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Abstract: Human activities, global warming, frequent extreme weather events, and changes in
atmospheric composition affect the solar radiation reaching the Earth’s surface, affect mass and
heat transfer at the air–water interface, and induce oscillations in wind-driven internal waves. This
leads to changes in the spatiotemporal characteristics of thermal stratification in lakes, altering lake
circulation patterns and vertical mass transfer. However, thermal stratification structures are often
overlooked. The intensification of lake thermal stratification due to warming may lead to increased
release of bottom pollutants, spreading through the dynamic behavior of the thermocline to the epil-
imnion. Moreover, the increased heat storage is beneficial for the growth and development of certain
phytoplankton, resulting in rapid transitions of the original steady state of lakes. Consequently, water
quality deterioration, ecological degradation, and declining biodiversity may occur. Conventional
surface water monitoring may not provide comprehensive, accurate, and timely assessments. Model
simulations can better predict future thermal stratification behaviors, reducing financial burdens,
providing more refined assessments, and thus preventing subsequent environmental issues.

Keywords: heat stratification; climate changing; lake ecosystem; thermocline models

1. Introduction

Climate change, as indicated by the Sixth Assessment Report of the IPCC in 2023 [1],
shows that the global mean surface temperature (GMST) for the period 2011–2020 was
estimated to be 1.1 ◦C higher than that of 1850–1900 (with land at 1.59 ◦C and oceans at
0.88 ◦C), and is conservatively projected to rise to 1.5 ◦C by 2040. The intensification of
warming will lead to uneven spatiotemporal distribution of water resources (increased
extreme weather events [2], increased flood pressures [3], increased droughts [4], and
increased frequency of transitions from floods to droughts [5]), declining biodiversity [6],
threats to human health [7], agricultural impacts [8], and seasonal dynamics of microbial
communities [9], all of which are expected to worsen with increasing warming levels [1],
posing certain impacts on socio-economic aspects [10]. In response to the escalating risks
of global warming, ‘the Paris Agreement’ [11] proposes to limit the increase in global
average surface temperature to within 2 ◦C above pre-industrial levels, with efforts to keep
it within 1.5 ◦C.

The primary driver of global warming is solar radiation, with latitude, altitude, and
season determining the amount of solar radiation at the top of the atmosphere, and me-
teorological conditions affecting the solar radiation reaching the Earth’s surface [12–14].
The average surface solar radiation is 185 W/m2, and the average atmospheric thermal
radiation is 342 W/m2 [15]. Water vapor and CO2 contribute 66% and 25%, respectively, to
the greenhouse effect. The level of CO2 in the atmosphere has risen from 278 ppm at the
beginning of the industrial revolution to over 415 ppm today [16], The multi-year average
atmospheric humidity is 6.52 g/kg [17].
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Lakes and reservoirs are closely intertwined with human production and livelihoods,
but they face vulnerabilities in water resource supply and algal blooms [18,19]. Natural
lakes globally exceeding 10 hectares in area contain 181.9 × 103 km3 of freshwater, account-
ing for 0.8% of the global non-frozen land water storage. Large artificial reservoirs, with a
volume of 6.0 × 103 km3, number over 21.2 million with an area exceeding 1 hectare. The
total area of lakes exceeds 3.23 million square kilometers, representing 2.2% of the Earth’s
surface [20].

Due to the thermal expansion and contraction properties of water, changes in the
external environment cause heat storage changes in lakes, leading to density variations
and the formation of a temperature structure characterized by warmer upper layers and
cooler lower layers under buoyancy forces. Strong seasonal thermal stratification divides
lakes into epilimnion, metalimnion, and hypolimnion. The thermocline is where the
vertical density gradient is maximal in the metalimnion [21] or where the temperature
gradient is maximal within the water column [22,23]; some studies refer to the metalimnion
as the thermocline [24,25]. Stratified lakes exhibit alternating periods of circulation and
stratification throughout the annual cycle and are categorized, based on the frequency of
water column overturn, into Polymictic, Dimictic, Monomictic, and Oligomictic types [26].

Climate change can alter the inherent stratification and vertical mixing mechanisms of
lakes [24,27], which are closely related to the ecological and stratification patterns within
lakes. Therefore, it is crucial to pay more attention to changes in large-scale thermody-
namic environments and the impacts of extreme events on temperature and humidity [28].
However, the mechanisms of climate change affecting the thermal stratification structure
of lakes are highly complex, and the prediction and assessment of potential risks brought
about by changes in thermal stratification are not comprehensive enough. This study aims
to identify the mechanisms of climate change affecting the thermal structure of lakes and
demonstrate its impact on lake ecology.

2. Lake Thermal Stratification Structure

Most studies use temperature gradient thresholds to determine the thermal structure
of lakes, often employing 0.2 ◦C/m as the criterion [24,29–32]. Some studies define the
thermocline as the water layer where the second derivative of temperature with respect
to depth is zero [33]; thermocline depth is defined as the depth from the upper part of
the metalimnion to the surface [24], while in some studies, it is the distance from the
thermocline to the water surface [33]. In this paper, we uniformly define the former as
the mixed layer depth and the latter as the thermocline depth(as shown in Figure 1). The
surface mixed layer is influenced directly by surface-driven factors such as wind and
convective cooling [34]. As the thermocline is close to the layer of maximum density
gradient (pycnocline) [35], many studies use density gradients [36] or the first moment
of density [37,38] to measure the mixed layer. Brainerd and Gregg [39] argue that it is
important to match the time scales of the mixing layer with the study process, so it is
necessary to distinguish between the mixed layer and the mixing layer. The former is
typically the top of the seasonal thermocline, representing the maximum depth reached by
the mixing layer on daily or longer time scales, while the latter is usually characterized by
small changes in temperature or density. The mixing layer is also referred to as the active
mixing layer, with a depth much smaller than that of the thermocline [22]. In studies that
prioritize turbulence, the active mixing layer is determined by turbulent kinetic energy and
Thorpe displacements [40]. For seiches studies, where the water flow direction is opposite
above and below the thermocline, zero velocity points and maximum velocity gradients can
also serve as indicators of the thermocline [22]. Other thermal stratification indices include
thermocline thickness, defined as the difference in height between the upper and lower
layers of the metalimnion, and thermocline strength, defined as the ratio of temperature
difference to height difference between the upper and lower layers of the metalimnion [41].
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3. The Impact of Climate Change on Thermal Stratification

By the year 2100, global warming is expected to increase the global average lake
evaporation rate by 16% [42], leading to increased air humidity, which in turn promotes
further warming [43]. Additionally, a 1 ◦C increase in temperature is projected to result in
an annual loss of 2.28 Pg CO2 equivalent in CH4 and N2O fluxes. The most direct impact of
climate change stems from changes in air temperature, with near-surface air temperature
being the primary influencing factor for lake surface water temperature (LSWT) [44]. For
every 1 ◦C increase in lake surface air temperature, the lake surface equilibrium temperature
rises by 0.7–0.8 ◦C [45]. With global warming, the average surface water temperature of
lakes worldwide is increasing by 0.34 ◦C/decade [46]. The primary influencing factor for
stratification is heat, with air temperature being significantly negatively correlated with
thermocline depth [47]. With the increase in water temperature, stratification intensifies [48],
leading to increased water column stability and a decrease in the frequency of lake mixing
events [49]. The intensified stratification reduces the volume directly involved in heat
exchange at the air–water interface, causing LSWT to increase more rapidly, sometimes
exceeding air temperature [50], especially in deep lakes in cold climates [51], although
water bodies in the thermal stratification period are more susceptible to mixing driven by
cooling-induced convection as temperatures decrease [52].

Lake water storage is highly sensitive to climate change, with significant regional
differences [49,53], and evaporation is the primary pathway for consuming available solar
radiation on the Earth’s surface [15], leading to increased atmospheric humidity and
trapping more solar radiation. Studies have shown that a 1% increase in atmospheric
relative humidity leads to a temperature rise in lakes of about 0.1 ◦C [45]. This positive
feedback accelerates lake warming, alters lake thermal structure, and significantly impacts
water levels, thereby affecting the thickness of the hypolimnion of lakes [54].

The largest component of the heat balance in lakes is typically solar radiation [55],
which is influenced by seasonality, geographic location, and atmospheric composition [56,57].
Therefore, the indirect effects of atmospheric composition on lake thermal structure should
not be overlooked. Similar to clouds, changes in atmospheric aerosols can alter global
solar radiation [58–60]. However, aerosols generally counteract warming effects [61], and
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these changes do not simply add up as individual effects but rather have comprehensive
effects [60]. In some regions, the impact of water vapor is greater than that of aerosols [62].

Climate change is expected to increase the frequency of windstorms [63,64], and hu-
man factors contribute to an increased likelihood of extreme weather events occurring
simultaneously [65], which will enhance momentum transfer at the air–water interface
of lakes and deepen the mixing layer. Precipitation resulting from these storms leads
to dilution effects, influx of organic matter, and decreased turbidity, which can cause
changes in stratification [66] and increased greenhouse gas emissions under flood condi-
tions [67]. Extreme precipitation events can transport organic components between land
and water via runoff [68,69], Increased runoff volume can limit the development of thermal
stratification [70]. Additionally, extreme precipitation and occasional wind events are
important factors affecting thermal stratification [71,72]. Wind stress counteracts buoyancy
induced by density stratification, causing water to accumulate downwind and tilting the
water body. If the thermocline is inclined, the shear force at the bottom of the mixing layer
increases, potentially deepening it. Additionally, studies have shown that an increase in
wind speed of 1 m/s can result in a decrease in lake temperature of 1 ◦C [45]. Wind can
lead to an increase in shear force at the lower boundary of the metalimnion, enhancing
the mixing and flux of important biogeochemical solutes [73], possibly even reaching sedi-
ments [74]. The depth of the winter thermocline is partially determined by wind-induced
mixing [22], with each significant wind event reducing the thermocline [35]. Factors driving
lake winds include thermal gradients between the lake center and shores [75] as well as
pressure gradients [76]. The urban heat island effect can enhance lake–land temperature
gradients, leading to more active thermal-driven local circulation [77]. Wind is strongly
influenced by lake shape and large-scale wind direction [76]. Due to water’s much greater
density compared to air and the conservation of momentum but not energy at the air–water
interface, only about 3–3.5% of wind energy is transferred to the water from the atmosphere,
with 10% transferring to deeper water and the remaining dissipating as heat. Wind energy
stored in waves or dissipated at the surface boundary does not reach the stratified water col-
umn, forming basin-scale internal movements. The mechanical energy reaching deep water
flows is minimal (<1%), typically an order of magnitude lower than the surface [78,79], and
varies 2–3 times among different lakes. Although the energy input from wind into the lake
is proportionally low, compared to the lake warming rate of 0.34 ◦C/decade, the influence
of wind on thermal structure is rapid and pronounced. Generally, wind determines the
thickness of the surface layer [26], but once strong seasonal stratification is established,
wind cannot substantially alter the vertical structure [78]. Wind can affect underwater
light conditions [80] or generate internal waves that influence horizontal exchange in the
hypolimnion of the lake [81], thereby affecting the morphology of the thermocline.

Although lake thermal structure responds to climate change [24], its response is more
indicative of current climatic conditions rather than an accurate assessment of greenhouse
gas exacerbation [82]. The stability of a lake’s thermal structure can be measured using the
indicators listed in Table 1; these indicators are widely adopted in the study of thermal
stratification structure, but specific formulas may vary slightly among different studies.
Other indicators, such as potential energy anomalies [83], can also be used as measures of
stratification. Indicators for assessing the trend of global warming in lakes can include the
frequency of deep ventilation [84]. Additional evaluation indicators may be necessary for
assessing risks related to extreme climate impacts [85].

In general, climate change is making lake thermal structures more dynamic, and this
process is accelerating. Specifically, global warming leads to intensified thermal stratifi-
cation in lakes, prolonging its duration, while uneven spatial and temporal distribution
of water and wind patterns brings about greater variability, with extreme weather events
often lead to significant changes within a day.
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Table 1. Thermal stratification stability indicators.

Indicator Name Meaning

Brunt–Väisälä Buoyancy
Frequency squared [78] Measuring the local stability of density stratification

Richardson Number [78] Assessing the relative strength of stability and shear flow

Schmidt Stability [86,87] The mechanical work required to transform a stratified water column into
an isothermal state

Wedderburn Number [88] The likelihood of upwelling events under stratified conditions

Lake Number [89] The ratio of moments related to the center of volume of the water body

Monin–Obukhov Length Scale [90] The depth dominated by wind-induced turbulent mixing

4. How Thermal Stratification Affects Lake Ecology
4.1. The Impact of Thermal Stratification on Material Cycling and Energy Flow

The rate of thermal diffusion on a molecular level is low: heat transfer over a distance
of 1 m in the vertical direction of the water body takes one month [26]. Although the
flux generated by small-scale turbulent eddies, which sustain vertical mixing, is typically
several orders of magnitude larger than molecular diffusion, most of the turbulent energy
dissipates as heat. Therefore, thermal stratification impedes the exchange of substances and
the transfer of energy between layers [91], affecting the distribution of substances in the
water column and the settling of particles [92]. Additionally, thermal stratification guides
mechanical energy horizontally [93], resulting in smaller differences in the horizontal
direction compared to the vertical direction in lakes.

Oxygen consumption, denitrification, and hypoxic regeneration of available phospho-
rus are the most important processes affected by thermal stratification [81]. The stratification
of dissolved oxygen generally follows the pattern of thermal stratification [94], because
the primary consequence of lake stratification is the isolation of the hypolimnion [54],
inhibiting vertical mass transfer [81], which makes the bottom layer prone to deoxygena-
tion, leading to the formation of hypoxic zones [95,96]. Hypoxic events increase with
depth [97], as warming of the water column not only reduces the solubility of O2 [98] but
also enhances the metabolism of organisms in the water [99], further lowering dissolved
oxygen levels. Moreover, changes in the proportion of hypoxia are consistent with changes
in thermal stratification stability [100]. Thermal stratification leads to a decrease in both
oxygen content and the volume of oxygen-rich zones [101], and the relationship between
thermal stratification and density stratification, oxygen stratification, and other chemical
stratifications is complex and close [84,102–104]. Hypoxia caused by stratification promotes
the release of substances such as methylmercury [105], phosphorus [106], and arsenic [107],
leading to water acidification [108], while the disappearance of stratification resulting from
mixing can redistribute substances such as polychlorinated biphenyls [109], resulting in
complex environmental consequences.

In addition to thermal stratification, water temperature itself can affect certain water
quality indicators [110]. Other factors such as lake morphology and the Earth’s rotation
also interact with thermal stratification to some extent. When the interface between the
thermocline and the hypolimnion exceeds the ridges at the bottom of the lake, separating
the water bodies on either side of the ridge, the reduced bottom flow favors the formation
of hypoxic environments [81], enhances sediment–water interface absorption, and delays
the release of nutrients upward [111]. Poincaré waves increase the oxygen flux entering the
hypolimnion by two orders of magnitude higher than the average molecular flux [112].

As stratification intensifies, CO2 emissions are likely to decrease [113]. Hypoxia caused
by lake thermal stratification promotes methane release [114], while the oxic oligotrophic
environment existing in stratification generates aerobic methane through the decompo-
sition of methylphosphonic acid [115]. Thermal stratification enhances the potential for
denitrification and nitrification processes related to N2O production [116]. The relationship
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between greenhouse gas fluxes and thermal structure is complex and requires further
in-depth research. Thermal stratification makes lake environmental factors fundamentally
different from those of non-stratified periods/non-stratified lakes.

4.2. The Impact of Thermal Stratification on Aquatic Organisms

Due to the influence of thermal stratification on the vertical distribution of substances
and energy in lakes, the biota in the water column highly depend on these environmen-
tal factors [99,117]. Moreover, they are typically influenced by multiple environmental
factors [118], and each environmental factor does not correspond one-to-one with the
thermal stratification structure, leading to high variability in microbial community struc-
ture. The variability in microbial composition alters the overall functional attributes of the
community [119]. Organic matter and its biological utilization will respond to the presence
of thermal stratification to a certain extent [120]. There are evident interface effects on
bacterial community composition [119], but the stratification of organic matter does not
necessarily align perfectly with thermal stratification [121].

Algae, as primary producers in lakes and the first trophic level of the food chain,
exhibit high variability in spatiotemporal dynamics, directly contributing to the overall
ecological variability of lakes. Traditional Chlα-TP theory [122] and temperature control
theory [123,124] only explain part of this variability, and a deeper study of algal community
structure is beneficial for understanding its dynamics.

The thermal structure has a significant impact on the structure of phytoplankton
communities [110]. Some studies indicate that the enhancement of thermal stratification in-
creases phytoplankton diversity through preclusion of dominance [125] and also increases
phytoplankton biomass [126]. Artificial weakening of stratification can lead to a decrease
in surface phytoplankton biomass [127]. However, other studies suggest that strength-
ening stratification can reduce the availability of nutrients for algae, thereby decreasing
biomass [128]. This contradictory result seems to make the response of algae to thermal
stratification more elusive. However, in reality, phytoplankton biomass is mainly related to
light, nutrients, temperature, and current species composition. Although temperature is
not decisive [105,129,130], it affects those determining factors by altering the stratification
structure. Lake stratification causes phytoplankton to concentrate in the well-lit and warm
surface layer, while oxygen-depleted environments at the bottom, internal waves, and
lake circulation cause nutrients to migrate upward from the bottom layer. The intensity
of thermal stratification is positively correlated with phytoplankton species diversity and
resource utilization efficiency, while it is negatively correlated with zooplankton species
diversity and resource utilization efficiency [125,126]. Becker et al. used the ratio of eu-
photic zone depth to mixing layer depth to measure light effectiveness [131]. However,
due to changes in thermal stratification, the effectiveness of light varies greatly, reaching
up to 100% in summer and only 30–36% in winter. The decrease in thermocline depth and
water transparency reduces the vertical distribution of underwater light intensity, causing
phytoplankton to migrate upward to seek more light, reducing the average residence
depth of phytoplankton. This, in turn, leads to a separation between phytoplankton and
zooplankton, resulting in reduced grazing pressure and an increased likelihood of water
quality deterioration [47]. Additionally, increased water column stability favors buoyant
cyanobacteria that can migrate rapidly [132]. Conversely, algal blooms can increase the
available potential energy (APE) in the water body, thereby promoting stratification [133].
Furthermore, algal blooms can also enhance greenhouse gas emissions from the water
body [134], further exacerbating warming.

The thermocline of large, stratified lakes continuously oscillates along the sloping
lakebed, creating a spatially variable internal slope zone. These internal seiches result in rapid
changes in temperature and dissolved oxygen, with fish responding primarily to temperature
changes over most other stimuli. According to Charles C. Coutant’s hypothesis of thermal
niche–dissolved oxygen extrusion [135], the high variability in temperature and dissolved
oxygen poses a threat to fish [97], subsequently affecting their distribution [135–137].
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The changes in the physical and chemical properties of thermal stratification affect
the distribution, abundance, and diversity of microorganisms, benthic organisms, and fish
within it. The scale of these changes may range from annual to monthly [138] or even
shorter periods [36,96].

4.3. The Overall Response of Lake Ecology

The response of lake thermal structures to climate has been verified in multiple regions
worldwide [139–143], showing a complex interactive mechanism with the highly dependent
lake ecology, as illustrated in Figure 2. This mechanism exhibits significant variations
among lakes. Conducting whole-lake experiments to artificially control lake stratification
is quite valuable for studying the overall dynamics of lakes [105]. The environmental
variables encompassed by climate change synergistically impact lakes; the physical and
chemical conditions of lakes also collectively affect carbon sequestration, thereby leading to
changes in overall lake productivity [144], different species’ behaviors result in significant
ecological structural differences [145], and rapid environmental changes can lead to a
transformation of the overall stability of lakes.
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Is there a significant correlation between lake water quality/ecology and thermal
stratification structure, such that we can extract some empirical relationships from it? In
other words, can we simply describe the consequences of lake thermal stratification as
“getting better” or “getting worse”?
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The increase in lake thermal gradients causes more particles to be trapped in the
metalimnion [146], potentially leading to the enrichment of certain pollutants or nutrients
in the upper layers. When this nutrient-rich environment overlaps with the well-lit and
warm conditions of the surface, it is beneficial for increased productivity. This overlap is
influenced not only by thermal stratification but also by factors such as declining water
levels, which can increase this overlap [147]. If stratification is further intensified, causing
a decrease in the overlap of these two environments, it is unfavorable for increasing
productivity. Similarly, intensified stratification also makes it difficult for substances from
the lake bottom to reach the surface. Therefore, the strengthening of thermal stratification
does not always lead to serious consequences and, to some extent, is beneficial for surface
water quality and ecology. Thus, we cannot simply consider the strengthening of thermal
structure as negative for lakes, but it poses a risk for most polluted lakes affected by long-
term human activities. There exists a critical point between these extremes, which varies
from lake to lake.

5. Thermal Stratification Models

To study the impact of climate change on lakes and extract more universal patterns
of change, it is best to utilize a richer dataset [19,35,66,148]. This requires comprehensive
hydrological and water quality monitoring data. However, deploying too many devices
can impose an economic burden. Adopting a space-for-time substitution approach may
not necessarily be a good substitute for predicting the effects of climate change, as lakes
at different altitudes or latitudes may not exhibit similar responses [45]. Therefore, it is
necessary to abstract this mechanism using models. There have been many studies on
thermal stratification models, with the primary heat flux modules typically calculated using
the following formula [149,150] (the meanings of the variables are as shown in Figure 1),
ensuring that the increase in lake heat is positive. However, not all modules are utilized
in every study [151]. For instance, lakes without inflowing rivers do not require the HI
module, and the HD module may be omitted due to the typically very small heat flux from
sediments (≈0.1 [W/m2]) [93]. Shortwave radiation contributes the most, and simulations
of net longwave radiation flux are insensitive to wind. The calculation of latent and sensible
heat fluxes is greatly influenced by wind data [152]. For lakes prone to ice formation, the
situation becomes even more complex.

Hnet = HS + HA + HW + HE + HC + HP + HI + HD, [W/m2] (1)

Thermal stratification has been studied since 1948 when Munk and Anderson [153]
began researching one-dimensional models of the thermocline due to its small horizontal
differences and prominent vertical features. While two-dimensional and three-dimensional
models provide more spatial and temporal details [154–156], they also incur higher compu-
tational costs [81]. The synchronous development of thermal stratification models in oceans
and lakes has led to a high degree of similarity between basic formulas [157], and hence
ocean models are often used in lake studies [95]. The fundamental principles of thermal
stratification models are almost identical [158] and can be broadly categorized into finite
difference models (eddy diffusion models [153,159], k-ε turbulence closure models [160]),
models concerning the mixing layer [161,162], self-similarity theory models [163], and Bulk
formulations models [164]. Adjusting parameters tailored to specific lakes can improve
model results [165]. Different models have their own strengths and weaknesses depending
on the research objectives [166], and selecting the appropriate model can address many
practical issues [167]. Moreover, coupling various models can compensate for the short-
comings of individual models [32,168]. For example, current models mostly simplify heat
transfer at the bottom of lakes. For lakes with geothermal energy, their thermal structure is
more complex, requiring the use of more sophisticated models [169].

The predictive capability of models themselves is inherently limited, and complex
environmental variables can cause significant interference. For instance, lake warming
induced by elevated air temperatures can be reduced by 10% due to changes in other
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meteorological variables [45]. The influence of data on models is evident; although in
situ measurements are crucial for models, they cannot be the sole input [78]. Moreover,
the major data gap lies in the lack of monitoring of lake surface weather conditions,
as differences in land-water physical properties will lead to variations in precipitation,
wind, temperature, and other factors [170,171]. Investing more resources in monitoring
the physical hydrology of lakes could lead to the development of a more reliable model.
Low-frequency monitoring of lakes makes it challenging to understand the rich dynamics
and variability of the lake area [22,97], necessitating improved temporal resolution for
rapidly occurring events [39]. Parameter estimation values and their uncertainty converge
as the number of measurements increases [148,152], and conventional monitoring lacks
comprehensive data, such as groundwater monitoring data [170]. Combining satellite
data [140,172] and field observations, with machine learning [49,173] can significantly
enhance the capabilities of models.

6. Conclusions and Future Prospects

The undeniable trend of global warming is accompanied by an increase in greenhouse
gas concentrations, leading to changes in atmospheric composition, rising temperatures,
alterations in precipitation patterns, and increased frequency of extreme weather events
(such as strong winds, rapid temperature changes, and intense precipitation). Anthro-
pogenic climate forcing has contributed to the rise in global concurrent extreme weather
events, enhancing the complexity of environmental factors. Based on existing knowledge,
changes in the spatiotemporal patterns of factors such as air humidity, temperature, solar
radiation, wind, precipitation, and runoff lead to changes in lake heat flux and internal
wave oscillation patterns directly or indirectly, thereby altering the thermal structure of
lakes. The diverse stratification of lakes, through its influence on the energy and biogeo-
chemical cycles of lakes, transmits these changes to the entire lake ecosystem. In-depth
research in this area holds immense potential for understanding the dynamic behavior of
lake heat.

In most cases, the strengthening of lake stratification promotes the growth of phyto-
plankton, especially in nutrient-rich lakes, which increases the risk of algal blooms or leads
to higher levels of certain pollutants being released. However, for certain pollutants, in-
tensified stratification will confine them to the hypolimnion, necessitating a more cautious
assessment of the effects of changes in thermal stratification structure.

Currently, research on thermal structure tends to focus on fundamental studies of
small-scale turbulence or practical applications. Future research should aim to develop
devices capable of monitoring sporadic and extreme mixing events, integrating simulations
of small-scale turbulence with basin-scale hydrodynamic models. Against the backdrop
of climate change profoundly altering stratification dynamics, basic knowledge of the
spatiotemporal distribution of small-scale turbulence in lake stratification is crucial for
predicting thermal stratification evolution. Predictions of lakes are often based on historical
data and experiential judgments, while on-site monitoring typically focuses only on surface
water. Even if there are monitoring efforts targeting the vertical profiles of lakes, they often
provide data with low spatiotemporal accuracy due to cost considerations. However, ther-
mal structure is highly correlated with lake water quality and ecology, and it is also highly
influenced by meteorological conditions. Therefore, models using real-time meteorological
data can rapidly assess thermal structures to prepare for sudden changes before they occur
in lakes. Accurate prediction of atmospheric environmental elements is a prerequisite for
the accurate simulation of thermocline models. However, the current lack of monitoring
methods and inadequate monitoring accuracy make it difficult to fully grasp the variables
in the environment. The lack of meteorological data is often the main obstacle limiting the
in-depth study of lake thermal stratification, necessitating greater investment in obtaining
high-precision meteorological data. Other research methods, such as stoichiometry and
isotopes, can enrich our understanding of the mechanisms underlying lake ecosystem
responses. Of course, we can also conduct whole-lake manipulation experiments in smaller
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lakes to study overall changes and validate the entire mechanism. Based on the under-
standing that “we can derive empirical models/mechanisms from the response of lake
ecosystems to climate”, the current application of machine learning in lake simulations
holds great potential. Altitude, latitude and longitude, depth, and the degree of human
activity in the watershed can be distilled into relatively reliable empirical relationships. The
distinct mechanisms between large and small lakes make it difficult to extrapolate research
findings from small lakes to large ones and the converse is also true. Therefore, it seems
that studying in combination with models tailored to local conditions is a better approach.
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