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Abstract: Based on an improved genetic algorithm and debris flow disaster monitoring network,
this study examines the monitoring and early warning method of debris flow expansion behavior,
divides the risk of debris flow disaster, and provides a scientific basis for emergency rescue and
post-disaster recovery. The function of the debris flow disaster monitoring network of the spreading
behavior disaster chain is constructed. According to the causal reasoning of debris flow disaster
monitoring information, the influence factors of debris flow, such as rainfall intensity and duration,
are selected as the inputs of the Bayesian network, and the probability of a debris flow disaster is
obtained. The probability is compared with the historical data threshold to complete the monitoring
and early warning of debris flow spreading behavior. Innovatively, by introducing niche technology
to improve traditional genetic algorithms by learning Bayesian networks, the optimization efficiency
and convergence speed of genetic algorithms are improved, and the robustness of debris flow
monitoring and warning is enhanced. The experimental results show that this method divides debris
flow disasters into the following five categories based on their danger: low-risk area, medium-risk
area, high-risk area, higher-risk area, and Very high-risk area. It accurately monitors the expansion
of debris flows and completes early warning. The disaster management department can develop
emergency rescue and post-disaster recovery strategies based on early warning results, thus providing
a scientific basis for debris flow disasters. The improved genetic algorithm has a higher learning
efficiency, a higher accuracy, a faster convergence speed, and higher advantages in learning time and
accuracy of the Bayesian network structure.

Keywords: improved genetic algorithm; debris flow disaster monitoring network; debris flow;
extended behavior; monitoring and early warning; undigraph

1. Introduction

A debris flow disaster is destructive and sudden and can seriously damage property,
facilities, and the natural environment in flowing areas [1], pose a significant threat to the
life and safety of residents, and cause a lot of economic losses [2]. Therefore, it is urgent to
study the risk of debris flow disasters in depth and reduce the disaster risk [3]. Bernard
M. et al. [4] predicted an occurrence of debris flows through rain gauge measurement
and radar data, normalized the collected rainfall data, input it into the established debris
flow early warning function, and generated early warning information according to the
prediction result of the function. However, this method does not comprehensively collect
data on debris flows, which leads to low prediction accuracy. Savi M. et al. [5] used
the delayed acceptance algorithm to predict the debris flow based on historical data and
statistical functions to predict the occurrence probability and influence the range of debris
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flow expansion behavior. However, this method is not effective in learning the structure of
debris flow disaster monitoring networks, and it is prone to the phenomenon of edge loss
and multilateralism, resulting in inaccurate prediction results. Nagl et al. [6] monitored the
protection structure of debris flow, determined the objective function of prediction, and
then used a hill climbing algorithm to complete the monitoring of debris flow expansion
behavior. However, the global search ability of this method is poor, and the iteration speed
is slow; thus, the solution effect of the complex problem of debris flow expansion behavior
is not ideal. Coviello V. et al. [7] monitored the spreading behavior of debris flow through
the combination of the Gale–Shapley algorithm and the debris flow disaster monitoring
network, combined with high-resolution terrain and instruments. Although this method is
simple and easy to operate, the number of wrong edges in the structure of the debris flow
disaster monitoring network is large, and the learning effect is not decent. Rui et al. [8] used
the minimum spanning tree method to calculate the weight of debris flow occurrence time
and rainfall change to complete the prediction. However, this method takes a long time to
calculate, and the learning effect of the debris flow disaster monitoring network structure
is poor. Ya-Q J [9] used high-frequency pulse radar as a monitoring tool to detect layered
land media, extracting important stimuli for debris flows and landslides. A layered land
medium model with random scattering bodies embedded with random rough interfaces
was constructed, and numerical simulations were conducted on the polarization radar
distance profiles of underground structures under different conditions to early monitor and
warn of debris flow disasters. Wang X [10] proposed a debris flow warning method based
on the infinite independence method and self-organizing feature mapping and applied it
to Liaoning Province. The proposed model consists of three stages. Firstly, by analyzing
the factors that affect the development of debris flows in the study area, eight geological
environmental conditions and two rainfall-induced conditions were selected. The rainfall
threshold for debris flow outbreaks was 150 mm, avoiding the blindness of parameter
selection and conducting monitoring and early warning.

Because the network function of debris flow disaster monitoring has a strong ability
to analyze uncertain problems, it can not only synthesize various factors to complete the
assessment but can also visually show the logical relationship between factors in a graphic
way, which has been widely used in disaster risk management. Therefore, this paper
proposes a monitoring and early warning method for debris flow expansion behavior
based on the improved genetic algorithm and debris flow disaster monitoring network.

2. Debris Flow Expansion Behavior Monitoring and Early Warning
2.1. Debris Flow Disaster Monitoring Network Node Variable Analysis

To construct the monitoring network function of the debris flow extended behavior
disaster chain, first, it is necessary to establish the monitoring network diagram of the
debris flow disaster and then realize the probability prediction of the debris flow disaster
by causal reasoning.

Appropriate factors affecting debris flow spreading behavior were selected as parame-
ters to optimize the performance of the function. According to the data reported by the
national disaster reduction network, local government websites, Baidu Encyclopedia, and
other authoritative websites, and combined with expert opinions, the node variables of
common influencing factors of debris flow expansion behavior were selected, as shown in
Table 1.

We searched the keywords of debris flow disaster nodes, obtained the relevant disaster
literature, and obtained the influencing factors of debris flow disaster nodes.
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Table 1. Variables of the debris flow disaster chain.

Variable Type Variable

Input variables Rainfall intensity
Rainfall duration

State variable

Lithological structure
Geological structure

Loose soil
Topographic features
Original water system

Output variables Debris flow

2.2. Improved Early Warning Method of Genetic Algorithm Based on Niche Technology
2.2.1. Optimization of Variable Factors of Debris Flow Expansion Behavior

The relationship between factors influencing mudslide dispersal behavior and the
choice of conditional probability distribution can easily influence monitoring networks.
Therefore, it is necessary to find the best parameter set (variable factors of debris flow
expansion behavior) to make the early warning function have the best performance.

For given monitoring information, let the objective function be [11,12]:

F = f (x, y, z), (x, y, z) ∈ Ω, F ∈ R (1)

In order to make the objective function of formula (1) not lose generality, it can be
assumed that the minimum value is sought; that is:

F′ = min
(x,y,z)∈Ω

f (x, y, z) (2)

In the formula, x, y, z are independent variables, which can be quantities or symbols;
Ω is the domain of x, y, z, which can also be regarded as the solution space composed of all
possible solutions of the problem, which is a measure of the quality or fitness of the solution;
F′ is a real number; f is a mapping from solution space (x, y, z) ∈ Ω to real number field
F ∈ R.

Genetic algorithms can perform a parallel search by simultaneously processing multi-
ple candidate solutions, thereby accelerating the search speed. With the help of parallel
search, genetic algorithms can search for globally optimal or near optimal solutions in a
relatively short amount of time. Genetic algorithms have a strong global search ability
and can find the global optimal solution in complex, multi-modal, and nonlinear prob-
lems. Through continuous evolution and crossover operations, genetic algorithms can
traverse the search space and gradually tend towards better solutions. In summary, using
genetic algorithms to search for the optimal parameters can effectively find the complex
optimization problem of the prior probability of the optimal parameter set for debris flow
expansion behavior through parallel and global search capabilities. Therefore, using ge-
netic algorithms to search for prior probabilities in the debris flow disaster monitoring
network plays an important role in monitoring the debris flow expansion behavior of the
debris flow disaster monitoring network, and it can adjust the parameters of the debris
flow disaster monitoring network. However, it is prone to local optimization and unable
to utilize feedback from debris flow monitoring networks in a timely manner. Based on
this, niche technology was introduced to improve the traditional genetic algorithm and its
optimization efficiency and convergence speed.

The steps of improving the genetic algorithm by combining dynamic niche sharing
algorithm are as follows:

Step 1: Process the data of the training debris flow disaster nodes and construct the
residual according to the constructed simulation equation format.

Step 2: Calculate the fitness values and arrange them in descending order.
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Step 3: Niche selection: Take the first individual in descending order as the first niche
center, respectively calculate the Euclidean distances between other individuals and the
niche center, and if the distance is greater than a given value L and the existing niche
center is less than a given value K, then the individual becomes a new niche center. If the
distance between the individual and the niche center is less than the fixed value L, then the
individual is regarded as the niche individual. If the distance between an individual and a
niche is greater than L and the number of niche centers is greater than or equal to K, the
individual becomes an independent individual.

Step 4: Niche mirror processing: If an individual is in a niche mirror, then its niche
number is the number of individuals in its niche, and the niche center and the niche number
of individuals are specified as 1.

Step 5: Calculate the fitness value after sharing.
Step 6: Carry out a population adaptive crossover operation.
Step 7: Perform a population adaptive mutation operation.
Step 8: If the termination judgment condition is met, output; if the termination

condition is not met, skip to step 2 and perform loop operations until the algorithm is
terminated.

Where the construction difference in step 1 is a defined polynomial after the random
number x, y of the simulation [13,14]:

yi = ax3 + bx2 + cx + d (3)

The simulated good random number x is replaced into the y of the simulation.
The structural difference is:

ming(a, b, . . .) =
n

∑
i=0

( f (xi; a, b, . . .)− yi)
2 (4)

Among g is the simulated function f , is the template of the simulation function, a, b, . . .
They are the coefficients of the simulation function, in which the Euclidean distance in
step 3 is calculated as follows:

Ω =

√
n

∑
i=1

ming(a, b, . . .)(xi − yi)
2 (5)

The formula for recalculating the fitness value in step 5 is as follows:

f (x) =
{

F(x)/S(x), Ω(xi) < L
F(x), Ω(xi) ≥ L

(6)

Among F(x) is a function that describes the level of individual fitness. S(x) is shared
functions, and Ω(xi) is the Euclidean distance between data, which is the niche number
in this algorithm. Because many similar data affect the influencing factors of debris flow
expansion behavior in the experiment, we can find similar data by calculating the Euclidean
distance between the data. After recalculating the fitness value of the data, we can narrow
the fitness value of similar data, which can reduce the similar data in the influencing factors
of debris flow expansion behavior, thus increasing the diversity of data and avoiding it.

In step 6 and step 7, the traditional genetic algorithm is a fixed value, and the proba-
bility of crossover and mutation after the introduction of niche technology to improve the
genetic algorithm in an innovative way is as follows [15]:

pc =

 ki
f max− f

f max− f avg , f ≥ f avg

k3, f < f avg

, pm =

 k2
f max− f ′

f max− f avg , f ′ ≥ f avg

k4, f ′ < f avg

 (7)
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Among pc, pm are the probabilities of crossover and mutation operations; f max is
the largest fitness value in the population; f is the fitness value of the individual to be
crossover operated; f avg is the average fitness value of the population; f ′ is the fitness
value for the mutation operation; k1, k2, k3, k4 are constants; in combination with sigmoid,
the probability of the crossover and mutation of the improved function is as follows:

pc = k1
1

1 + e−( f avg− f )
, pm = k2

1
1 + e−( f avg− f ′)

(8)

As an example, the crossover probability of the adaptive genetic algorithm is un-
changed when the fitness value of the individual is smaller than the average fitness value
of the population. In the improved adaptive genetic algorithm, the crossover probability of
individual populations will vary with the fitness value of individual populations, and the
smaller the fitness value of individual populations, the greater the crossover probability.

When the fitness value of individual populations is greater than the average fitness
value:

pc(AGA) = K
f max − f

f max − f aνg
= k

(
1 +

f aνg − f
f max − f aνg

)
(9)

Suppose x = f aνg − f , u = f max − f aνg(u ≥ 0, x ≤ 0, u ≥ −x), and:

pc(AGA) = K
(

1 +
x
u

)
(10)

The probability of crossover of the improved algorithm is:

pc′ =
1

1 + e−( f avg− f )
(11)

Make x = f aνg − f (x ≤ 0); then pc = k 1
1+e−x , and there are:

F(x) = pc − pc(AGA) = k
(

1
1 + e−X − 1 − x

u

)
(12)

In the improved genetic algorithm, when the fitness value of individuals is greater
than the average fitness value, compared to the traditional genetic algorithm, the improved
genetic algorithm can reduce the probability of cross mutation, thus preserving the integrity
of individuals and making the fitness value of individuals more significant than the average
fitness value, changing the mutation probability according to the fitness value changes and
increasing the population convergence speed.

The traditional genetic algorithm has the characteristic of weak search ability, and it
easily falls into local optimal solution; thus, innovation is achieved by using the sigmoid
function in the improved genetic algorithm, and the probability of crossover and mutation
is calculated according to the fitness value of individuals, so that the probability of crossover
and mutation has a high convergence speed, thus accelerating the ability of the global
optimization of the algorithm.

2.2.2. Bayesian Network Learning under Global Optimization

In order to ensure the effectiveness and diversity of the initial population (Bayesian
network structure) of the improved genetic algorithm when learning the Bayesian network,
the initial population is divided into two parts according to the Bayesian network struc-
ture. In part, the maximum weight tree of the Bayesian network structure is obtained by
mutual information calculation. The direction of the edges in the maximum weight tree is
determined by the scoring function. The individuals in the neighborhood are generated by
adding, deleting, and reversing edges to the maximum weight tree. At the same time, to
ensure the diversity of the initial population and prevent it from falling into local optimum
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prematurely in the process of population search, the other part ensures the diversity of the
population by randomly generating some individuals.

A Bayesian network is matrix coded by introducing Bayesian, and the form of the
adjacency matrix is adopted [16]:

A =


0 1
0 0

1 0
0 1

0 0
0 0

0 1
0 0


a(i, j) =

{
1 i is the parent node of j
0 Others

(13)

The mutual information of the random variables X and Y in each node in the debris
flow disaster monitoring network is defined as follows:

I(X; Y) = H(X)− H(X|Y) (14)

In the formula, H(X) and H(Y), respectively, are the information entropy of X and Y;
H(X|Y) is the conditional information entropy in a given Y under X; and H(X), H(X|Y)
are defined as follows:

H(X) = −
n

∑
i=1

P(F(x)i) log(P(Xi)) (15)

H(X|Y) = −
n

∑
i=1

m

∑
j=1

P(X = xi, Y = yi) · log(P(X = xi|Y = yi)) (16)

Formula P(Xi) represents a probability function.
Because the mutual information value has the nature of commutative law (that is

I(X; Y) = I(Y; X), so it has n structure of debris flow and the disaster monitoring network
of nodes needs to be calculated C2

n times), the greater the mutual information value, the
stronger the correlation between the two nodes, the stronger the correlation between the
influencing factors of debris flow expansion behavior input in the nodes, and the greater
the possibility that there is an edge between the nodes. However, the direction of the edge
cannot be determined, and it is an undirected graph.

Randomly determining the direction of the edge is not conducive to the search effi-
ciency of the algorithm. In order to determine the direction of the edge, the connected nodes
in the maximum weight tree are used as parent nodes and child nodes once, respectively,
through the scoring function BIC to calculate the function values in turn, and they select
the maximum value as the edge direction.

The scoring function BIC is to comprehensively consider the complexity and matching
degree of the Bayesian network, so that it can obtain more accurate early warning results of
debris flow expansion behavior [17,18].

QBIC =
n

∑
i=1

log P(B|D)I(X; Y)− 1/2logN · Dim(B) (17)

Formula B represents the learned Bayesian network structure, and D is the collected
data set of debris flow expansion behavior. In order to homogenize, the node pairs are
selected by chaotic mapping to add, delete, and reverse edges, resulting in the initial
population.

Because chaotic thought has the characteristic of traversing all regions, compared with
Logistic mapping and Tent mapping, the Kent chaotic map has a more uniform distribution
over the (0, 1.0) interval, and it will not fall into the periodic point. Therefore, this paper
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adopted the Kent chaos mapping, which is used to select the nodes of the debris flow
disaster monitoring network. The chaotic mapping formula of Kent is as follows:

x(n + 1) =


QBIC x(n)

β 0 < x(n) ≤ β

(1.0−QBIC x(n))
(1.0−β)

β < x(n) ≤ 1.0
(18)

In the formula, x is a chaotic sequence; β is set a parameter. When β = 0.4, then the
index Lyapunov is about 0.696, and the probability density function is uniformly distributed
in interval (0,1.0), as shown in Figure 1.
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Figure 1. Bayesian network.

The monitoring network of debris flow disaster has n nodes, Kent mapping generates
random numbers γi ∈ (0, 1), and the following formula is used to select nodes and add,
delete, and reverse edges.

xi(0) = ceil(r ∗ n)x(n + 1) i = 1, 2, . . . n (19)

The additive operation in the B of the encoding matrix of the Bayesian network is
expressed as B(i, j) = 1. The deleted edge is represented by B(i, j) = 0; the reverse edge is
represented by B(i, j) = 0 and makes B(j, i) = 1.

For the debris disaster monitoring network structure of n nodes, the specific steps of
learning the Bayesian network are as shown in Figure 2.
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(1) By calculating the mutual information between the nodes of the debris flow disaster
monitoring network [19], select the maximum (n − 1) side of the mutual information.
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(2) Through the BIC scoring function, which takes two nodes of each edge as parent
nodes and child nodes, respectively, for scoring calculation, select the direction with the
largest score as the direction of the edge.

(3) Through the Kent chaotic mapping, select nodes i and j, such as B(i,j) = 1 ∪ B(j,i) = 1,
reverse edges, and trim edges, such as B(i,j) = 0, and then add edges.

(4) Randomly generate a plurality of Bayesian network structures to join the initial
population to form the latest population.

(5) Selection, crossover, and mutation operations: Select better individuals, select
column vectors of the adjacency matrix by the Kent mapping, perform crossover operations,
select individuals according to probability for mutation operations, increase population
diversity, and correct illegal graphs generated by population individuals in the process
of crossover and mutation to ensure the legalization of topological structure. When the
population does not produce a new optimal solution for many times, the mutation intensity
is increased to make it jump out of the local optimum.

(6) Repeat step (5) until the termination conditions are met (optimization requirements
are met or the maximum number of iterations is reached).

(7) Output the learned Bayesian network and use the Bayesian network with optimal
parameters and reasoning ability [20].

2.2.3. Hierarchical Early Warning Method Based on Bayesian Network Learning Results

Based on this, the causal relationship of each node in the debris flow disaster monitor-
ing network structure is constructed, and the Bayesian network topology structure of the
debris flow disaster chain is obtained, as shown in Figure 3.
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Figure 3. Bayesian network structure of debris flow disaster chain.

Causal reasoning of the monitoring and early warning of debris flow expansion
behavior uses the forward causal reasoning technology of the Bayesian network to calculate
the conditional probability of the occurrence of child nodes (debris flow disaster) when the
state of the parent node (influencing factors of debris flow expansion behavior) is known,
that is, to predict. Based on the constructed Bayesian network diagram, the conditional
probability of child nodes of debris flow secondary disaster in different states is calculated
when the parent node of the debris flow primary disaster is known, and the final risk level
of debris flow expansion behavior is obtained. For example, in the process of the debris
flow disaster chain reaction, the set of all the parent nodes Si affecting the occurrence of
the disaster node is the influencing factor Sa. In this case, the probability of the secondary
disaster child node Sb being in the state2 state is P(Sb = state2|Sa), which is calculated as
shown in Equation (1).
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P(Sb = state2|Sa) = F′xi(0)P(Sb = state1, . . . S1 = state1) =

F′xi(0)P(Sb=state2, S1=state1,...Sn=state1)
P(S1=state1,..., Sn=state1)

Si ∈ Sn, statei (i ∈ [0–4])

(20)

In Formula (1), n is the number of debris flow expansion behavior disaster nodes; each
debris flow disaster node has i states; P(Sb = state2, S1 = state1, . . ., Sn = state1) represents the
probability of the simultaneous occurrence of all debris flow disasters’ parent state state1
and secondary sub-nodes Sb state state2; P(S1 = state1, . . ., Sn = state1) represents the joint
probability that the event has occurred and that all the parent node states are state1.

By analyzing the state of debris flow disaster nodes, parent nodes, and child nodes,
the joint probability is calculated by the Bayesian network constructed in this paper, and
the possibility of debris flow expansion behavior is converted into specific values. Finally,
it is compared with the threshold set by historical data to complete the monitoring and
analysis of debris flow expansion behavior. Comparing the calculated joint probability
value with the threshold set by historical data, the higher the joint probability, the greater
the possibility of debris flow expansion. When the joint probability value is 80–100%, then
the risk level is very high, and the Bayesian network function issues an alarm-level warning.
When the joint probability value is 60–80%, then the risk level is higher, and an alarm-level
warning is issued. When the joint probability value is 40–60%, then risk level is high, and a
warning-level warning is issued. When the joint probability value is 20–40%, then the risk
level is medium, and a warning-level warning is issued. When the joint probability value
is 0–20%, then the risk level is low, and an attention-level warning is issued.

3. Experiment and Analysis

The debris flow disaster caused damage to houses, farmland, river banks, electricity,
communications, and other facilities to varying degrees, and traffic, communications, and
electricity were interrupted. The landforms in the L area are characterized by the easy
occurrence of disasters such as soil erosion, desertification, rocky desertification, and debris
flow [21–23]. In order to verify the effect of this method on the monitoring and early
warning of debris flow spreading behavior, real debris flow samples in this area were
collected, and the characteristics of each sample, such as rainfall, rainfall duration, material
composition, occurrence time, and place, were recorded in detail. The monitoring and early
warning results of this method were compared with the real debris flow in this area. The
specific situations of debris flow disasters in this area in 2023 are as follows: (1) Low-risk
areas: Three areas in this area are classified as low-risk areas. In these areas, there are
few risks and safety problems, and daily life and activities can be basically guaranteed to
be normal. (2) Medium-risk areas: Two areas in this area are classified as medium-risk
areas. In these areas, there are certain risks and safety problems, but these problems have
not seriously affected daily life and activities. (3) High-risk and higher-risk areas: each
area in this area is divided into high-risk and higher-risk areas. In these areas, there are
relatively many risks and safety problems, which may have a certain impact on daily life
and activities. (4) Very high-risk areas: There are two areas in this area that are classified as
very high-risk areas. In these areas, the risk and safety problems are extremely serious and
may seriously affect normal daily life and activities.

In order to verify the validity of the monitoring and early warning function of debris
flow expansion behavior in this paper, the relevant data on debris flow disasters in this area
in 2021, such as time and place, were collected through field investigation and equipment.
The related factors, such as rainfall and topography, were recorded.

In order to verify the learning effect of the improved genetic algorithm on the Bayesian
network structure, taking the Cancer Bayesian network as an example, the number of
lost edges, reverse edges, and added edges in the Bayesian network after learning was
used as the evaluation index of the Bayesian network structure learning effect. Because of
the randomness of the genetic algorithm, this paper adopted 20 experimental results and
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obtained the average value. Let the population number of the improved genetic algorithms
in this study be 50 and the maximum number of iterations be 100. The method in this study
was compared with the delayed acceptance method (GS) and hill climbing method (HC).
In order to ensure comparability, the experimental results under the same conditions are
shown in Figure 4 and Table 2.
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Table 2. Cancer network testing.

Number of Data Groups GS Method HC Method Proposed Method

500

Network Structure Rating −919.325 −916.537 −912.716
Missing Edges 0.2 0 0

Redundant Edge 0 0.1 0
Reverse Edge 1.6 1.1 0.7

1000

Network Structure Rating −187.254 −187.254 −187.254
Missing Edges 0 1 0

Redundant Edge 0 0 0
Reverse Edge 0.9 1.1 0.4

As can be seen from Figure 4, compared to the standard diagram of the Cancer
Bayesian network, the final result of the GS method had a reverse edge, and the final
learning result of the HC method had a lost edge and a reverse edge. However, the
Bayesian network, after learning that this method does not have the phenomenon of lost
edge, multilateral edge, or reverse edge, which shows that the improved genetic algorithm
in this method has a good learning effect on the Bayesian network structure.

As seen from Table 3, the Bayesian network structure obtained from this method was
the least in the cases of the missing edge, multilateral edge, and reverse edge, and the score
of the Bayesian network structure was also the highest among the three methods. Moreover,
under the same scoring function value, this method had the highest probability of finding
the best Bayesian network structure.
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Table 3. Comparison of genetic algorithms.

Index Network Structure Rating Average Number of Iterations

Improved Genetic Algorithm −4966.1 30
Standard Genetic Algorithm −4988.7 81

In order to verify the effectiveness of the improved genetic algorithm, the improved
genetic algorithm and the standard genetic algorithm learned the Bayesian network struc-
ture. The initial population size was 50, and the iteration was 100 times. Under the same
conditions, 20 experiments were carried out. The score and average iteration times are
shown in Table 3, and the iteration curve is shown in Figure 5.
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In Table 3, it can be seen that the score of the Bayesian network structure and the
average number of iterations were better than the standard genetic algorithm after using
the improved genetic algorithm. As seen from the iteration curve comparison diagram in
Figure 4, the improved genetic algorithm obtained the optimal result in about 26 iterations,
and the standard genetic algorithm needed about 57 iterations to obtain the optimal result.
Therefore, the Bayesian network learning method based on the improved genetic algorithm
in this paper has the advantages of fewer iterations and faster convergence speed, and the
Bayesian network optimized by the improved genetic algorithm was more efficient in the
monitoring and early warning of debris flow expansion behavior.

In order to verify the performance of the improved genetic algorithm, this study
compared the time performance, accuracy, and the final score of the Bayesian network
structure with various algorithms under the same sample conditions. Figure 6 shows the
structure obtained by learning the Bayesian network structure with the improved genetic
algorithm under the conditions of disorder and order.

The learning results of the improved genetic algorithm are compared with those of the
Gale–Shapley algorithm (GA) and Minimum Spanning Tree algorithm (MWST) under the
condition of disordered and ordered nodes. The experimental results are shown in Table 4.

Table 4. Comparison of the learning results of multiple methods.

Learning Method Learning Time Wrong Number of
Edges

Network Structure
Scoring

The method proposed in this paper when nodes are out of order 0.66 s 2 −44,816
The method proposed in this paper when nodes are ordered 0.41 s 0 −44,816

GA method 107.28 s 7 −44,842
MWST method 0.94 s 4 −45,879
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From Figure 4, it can be seen that the improved genetic algorithm in this paper had
the highest Bayesian network structure score and the least number of wrong edges in both
cases of ordered and disordered nodes. Regarding learning time, the improved genetic
algorithm was better than GA and MWST. Therefore, this method was superior in terms of
learning time and accuracy of the Bayesian network structure. The accuracy and efficiency
of monitoring and the early warning of debris flow expansion behavior using this method
have obvious advantages.

We input the collected data into this method, and the early warning result is shown in
Figure 7.
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Figure 7. Early warning diagram of the debris flow simulation system.

As seen in Figure 7, there are three low-risk areas, two medium-risk areas, one high-
risk area, and two very high-risk areas. Compared to the actual on-site data of the debris
flow occurrence area in 2021, the monitoring and early warning results of the debris flow
disaster in this research method were completely consistent with the debris flow occurrence
area in 2021. The experiment verified the effectiveness of this method in the monitoring
and early warning of debris flow expansion behavior.

The joint probability value and risk grade of debris flow disasters in counties and
districts in this area obtained by this method are shown in Table 5.
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Table 5. Joint probability value and risk level of each county and district.

State and City County and District Joint Probability Risk Level

State A County 1 93.18 Very high
State A County 2 92.02 Very high
City B County 3 86.68 Higher
State C County 4 83.73 Higher
State D County 5 81.89 Higher
State C County 6 81.66 Higher
State D County 7 81.39 Higher
State C County 8 76.83 Tall
State A County 9 68.82 Tall
State A County 10 60.29 Tall
State C County 11 44.82 Center
State D County 12 43.71 Center
State A County 13 23.79 Low
State A County 14 22.89 Low
State A County 15 22.22 Low
City B County 16 20.74 Low
City B County 17 20.16 Low
State A County 18 16.75 Normal
City B County 19 12.62 Normal
State A County 20 5.39 Normal
State A County 21 2.24 Normal
State A County 22 2.02 Normal
State A County 23 1.39 Normal
City B County 24 0.38 Normal

According to the calculation results in Table 5, the method in this paper can classify the
risk levels of debris flow disasters in counties and districts in this area according to the joint
probability of the Bayesian network, can obtain the detailed monitoring results of debris
flow expansion behavior in counties and districts, and can timely issue the corresponding
level of early warning according to the monitoring results. The focus was on managing
debris flow disasters in areas such as County 1, County 2, City B, County 4, County 5,
County 6, County 7, County 8, County 9, and County 10 of State A. Therefore, the method in
this paper can be effectively used to monitor the debris flow expansion behavior, can assist
in the prevention and control of debris flow risks in various regions, and can effectively
reduce potential losses.

4. Conclusions

In this study, a method based on the improved genetic algorithm and Bayesian net-
work was designed to realize the monitoring and early warning of debris flow expansion
behavior.

The experimental results showed that the improved genetic algorithm has a good
effect and high efficiency in learning Bayesian network structure. After learning, the
phenomenon of losing edges, polygons, and reverse edges in the Bayesian network was
extremely low, and the average score was high.

The experimental results demonstrated that this method can accurately predict the
risk level of debris flows and provide reliable support for disaster prevention prediction.
For the potential risk of debris flow disasters, measures can be taken in advance for man-
agement and control to avoid remedial measures after the risk occurs, thereby improving
the management efficiency of the organization.

However, due to limited conditions, this method only focuses on the monitoring and
early warning of debris flows and has not been confirmed for the monitoring and early
warning of other disasters. Future research will further enhance the applicability of the
method proposed in this paper.
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