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Abstract: The application of deoiling hydrocyclone systems as the downstream of three-phase
gravity separator (TPGS) systems is one of the most commonly deployed produced water treatment
processes in offshore oil and gas production. Due to the compact system’s complexity and tailor-made
features, it is always challenging to develop some optimally coordinated control solution for the
coupled hydrocyclone and TPGS systems. It is obvious that coordinated control can better fulfill
legislative discharge regulation by robustly maintaining high separation efficiencies. This paper
presents a new control solution for a set of integrated hydrocyclone and TPGS systems by applying
an improved multi-variable model reference adaptive control (MV-MRAC) approach with the aim of
achieving both asymptotic output tracking and unknown disturbance rejection. A robust MV-MRAC
controller design is proposed based on a control parameterization derived from a factorization of
a high-frequency gain matrix Kp = LDS as a product of three matrices, where L represents unity
lower triangular, D = sign(D) represents diagonal, and S represents positive definite, and a teaching–
learning-based optimization (TLBO) algorithm for optimizing the adaption rates. The developed
solution is analyzed and compared with a commonly deployed PI control solution on a model that
is derived from a lab-scale produced water treatment process. This simulation study demonstrates
the promising potential of the proposed control solution compared with the currently deployed PI
control solution.

Keywords: deoiling hydrocyclone; model reference adaptive control; multivariable; output tracking;
disturbance rejection; water treatment process

1. Introduction
1.1. Motivation

With the aim of achieving sustainable extraction and minimizing environmental
pollution in offshore oil and gas production, the treatment of produced water (PW) is
inevitable before reinjecting PW into the reservoir for enhanced oil recovery or discharging
it into the ocean. To effectively remove hydrocarbon residuals in the PW stream through the
PW treatment processes (i.e., deoiling processes), it has been evidenced that the coordinated
controls of the upstream three-phase gravity separators (TPGSs) with the downstream
deoiling hydrocyclones can play a vital role in maintaining high deoiling efficiencies
subjected to diverse disturbances [1].

Plant-wide control can be one of the promising strategies in handling this kind of
challenge [2]. For example, by modeling the hydrocyclone and TPGSs in a coupled formu-
lation, a number of advanced control solutions have been proposed for a class of deoiling
processes, such as H∞ control [1], nonlinear MPC [3], feedback linearization control [4], etc.
Moreover, comparisons of different control solutions can be observed in [5].

Different from the aforementioned control solutions, in this work, we explore a plant-
wide MRAC solution for handling the coordinated control of the coupled hydrocyclone and
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TPGS systems, with respect to the MRAC’s unique feature, that is, this type of controller can
automatically adapt to certain uncertainties without scarifying the system’s performance,
including variations in dynamic characteristics, via its simple online learning capability;
therefore, it can be less conservative in demands of control and modeling efforts [6].

1.2. State of the Art

From the plant-wide control perspective, by focusing on the upstream riser of the
TPGS system, Pedersen et al. [7] investigated antislugging control by automatically choking
the feeding control valve of the separator to mitigate the significant dynamic variation
induced by slugging flow into the separator system. Moreover, several control approaches
were evaluated in order to address the challenges posed by slugging flow in offshore oil
production [8]. The control designs consist of feedback linearization, gain scheduling,
internal model control (IMC), PI control with an adaptive gain, and state feedback with
state estimation by an observer. To determine their effectiveness, these controllers were
examined in terms of their robustness to inflow disturbances and time delays. Durdevic
et al. [1] developed an H∞ robust control for the coupled hydrocyclone and TPGS systems
and compared it to a benchmark PID control solution. Li et al. investigated the design of
H∞ control using model-free off-policy reinforcement learning in [9].

By focusing on the OiW concentration limitation (e.g., <30 ppm dispersed hydrocar-
bon compounds) in the effluent water out of the deoiling hydrocyclone, Vallabhan et al.
investigated a control solution based on their pilot plant in [10]. Moreover, a nonlinear
MPC control strategy was developed to predict the dynamic behavior of the pressure near
the bottom of the production column [11]. Most control solutions mentioned have fixed
structures, except MPC, which offers flexibility but demands a robust implementation
platform for online optimization. Therefore, adaptive control strikes a balance between
flexibility and simplicity by continuously tuning control parameters based on real-time
feedback. In addition, adaptive control solutions offer a dynamic approach to handling
uncertainties and variations in real time, ensuring optimal performance in changing con-
ditions [6]. Based on the authors’ research, there appears to be a lack of adaptive control
solutions implemented or undergoing testing for offshore PW treatment processes from a
global perspective. Consequently, in response to this gap, we have developed an MRAC
state feedback system for achieving output tracking in offshore PW treatment, accounting
for uncertainties in system parameters and input–output disturbances [12].

As one of the popularly used adaptive control methods, the MRAC can be classified
into different schemes characterized by using either output or state feedback for tracking
performance. In general, there are (a) MRACs using state feedback for state tracking;
(b) MRACs using state feedback for output tracking; and (c) MRACs using output feedback
for output tracking [13]. An extended MRAC scheme was proposed in [14] using the partial
state feedback based on the LDS decomposition of the plant high-frequency gain matrix to
ensure asymptotic output tracking and system stability. The same approach was adopted
in [15,16] to design flight controls subject to diverse turbulence conditions. A robust output
feedback MRAC with output tracking was investigated in [17] based on the reinforced
dead-zone modification in the presence of actuator faults, modeling uncertainty, and output
disturbance. Hua et al. [18] proposed a decentralized state feedback MRAC approach for
large-scale reactor systems with time-varying delays.

1.3. Contributions

The MRAC method has made significant progress in recent decades, but challenges
remain. One key challenge is its robustness for uncertain multivariable systems with
unknown disturbances. This paper addresses this challenge by developing a robust multi-
input multi-output (MIMO) MRAC solution. The solution is applied to a deoiling process
comprising a TPGS system coupled with downstream hydrocyclone systems, mimicking
offshore produced water treatment processes. The developed solution utilizes output
feedback to handle output tracking and unknown disturbance rejection, considering model
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uncertainties. To enhance system performance, an augmented error is employed in the
adaptation law of the controller, and the TLBO algorithm is utilized to achieve optimal
adaptation rates. Additionally, an LDS decomposition of the high-frequency gain matrix is
incorporated into the adaptive controller to eliminate the need for a priori knowledge of
this matrix. Stability and asymptotic tracking performance of the closed-loop system are
guaranteed by Lyapunov stability and Barbalat’s Lemma. In summary, the contributions of
this article can be listed as follows:

• A novel control solution is presented for integrated hydrocyclone and TPGS systems,
utilizing a robust MV-MRAC with respect to unknown disturbance.

• LDS decomposition is implemented in the proposed method to eliminate the constraint
of a priori knowledge of the high-frequency gain matrix.

• To reach stable adaptive laws, the controller’s adaptive laws are formulated by consid-
ering augmented error, which encompasses parameters and tracking errors.

• A new multi-objective optimization problem is presented for optimizing the con-
troller’s adaptation rates, which is solved using the TLBO algorithm.

The rest of the paper is organized as follows: Section 2 introduces the considered
system and process; Section 3 formulates the robust MV-MRAC problem; Section 4 presents
the design procedure; Section 5 illustrates diverse simulation results; and finally, we
conclude the paper in Section 6.

2. Deoiling Process Model

In this section, a comprehensive exploration of the deoiling process model is presented.
This exploration is divided into two subsections. In the following, the considered separation
system as well as the model development are presented.

Considered Separation System

Produced water is an inevitable by-product during oil and gas production, and the
water cut gradually increases as reservoirs mature. Whether the produced water is re-
injected into reservoirs for enhanced oil recovery, or simply discharged to the oceans, the
hydrocarbon compounds (sometimes also referred to as oil residuals) in the produced water
must be limited to avoid formation damage and to comply with the regional discharge
limits. Therefore, the produced water needs to be properly treated before re-injection
or discharge.

Figure 1 shows the experimental setup used in this study, which mimics an offshore
produced water treatment facility. The system consists of a mixing tank with a centrifugal
pump and an air compressor which acts as the reservoir. A vertical pipeline riser directs
the multiphase flow into the TPGS tank, where the gas, oil, and water are separated based
on their density differences. The gas rises to the top of the separator where it exits through
the gas control valve (Vgas), which is operated by the separator pressure controller. The oil
is separated from the water as it skims over a weir plate and enters the oil compartment.
The interphase level between the oil and water is measured by a level transmitter (denoted
LT) and controlled by the level controller (denoted LC) by actuating the underflow valve
(denoted Vu). This control loop keeps the water below the top of the weir plate and above
the water outlet to maintain product quality and separator pressure. The water from the
three-phase separator is cleaned further using hydrocyclones which separate oil and water
based on enhanced gravity separation. Due to the tangential inlet and the hydrocyclone
geometry, a vortex is generated inside. The centripetal force generated pushes the oil
droplets toward the hydrocyclone centerline, where an oil core is formed. The cleaned
water leaves through the hydrocyclone underflow, while the oil is discharged through the
hydrocyclone overflow. Usually, the hydrocyclone system is operated by controlling the
overflow control valve (Vo) via a pressure drop ratio (PDR) control loop. The two separation



Water 2024, 16, 899 4 of 20

systems are coupled via these control mechanisms [1]. Moreover, the development of the
system model is detailed in Appendix A below.
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Figure 1. Simplified P&IDof the deoiling system under consideration consisting of a TPGS, a
hydrocyclone, and their relevant control loops.

3. Prerequisites for Robust MV-MRAC Design

The prerequisites for designing a robust MRAC with output tracking subject to un-
known disturbances and unmatched system uncertainties are given below.

3.1. System Model

Consider a MIMO LTI system subject to disturbance dj(t), presented in state space
formulation as [19]:

ẋ(t) = Ax(t) + Bu(t) + Bddj(t)
y(t) = Cx(t),

(1)

It is assumed that the system is controllable and observable. The system matrices
denoted as A ∈ Rn×n, B ∈ Rn×M, Bd ∈ Rn×q, and C ∈ RM×n are unknown (for the
designer). x(t) ∈ Rn, y(t) ∈ RM, u(t) ∈ RM are the system’s state, output, and the
control input vectors, respectively. The actuation disturbance dj(t) ∈ Rq has compo-
nents characterized by Equation (2), where dj0, djk are unknown constants and Ωjk(t) for
j = 1, · · · , q, k = 1, · · · , pj are the known bounded continuous-time signals [20].

dj(t) = dj0 +

pj

∑
k=1

djkΩjk(t), j = 1, 2, . . . , q. (2)

As stated in [6], this disturbance model, which encompasses sinusoidal, non-sinusoidal,
and constant-valued disturbances, can efficiently approximate a broad range of distur-
bances found in different control applications. For example, if pj is selected as one and
Ωj1(t) = sin(ωj1t), then this specific dj(t) = dj0 + dj1sin(ωj1t) represents a periodic dis-
turbance. If pj is set to zero, then dj(t) = dj0, j = 1, 2, . . . , q representing some constant
disturbance signals [21]. The input–output description form of the system, presented by
Equation (1), is given as:

y(t) = G(s)u(t) + ȳ(t), (3)
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in which G(s)=̂C(sI − A)−1B and ȳ(t)=̂C(sI − A)−1Bddj(t).

3.2. Modified Left Interactor and Reference Model

The modified left interactor (MLI) is an important concept in designing multivariable
adaptive control.

Theorem [6]: There exists a unique lower triangular polynomial matrix ξm(s), as
shown in Equation (4), for any M × M strictly proper and full rank matrix G(s), and this
matrix is defined as the modified left interactor (MLI) matrix of G(s) [22].

ξm(s)=̂


g1(s) 0 · · · · · · 0
hm

21(s) g2(s) 0 · · · 0
...

...
...

...
...

hm
M1(s) · · · · · · hm

MM−1(s) gM(s)

, (4)

where hm
ij (s), j = 1, . . . , M – 1, i = 2, . . . , M, are polynomials, and gi(s), i = 1, . . . , M are monic

stable polynomials of degrees li > 0.
The MLI matrix has the following relationship with the high-frequency gain (HFG)

matrix of G(s) as
lim
s→∞

ξm(s)G(s) = Kp, (5)

where matrix Kp ∈ RM×M is finite and non-singular.
Assume that the reference output ym(t) is generated by a reference model with given

reference signal r(t) from

ym(t) = Wm(s)r(t), where Wm(s) = ξ−1
m (s). (6)

Reference r(t) ∈ RM is assumed bounded and piece-wise continuous. Wm(s) ∈ RM×M

is a stable transfer function matrix chosen from the inverse of the MLI matrix ξm defined
by Equation (4).

3.3. System Assumptions

The design assumptions are summarized as:

• (A.1) G(s) is strictly proper and full rank, and its MLI matrix ξm(s) is also known,
such that the reference model is selected as Wm(s) = ξ−1

m (s).

• (A.2) All transmission zeros of G(s) lie on the left of the imaginary axis, and the
(A, B, C) system is stabilizable and detectable.

• (A.3) All leading principal minors ∆i of the HFG matrix Kp are nonzero with known
signs.

• (A.4) An upper bound ν̄ is known on observability index of G(s). Transfer function
models of the system from the control input and disturbance input are presented in
their left coprime polynomial matrix decomposition, i.e., G(s) = P−1

l (s)Z0(s) and
Gd(s) = P−1

l (s)Zd(s), where Pl(s), Z0(s) ∈ RM×M and Zd(s) ∈ RM×q are proper
polynomial matrices.

• (A.5) The relative degree condition is established such that Z−1
0 (s)Zd(s) is proper.

Assumption A.1 is considered to select a stable reference model system Wm(s) for
plant model matching. Condition A.2 guarantees that none of the zeros lead G(s) to lose its
rank, which might risk the system becoming uncontrollable. A.3 is applied to guarantee
the adaptive parameter update laws are stable and converge. Condition A.4 is needed to
filter the input and output signals for constructing an adaptive output feedback controller
structure suitable for plant model matching. A.5 specifies a condition for the MRAC scheme
for disturbance rejection [15].
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3.4. Output Feedback Control Structure

The control signal generated by a standard output feedback output tracking MRAC
has the following compositions:

u(t) = ΘT
1 (t)ω1(t) + ΘT

2 (t)ω2(t) + Θ20(t)y(t) + Θ3(t)r(t) + Θ4(t), (7)

where Θ1 = [Θ11, . . . , Θ1j, . . . , Θ1ν̄−1]
T , and Θ2 = [Θ21, . . . , Θ2j, . . . , Θ2ν̄−1]

T are the adapta-
tion gain matrices for the filtered input and output signals, respectively. Here Θij ∈ RM×M,
where i = 1, 2, j = 1, . . . , ν̄ − 1, with ν̄ representing the observability index (or its upper
bound ν̄) of the plant G(s). Respectively, the filtered input and output signals are ω1(t) =
F(s)u(t), ω2(t) = F(s)y(t), where filter F(s) = A(s)

Λ(s) with A(s) = [IM, sIM, . . . , sν̄−2 IM]T ,

and a monic stable polynomial Λ(s) of degree ν̄ − 1. Moreover, Θ20 ∈ RM×M is adaptation
gain matrix for output signal y(t) and Θ3 ∈ RM×M is adaptation gain matrix for reference
signal r(t), and Θ4 ∈ RM×M is employed to reject the effects induced by the disturbance
dj(t) [23].

3.5. Plant Model Matching Condition

If the system and disturbance parameters are all known and constant, the steady-state
(optimal) output feedback control can be presented by:

u∗(t) = Θ∗T
1 ω1(t) + Θ∗T

2 ω2(t) + Θ∗
20y(t) + Θ∗

3r(t) + Θ∗
4(t), (8)

where these steady-state values of parameters Θ∗T
1 , Θ∗T

2 , Θ∗
20, Θ∗

3 , Θ∗
4 are not a priori, but

their existence needs to be assumed.
The plant model matching condition is satisfied by Equation (9) when parameters

Θ∗T
1 , Θ∗T

2 , Θ∗
20, Θ∗

3 meet the final value theorem condition under the assumption that dj(t) =
0, i.e.,

I − Θ∗T
1 F(s)− Θ∗T

2 F(s)G(s)− Θ∗
20G(s) = Θ∗

3W−1
m (s)G(s). (9)

To realize the desired disturbance rejection, by substituting Equation (3) into
Equation (8), the closed-loop system is given as:

y(t) = G(s)[Θ∗
3W−1

m (s)G(s)]−1[Θ∗T
2 F(s)[ȳ](t) + Θ∗

20ȳ + Θ∗
3r + Θ∗

4 ] + ȳ(t)

= Wm(s)r(t) + Wm(s) + Kp[
(−Θ∗T

1 A(s)P(s) + Λ(s)P(s))Z−1
a (s)

Λ(s)
ȳ + Θ∗

4 ](t)

= Wm(s)r(t) + Vp(t),

(10)

where Θ∗
3 = K−1

p and the term Vp(t) is

Vp(t) = Wm(s)Θ∗−1
3 [Θ∗T

2 F(s)ȳ(t) + Θ∗
20ȳ + Θ∗

3W−1
m (s)ȳ(t) + Θ∗

4 ](t). (11)

One potential selection is to consider Vp(t) = 0 to eliminate the impact of the distur-
bance. Consequently, Θ∗

4(t) is determined as follows:

Θ∗
4(t) = −Θ∗

3W−1
m (s)ȳ(t)− Θ∗

20ȳ(t)− Θ∗T
2 F(s)ȳ(t). (12)

Thereby, Equation (11) can be rewritten as follows:

Vp(t) = Wm(s)Kp[
Pα(s)Zd(s)

Λ(s)
dj(t) + Θ∗

4 ](t), (13)
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According to [6], there is a polynomial matrix Pα(s) such that it satisfies

Λ(s)I(s)− Θ∗T
1 A(s) = Pα(s)Z0(s),

lim
s→∞

Pα(s)
Λ(s)

Zd(s) < ∞.
(14)

Then Θ∗
4 can be chosen as:

Θ∗
4(t) = −Pα(s)Zd(s)

Λ(s)
dj(t). (15)

Thereby, the complete disturbance rejection at the system output can be achieved if
Pα(s)
Λ(s)

Zd(s) is proper [24].

3.6. Linear Parametrization of Θ∗
4(t)

A linear parametrization of Θ∗
4(t) is essential for effective adaptive controller design

with guaranteed asymptotic tracking property. According to assumption A.5, Θ∗
4(t) can be

rewritten as follows:

Θ∗
4(t) = Θ∗

q
Aq(s)
Λ(s)

dj(t) + Θ∗
0dj(t), (16)

where Θ∗
q = [Θ∗

q1, Θ∗
q2, . . . , Θ∗

q(ν̄−1)] ∈ RM×q(ν̄−1) with Θ∗
qj ∈ RM×q and Θ0 ∈ RM×q

are constant parameter matrices. Additionally, define Aq(s) = [Iq, sIq, . . . , sν̄−2 Iq]T with
Iq ∈ Rq×q. As mentioned earlier, the disturbance expression, as defined in Equation (2), can
be expressed as follows:

dj(t) = ϕ∗T
j ψj(t) (17)

where
ϕ∗

j = [d̄j0, d̄j1, . . . , d̄jpj]
T

ψj(t) = [1, Ωj1(t), . . . , Ωjpj(t)]T ∈ Rpj+1
(18)

dj(t) ∈ Rq can also be expressed as:

dj(t) = Φ∗TΨ(t), (19)

where

Φ∗T =



ϕ∗
1 ϕ∗

(p1+1) ϕ∗
(p1+1) · · · 0(p1+1)

0(p2+1) ϕ∗
2 0(p2+1) · · · 0(p2+1)

0(p3+1) 0(p3+1) ϕ∗
3 · · · 0(p3+1)

...
...

...
. . .

...
0(pq+1) 0(pq+1) 0(pq+1) · · · ϕ∗

q

,

Ψ(t) = [ψT
1 (t), ψT

2 (t), . . . , ψT
q (t)]T ∈ Rnψ ,

nψ =
q

∑
j=1

pj + q,

(20)

with 0(pj+1) ∈ Rpj+1 being a zero vector. Based on Equation (19), parameterization of Θ∗
4

can be modified as follows:
Θ∗

4(t) = Θ∗T
5 ω5(t) (21)

where the parameterized variables are presented as follows:

Θ∗
5 = [Θ∗

q1Φ∗T , . . . , Θ∗
q(ν̄0−1)Φ

∗T ]T , (22)
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ω5(t) = [(
Aq(s)
Λ(s)

Ψ(t))T , ΨT(t)]T , (23)

Aq(s) = [Inψ , sInψ , . . . , sν̄0−2 Inψ ]
T . (24)

Hence, the nominal controller structure can be rewritten as:

u∗(t) = Θ∗T
1 ω1(t) + Θ∗T

2 ω2(t) + Θ∗
20y(t) + Θ∗

3r(t) + Θ∗
5(t)ω5 (25)

3.7. LDS Decomposition

Definition: Any M × M real matrix Kp with nonzero leading principal minors can be
factored as follows:

Kp = LDS (26)

where L is an M × M unit lower triangular matrix, S ∈ RM×M is a symmetric positive
definite matrix, and

D = diag
{

sign[∆1]γ1, · · · , sign[ ∆M
∆M−1

]γM

}
(27)

is also non-unique, in which ∆i is the leading principle minors of Kp and γi > 0, i =
1, . . . , M, is an arbitrary positive diagonal matrix [6]. To cope with the restrictive design con-
ditions and the uncertainty in Kp caused by the plant uncertainties, the LDS decomposition
is applied to design a robust output feedback MRAC.

4. Robust MRAC Design

In the presence of system parameter uncertainties and unknown disturbances, the
nominal controller is no longer sufficient. Therefore, an adaptive version of this controller
needs to be designed. The adaptive architecture corresponding to Equation (25) is stated as:

u(t) = ΘT
1 (t)ω1(t) + ΘT

2 (t)ω2(t) + Θ20(t)y(t) + Θ3(t)r(t) + ΘT
5 (t)ω5(t), (28)

where ΘT
1 (t), ΘT

2 (t), Θ20(t), Θ3(t), and Θ5(t) are adjusted by the parameter update law
through adaptive control. The proposed robust MRAC structure and parameterization are
illustrated in Figure 2.

Figure 2. Proposed robust MRAC structure and parameterization.

4.1. Adaptive Law Design

To design an adaptive controller as shown in Equation (28), the error equation in terms
of tracking errors and parameter errors is a fundamental concept upon which adaptive
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laws are developed. Therefore, to achieve the error equation, both sides of Equation (9) are
operated by u(t) as:

u(t)− Θ∗T
1 F(s)u(t)− Θ∗T

2 F(s)G(s)u(t)− Θ∗
20G(s)u(t) = Θ∗

3W−1
m (s)G(s)u(t). (29)

Replacing the system description (3) into Equation (29) we have

u(t)− Θ∗T
1 F(s)u(t)− Θ∗T

2 F(s)[y − ȳ](t)− Θ∗
20(y(t)− ȳ(t)) = Θ∗

3W−1
m (s)[y − ȳ](t). (30)

Replacing (6) in the above Equation (30), leads to

u(t)− Θ∗T
1 ω1(t) + Θ∗T

2 ω2(t)− Θ∗
20y(t) + Θ∗

3r(t)− Θ∗
4 = Θ∗

3W−1
m (s)[y − ȳ(t)](t), (31)

where Θ∗
3 = K−1

p and Θ∗
4 = −Θ∗

3W−1
m (s)ȳ(t)− Θ∗

20ȳ(t)− Θ∗T
2 F(s)[ȳ](t), which is obtained

from (12). Then, (31) is obtained below:

Kp(u(t)− Θ∗T
1 ω1(t)− Θ∗T

2 ω2(t)− Θ∗
20y(t)− Θ∗

3r(t)− Θ∗
4(t)) = W−1

m (s)[e](t). (32)

Substituting the gain matrix decomposition Kp = LDS into Equation (32) leads to

DS(u(t)− Θ∗T
1 ω1(t)− Θ∗T

2 ω2(t)− Θ∗
20y(t)− Θ∗

3r(t)− Θ∗
4(t))

= L−1ξm(s)[y − ym](t).
(33)

If the controller described as (28) is performed with Θi = Θ∗
i , it results in term

ξm(s)[y − ym](t) = 0, that is, lim
t→∞

(y(t)− ym(t)) = 0 exponentially.

4.2. Error Model

To obtain adaptive parameter update laws, an error model should be considered and
driven based on the tracking error e(t) = y(t)− ym(t) and the parameter estimation error
Θ̃(t). Hence, by substituting (28) into (33), (34) is yielded as:

ξm(s)e(t) +D∗ξm(s)e(t) = DSΘ̃T(t)ω(t). (34)

where matrix D∗ = L−1 − IM is a lower triangular matrix with zero diagonal compo-
nents, and

ω(t) = [ωT
1 (t), ωT

2 (t), yT(t), rT(t), ωT
5 (t)]

T ,

Θ̃(t) = Θ(t)− Θ∗,

Θ(t) = [ΘT
1 (t), ΘT

2 (t), Θ20(t), Θ3(t), ΘT
5 (t)],

Θ∗ = [Θ∗T
1 , Θ∗T

2 , Θ∗T
20 , Θ∗T

3 , Θ∗T
5 ].

(35)

The development of adaptive law for the output feedback tracking control follows the
following procedure.

The filter N(s)IM is introduced to obtain the filtered tracking error.

ē(t) = ξm(s)N(s)e(t)=̂[ē1(t), ē2(t), . . . , ēM(t)]T . (36)

where filter N(s) is a stable polynomial and its degree is equal to the maximum degree of
the modified interactor matrix ξm(s).

Denote ηi(t) as

ηi(t)=̂[ē1(t), ē2(t), . . . , ēi−1(t)]T ∈ Ri−1, i = 2, . . . , M. (37)

and applying filter N(s) on both sides of (34) leads to

ē(t) + [0, λ∗T
2 η2(t), λ∗T

3 η3(t), . . . , λT
MηM(t)]T = e1(t), (38)

where e1(t) = DSN(s)[Θ̃Tω](t) represents the filtered tracking error.
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Define the augmented error ϵ(t), which can be applied to reach stable adaptive laws
in order to increase the closed-loop system performance, as follows:

ϵ(t) = e1(t) + e2(t), (39)

where ϵ(t) = [ϵ1(t), ϵ2(t), . . . , ϵM(t)]T , and e2(t) = P(t)µ(t) represents parameter error,
and P(t) is the estimate of P∗ = DS and

µ(t) = ΘT(t)ζ(t)− N(s)[ΘTω](t)

ζ(t) = N(s)ω(t).
(40)

From (38)–(40), the following (41) is obtained as

ϵ(t) = [0, λ̃T
2 η2(t), λ̃T

3 η3(t), . . . , λ̃T
MηM(t)]T + DSΘ̃T(t)ζ(t) + P̃(t)µ(t), (41)

in which λ̃i(t) = λ(t) − λ∗
i (t), i = 2, . . . , M, and P̃(t) = P(t) −P∗(t) are parameter

errors. To select adaptive laws for updating parameter estimations, the augmented error
plays an important role. Based on the error model (41), adaptive laws are described in the
next section.

4.3. Adaptive Parameter Update Laws

One commonly used parameter estimation algorithm for updating the parameter Θ(t)
is the normalized gradient algorithm to minimize a quadratic cost function J(Θ,P), i.e.,

J(Θ,P) =
ϵT(Θ)ϵ(Θ)

2m2 . (42)

According to the steepest descent direction of J(Θ,P), adaptive update laws can be
chosen. In the following, adaptive laws are selected for updating parameters according to
the estimation error model given by Equation (41).

ΘT(t) = −
∫ t

0

Dϵ(τ)ζ(τ)

m2(τ)
dτ + ΘT(0), (43)

P(t) = −
∫ t

0

ΓPϵ(τ)µT(τ)

m2(τ)
dτ +P(0), (44)

λi(t) = −
∫ t

0

Γλiϵi(τ)ηi(τ)

m2(τ)
dτ + λi(0), (45)

in which D is defined by (27), and Γλi = ΓT
λi > 0, and ΓP = ΓT

P > 0 are considered as
adaptation rate. Moreover, m is calculated as follows [15]:

m(t) = (1 + ζT(t)ζ(t) + µT(t)µ(t) +
M

∑
i=2

ηT
i (t)ηi(t))

1
2 . (46)

4.4. Stability Analysis

To prove the closed-loop stability properties, a positive definite function V(Θ̃, P̃, λ̃i, t)
could be defined as follows:

V(Θ̃, P̃, λ̃i, t) =
1
2
(tr[Θ̃(t)DΘ̃T(t)] + tr[P̃T(t)Γ−1

P P̃(t)] +
M

∑
i=2

(λ̃T
i (t)Γ

−1
λi λ̃i(t))). (47)

By considering adaptation laws (43)–(45), the time-derivative of V can be obtained
as (48).

V̇ = dV
dt = −2

m2(t) [ζ
T(t)Θ̃(t)SDϵ(t) + µT(t)P̃(t)ϵ(t) + ∑M

i=2 λ̃T
i (t)ϵi(t)ηi(t)]

= −(2ϵT(t)ϵ(t))/m2(t) ≤ 0,
(48)
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which is negative semi-definite. Therefore, the adaptive laws certify that all design
parameters associated with these adaptive laws remain bounded: Θ(t) ∈ L∞,P(t) ∈
L∞, and λi(t) ∈ L∞. In addition, it also ensures that the asymptotic output tracking
lim
t→∞

e(t) = lim
t→∞

(y(t)− ym(t)) converges to zero for any initial conditions.

4.5. Optimization of Adaptation Rates

From the practical perspective of designing an MRAC controller, one of the essential
objectives, alongside accuracy, is to improve the response speed of the control system.
Adjusting the adaptive gain parameters that affect the system’s adaptation response is
one of the critical criteria. To this end, a non-convex optimization problem is presented
in this paper and applied in the design of the proposed controller. Firstly, minimizing
the closed-loop system’s tracking error is carried out as the first goal of the proposed
optimization problem by applying the mean absolute error (MAE) criteria. Secondly,
minimizing the percent maximum overshoot (PMO) is considered the second goal of
the proposed optimization problem. By applying the weighted sum method (WSM), the
proposed optimization problem is converted to a single-objective optimization problem
as (49). The TLBO algorithm is then applied to solve this problem.

Min F = α1 × MAE
MAEmax

+ α2 × PMO
PMmax

s.t. MAE =
1
T

∫
|y − yr|dt

PMO =
|ymax − yr|

ymax
× 100

X ≤ X ≤ X, X = [D, ΓP, Γλi].

(49)

TLBO is one of the population-based metaheuristic search algorithms, in which the
possible solutions are investigated by calculating their fitness function in each iteration.
The algorithm defines two different modes of learning: (i) Teacher Phase: through the best
member of the population, which is called a teacher, and (ii) Learner Phase: through interac-
tion between the other members. A detailed description regarding the implementation of
TLBO for the optimization problems is given in [25]. Based on the proposed optimization
problem in this paper, each member of the population, defined by the TLBO algorithm, is a
possible solution for the adaptive rates of the controller and it would be updated in each
iteration to reach the optimal solution. Moreover, the coefficients of the optimized PI used
for validation are obtained by solving the same optimization problem presented by (49)
considering X = [KP, KI ].

5. Results and Analysis
5.1. Validation of Design Assumptions

For the proposed system model (A, B, C) as expressed in (A3), it confirms that this
system has stable zeros, considering the fact that both transmission zeros are located at
−0.4850 ± 0.7244i. Moreover, the system’s transfer function is strictly proper and full rank.
The modified interactor matrix ξm(s) is selected as a diagonal matrix, as presented below:

ξm(s) =
[
(s + 1) 0

0 (s + 1)2

]
, (50)

and thereby, the high-frequency gain matrix, Kp, is finite and non-singular:

Kp = lim
s→∞

ξm(s)G(s) =
[
−0.0014 0

0 1.69

]
. (51)
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The signs of the leading principle minors of the matrix Kp are known. The matrix

Kd = lim
s→∞

ξm(s)Gd(s) =
[

0.0035 −0.0021
−0.0028 2.1

]
(52)

is finite. By satisfying the relative degree condition outlined in the following equation,
assumption A.5 can be ensured as well:

lim
s→∞

Z−1
0 (s)Zd(s) =

[
0.4919 15.23
22.79 11.14

]
(53)

and also, the proposed disturbance has been considered as dj(t) = 0.5sin(0.104t) +
0.3cos(0.2t) + 0.1sin(0.35t) in (1) for this study.

5.2. Design Components

For the proposed control design, two main blocks (subsystems), i.e., the model refer-
ence and filter blocks, should be assigned accordingly. As mentioned before based on (6),
the reference model can be chosen as (54) by considering ξm(s) from (50), i.e.,

Wm(s) =

[
1

s+1 0
0 1

(s+1)2

]
. (54)

Since the degree of filter N(s) should be equal to the maximum degree of ξm(s), we
select it as (55). Moreover, the filter block for input and output signals is defined as (56):

N(s) =
1

(s + 1)
, (55)

F(s) =

[
1

s2+2s+1 0
0 1

(s2+2s+1)2

]
. (56)

5.3. Simulation Scenarios

To evaluate and analyze the performance of the proposed controller, a comparison
between the proposed robust MV-MRAC and an optimized PI control is conducted for the
simulation study of this work. It should be noted that the optimized PI controller has been
well-tuned by the TLBO algorithm considering the same optimization objectives described
in Section 4.2.

For a comprehensive assessment of the proposed control solution, two different testing
studies are conducted as follows:

• Study 1 analyzes the closed-loop system in the presence of unknown system distur-
bances to examine both desired asymptotic output tracking and disturbance rejection.

• Study 2 investigates the desired asymptotic output tracking and disturbance rejection
of the closed-loop system in the presence of the system’s parameter uncertainty and
unknown disturbance.

Moreover, two different scenarios are considered by applying different reference sig-
nals: step changes of reference for scenario (S1) and ramp changes of reference for scenario
(S2). In addition, two different cases are considered for each scenario. Case (C1) concerns
the reference change for the water level reference, while case (C2) concerns the reference
change for the PDR reference. All aforementioned testing conditions are illustrated in
Figure 3. Respectively, the results of Study 1 and 2 are presented in Sections 5.4.1 and 5.4.2.
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Figure 3. Schematic view of the simulation scenario categorization.

5.4. Simulation Results
5.4.1. Results for Study 1

In this section, the evaluation of the robustness of the proposed controller is provided
through the comparison of the proposed controller with the optimized PI controller in
the presence of uncertain disturbances. The simulation outcomes are shown in Figures 4
and 5 to demonstrate the disturbance rejection capability and asymptotic output tracking
performance of the robust MV-MRAC.

Figure 4 displays the system response for S1-C1. As previously described, an increase
of 20 mm at 1000 s is assumed for the water level. Subplots A.1–A.4 illustrate the outcomes
of water level, adaptation parameters, and the system’s control efforts, respectively. The
solid red line illustrates the results of the optimized PI, while the solid blue line indicates the
results of the proposed MV-MRAC controller. According to A.1 for S1-C1, it can be observed
that the robust MV-MRAC can track the reference output even after the change occurs at
1000 s and neutralizes unknown disturbance effects. During this process, as seen in the
zoom area, the controller exhibits a short period of high oscillation due to the controller’s
need for learning and adapting to abrupt changes in the reference input. Moreover, as
shown in A.2, all control parameters estimated in the closed-loop system meet the valid
values and are bounded. Subplots A.3 and A.4 show that the control signals obtained from
the proposed robust MV-MRAC converge to an optimal value after the learning process is
completed, and they are also within an acceptable range. Conversely, the control signals
provided by the optimized PI controller cannot suppress the high-frequency oscillation.

Figure 5 shows the system response for S1-C2. In this case, a step change is considered
for the PDR signal with a 0.4 per-unit decrement at 1000 s. The results obtained for the PDR
output signal are shown in subplot A.1. According to this figure, the proposed robust MV-
MRAC performs better than the optimized PI controller in terms of achieving asymptotic
output tracking and reducing the impact of uncertain disturbances. From subplot A.2, it
can be seen that all control parameters converge towards optimal values. Furthermore, as
observed in A.3 and A.4, it is evident that the robust MV-MRAC demonstrates its capability
to provide optimal control signals compared to the optimized PI controller.

In the following, the results belonging to S2, where the system has been stimulated
with ramp inputs for both water level and PDR, will be presented. Figure 6 indicates the
system responses for S2-C1. For S2-C1, a ramp change is assumed for the water level by
20 mm increments at intervals between 1000 and 1500 s. According to subplot A.1, the
proposed robust MV-MRAC has higher efficiency for asymptotic tracking and disturbance
rejection under uncertain disturbances than the optimized PI controller. If changes in the
reference input occur gradually, the high oscillations of transient response can be damped
in the proposed robust MV-MRAC compared to S1-C1. It is noticeable from the zoomed
view that the overshoot is reduced by the proposed robust controller. Regarding A.2, all
control parameter estimations are converged to the true values and are bounded. Moreover,
the control signals obtained from two different methods are indicated in subplots A.3 and
A.4. As can be seen from these figures, the control input efforts remain within an acceptable
range, ensuring stability, performance, and the safety of the system in practice.
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Figure 4. Results obtained for S1-C1 and with system disturbance; (A.1) PDR output, (A.2) Adaptation
parameters, (A.3) The first control effort, (A.4) The second control effort.

Figure 5. Results obtained for S1-C2 and with system disturbance; (A.1) PDR output, (A.2) Adaptation
parameters, (A.3) The first control effort, (A.4) The second control effort.

A summary of the system responses for S2-C2 is shown in Figure 7. In S2-C2, a ramp
change is assumed for the PDR with 0.4 decrements at intervals between 1000 and 1500 s.
The subplots in Figure 7A.1–A.4 represent all the system responses. Subplot A.1 shows
that the MV-MRAC robust controller can reduce the impact of unknown disturbances
and also reaches the desired reference value of 2. According to A.2, it can be seen that all
control parameters of the proposed controller reach appropriate values. Moreover, A.3
and A.4 indicate that the control effort signals obtained from the robust MV-MRAC reach
optimal values during the adjustment of the controller parameters to their ideal settings. In
contrast, the optimized PI controller is unable to achieve optimal values and experiences a
high-frequency fluctuation in the control effort signals.



Water 2024, 16, 899 15 of 20

Figure 6. Results obtained for S2-C1 and with system disturbance; (A.1) Water level output,
(A.2) Adaptation parameters, (A.3) The first control effort, (A.4) The second control effort.

Figure 7. Results obtained for S2-C2 and with system disturbance; (A.1) PDR output, (A.2) Adaptation
parameters, (A.3) The first control effort, (A.4) The second control effort.

5.4.2. Results for Study 2

The purpose of this section is to assess the robustness of the proposed controller
under both conditions of unknown disturbances and system parametric uncertainties.
Simulation results of the closed-loop system response are illustrated in Figures 8 and 9.
In the hydrocyclone deoiling system, some parameters are susceptible to change due to
changes in water level and PDR, as well as due to unknown dynamics of the system. The
system (1) with parameter uncertainties is described as follows:

ẋ(t) = Ãx(t) + B̃u(t) + Bddj(t) (57)

where Ã = A + ∆A, and B̃ = B + ∆B are system input matrices with bounded parameter
uncertainties as well as unknown disturbances dj(t), respectively. Here, the deviation from
the nominal value is considered within ±20 and ±40 percentages, respectively.

Figure 8 shows the system’s response with respect to parameter uncertainties and
unknown disturbances when step changes occur in the reference model at 1000 s for S1-
C1. The results presented by this figure include water level output, error signal, and
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control effort signals. As can be seen, the proposed robust MV-MRAC achieves the desired
control objectives, including asymptotic output tracking and convergence of error signals
to zero across various scenarios of parameter uncertainty and disturbance. Moreover, both
control effort signals, shown in A.3 and A.4, are in a desirable range. It is established that
the proposed MV-MRAC exhibits robustness even in the presence of varying parametric
uncertainties and unknown disturbances.

Figure 8. Results obtained for S1-C1 and with system disturbance and parametric uncertainty;
(A.1) Water level output, (A.2) Error signals, (A.3) The first control effort, (A.4) The second control
effort.

A summary of the results for controlling the PDR signal related to S1-C2 can be found
in Figure 9. As shown in the figure, the effectiveness of the proposed controller has been
confirmed and the control objectives have been met for PDR control as well. In addition,
Tables 1 and 2 provide detailed information regarding the MAE index obtained from
optimized PI and MV-MRAC for different uncertainty levels. As can be seen from this table,
the proposed MV-MRAC performs better than the optimized PI under different system
parametric uncertainties in all scenarios and cases.

Table 1. MAE index obtained from the Optimized-PI and MV-MRAC for scenario 1.

S1-C1 S1-C2

Optimized-PI MV-MRAC Optimized-PI MV-MRAC

∆ = −0.4 1.1930 0.3159 1.0293 0.1301
∆ = −0.2 1.1726 0.3470 0.9734 0.1321
∆ = +0.2 1.1514 0.4653 0.8117 0.1478
∆ = +0.4 1.1899 0.5906 0.7031 0.1622

Table 2. MAE index obtained from the Optimized-PI and MV-MRAC for scenario 2.

S2-C1 S2-C2

Optimized-PI MV-MRAC Optimized-PI MV-MRAC

∆ = −0.4 1.0353 0.3250 1.0293 0.3128
∆ = −0.2 0.9803 0.2003 0.9734 0.2874
∆ = +0.2 0.8222 0.2843 0.8117 0.2714
∆ = +0.4 0.7184 0.3049 0.7031 0.2904
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Figure 9. Results obtained for S1-C2 and with system disturbance and parametric uncertainty;
(A.1) PDR output, (A.2) Error signals, (A.3) The first control effort, (A.4) The second control effort.

A statistical analysis has been conducted to evaluate the reliability and precision of the
closed-loop system. For this purpose, a series of 20 different simulations have been executed
for each scenario and each case, incorporating the variability and uncertainty inherent in
the system parameters. The mean value of the MAE index, the standard deviation, the
standard error of the mean, and the 95% confidence interval obtained by this analysis are
presented in Tables 3 and 4.

Table 3. Statistical analysis of reliability and precision for scenario 1.

S1-C1 S1-C2

Optimized-PI MV-MRAC Optimized-PI MV-MRAC

Mean 1.167 0.431 0.876 0.137
Standard
Deviation 0.040 0.052 0.070 0.016

Standard Error
of the Mean 0.009 0.012 0.016 0.004

95% Confidence
Interval (1.14, 1.18) (0.40, 0.45) (0.84, 0.91) (0.13, 0.14)

Table 4. Statistical analysis of reliability and precision for scenario 2.

S2-C1 S2-C2

Optimized-PI MV-MRAC Optimized-PI MV-MRAC

Mean 0.879 0.278 0.880 0.291
Standard
Deviation 0.070 0.025 0.073 0.015

Standard Error
of the Mean 0.016 0.006 0.016 0.003

95% Confidence
Interval (0.84, 0.91) (0.26, 0.29) (0.84, 0.91) (0.28, 0.29)

5.4.3. Results of the Adaptation Rate optimization

The results regarding the proposed optimization problem are presented and evaluated
in this section. As mentioned before, given that the proposed problem is defined as an
NLP optimization problem, the TLBO algorithm is carried out to solve it. Because of the
uncertain behavior of a metaheuristic algorithm, it should be run multiple times with the
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aim of achieving the best result. After executing the problem in different epochs and finding
the optimal solution for each epoch, the best solution X1∗MV−MRAC has been considered
for the proposed controller, and the second optimal solution among the obtained results is
also considered and denoted by X2∗MV−MRAC. Respectively, X1∗PI and X2∗PI demonstrate
the first and second optimal solutions for the optimized PI controller system. The results
obtained for the closed-loop system regarding tracking the water level for the nominal
system are pictured in Figure 10.

Figure 10. Results of water level obtained for optimized controller for nominal system.

6. Conclusions

In this paper, a robust MV-MRAC solution based on output feedback is proposed and
tested on a water treatment system, with the goal of improving output tracking goals in
the presence of uncertain disturbances and system parameter uncertainty. The proposed
control scheme is developed by using LDS decomposition to relax the conditions on the
high-frequency gain. Moreover, the estimation error is employed to improve the controller’s
tracking performance by applying the low-pass filters to the system’s input and output
signals. To evaluate the proposed closed-loop system, two different scenarios are assumed
by considering two different cases for each of them in the simulation section. The robustness
of the proposed MV-MRAC controller is evaluated with respect to unknown disturbances
and compared to the performance of the optimized PI controller. Simulation outcomes show
that the proposed robust MV-MRAC method outperforms the optimized PI controller in
terms of asymptotically tracking the reference. Moreover, a statistical analysis is employed
for the reliability and precision of the closed-loop system through 20 simulations per
scenario, accounting for parameter variability and uncertainty. The simulation results
show that the proposed method perfectly rejects the uncertain disturbances and guarantees
global stability through real-time control parameter adaptation. In S1-C1 and S2-C1, the
proposed method reduces the mean value of MAE by 63% and 68%, respectively, compared
to the Optimized-PI controller.
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Appendix A

Appendix A.1. Model Development

A description of the development of the deoiling system model is provided in this
section. A simplified model for the gravity separator has been derived by using the mass
balance equations from [26]:

AL
dl(t)

dt
= Fin(t)− Cv f (u(t))

√
∆Pout

ρw
, (A1)

where A indicates the cross-sectional area of the water phase within the separators, L
indicates the length of the water phase, and l indicates the height of the water phase, which
is often referred to as the interface level; the rate of liquid feed entering the system is
given by Fin, Cv represents the valve coefficient, f (u(t)) represents the openness percentage
of the valve, ∆Pout represents the pressure drop across the control valve, and finally, ρw
represents the density of the water phase. The nonlinear model has been linearized at
an operating point of 0.15 m, assuming that separator pressure, interface level, and valve
downstream pressure have no significant impacts on water level dynamics. Due to the
complex hydrodynamics of the hydrocyclone, a black-box model was proposed using
system identification. This model focuses on the pressure drop ratio (PDR), which is often
the main observable parameter in existing installations. The PDR was modeled using
two second-order linear transfer functions which describe the input–output relationship
between the overflow valve to the PDR and the underflow valve to the PDR. To identify
the system parameters, data were collected from a scaled pilot plant where the PDR was
maintained at approximately an operating point of 2. Therefore, the completed model of
the system is a MIMO model with two control inputs and two outputs. Moreover, the
state-space representation of the MIMO linear time-invariant (LTI) system model can be
represented as follows [1]:

ẋ = Ax(t) + Bu(t) + d(t)
y(t) = Cx(t),

(A2)

in which the system’s state vector is
[
l(t) ẋVu(t) xVu(t) ẋVo(t) xVo(t)

]T , where l(t) is
the interface level, while ẋVu(t), xVu(t), ẋVo(t) and xVo(t) are the states of the black-box PDR
model. The control inputs are

[
Vu(t) Vo(t)

]T , the system outputs are
[
yl(t) yPDR(t)

]T ,
d(t) represents the disturbance impacting the system, and the parameter matrices A, B,
and C are defined as:

A =


−1.23 × 10−5 0 0 0 0

0 −0.97 −0.76 0 0
0 1 0 0 0
0 0 0 −0.93 −0.65
0 0 0 1 0

,

B =


−1.4 × 10−4 0

−1 0
0 0
0 1
0 0

, C =

[
1 0 0 0 0
0 0 2.72 0 1.69

]
.

(A3)
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