOPSIS fails to consider the relative importance of positive
and negative ideal solutions in decision making. Thirdly, this study only considered the
period from 2010 to 2022, without simulating future UFR. This oversight may result in a
lack of precise data support when formulating UFR enhancement plans in the future. To
address these issues, we plan to further deepen our research going forward. Firstly, we will
refine the indicator system to ensure the accuracy of the assessment results. Secondly, in
future research, the Analytic Network Process (ANP) combined with the VlseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) method can be attempted to address these
shortcomings. Lastly, we can apply predictive models to forecast the development of future
flood resilience, providing precise data for cities to formulate targeted enhancement plans.

6.4. Conclusions

This article establishes an assessment framework and indicator system for the UFR of
Yingtan City, covering three aspects: urban socio-economic resilience, ecological resilience,
and infrastructure resilience, using a total of 17 indicators. By calculating the changes in flood
resilience levels in Yingtan from 2010 to 2022 and the variations in flood resilience grades
over three years, we analyzed the temporal evolution characteristics of flood resilience and its
subsystem dimensions in Yingtan city. Specific conclusions are drawn as follows:

(1) In accordance with previous research on resilience assessment methods and consider-
ing national regulations and expert recommendations, indicators that can represent
a city’s ability to resist floods were selected. A three-level indicator system was
constructed, with the first-level indicator UFR, the second-level indicators being socio-
economic resilience, ecological resilience, and infrastructure resilience, and a total of
17 third-level indicators. The gray relational degrees of all evaluation indicators were
greater than 0.58, indicating that the selection of indicators was reasonable;

(2) From 2010 to 2022, the UFR level of Yingtan City steadily increased, showing an
overall improvement of 80.69%. In terms of subsystem dimensions, while ecological
resilience exhibited a fluctuating downward trend, both socio-economic resilience and
infrastructure resilience showed clear growth trends. The factors influencing Yingtan
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City’s UFR are primarily concentrated in the density of the urban pipe network, per
capita GDP, local fiscal expenditures, land development intensity, the number of
medical institution beds per 10,000 people, the density of the urban road network, per
capita refuge area, and emergency drainage capacity;

(3) This study employed the natural breaks method, based on statistical data from all
cities in China, to set the grade intervals of each indicator for the assessment years.
Subsequently, the flood resilience grades for Yingtan City in the years 2010, 2016, and
2022 were calculated. The flood resilience grades were categorized as Level III in 2010
and 2016, and Level IV in 2022, indicating a continuous improvement in Yingtan City’s
flood resilience grades. The trend of flood resilience at a time scale was reviewed, and
it can be concluded that the method used in this study is feasible.
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