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Abstract: This study evaluated the impacts of climate change on hydro-meteorological droughts in the
Chao Phraya River Basin (CPRB), Thailand under two Representative Concentration Pathway (RCP)
scenarios (RCP4.5 and RCP8.5). We used three Reginal Climate Models (RCMs) of the Southeast Asia
Regional Climate Downscaling/Coordinated Regional Climate Downscaling Experiment—Southeast
Asia (SEACLID/CORDEX-SEA), which are bias corrected. The Soil and Water Assessment Tool
(SWAT) was used to simulate streamflow for future periods. The Standardized Precipitation Index
(SPI) and Standardized Streamflow Index (SSI) were estimated and used for drought characterization
at three time scales (3, 6, and 12 months). The lag time between meteorological and hydrological
droughts is approximately 1–3 months. The results suggest that the CPRB is likely to experience less
frequent hydro-meteorological drought events in the future. The meteorological drought is projected
to be longer, more severe, and intense. The severity of hydrological drought tends to decrease, but
the intensity could increase. Climate change has been discovered to alter drought behaviors in the
CPRB, posing a threat to drought monitoring and warning because droughts will be less predictable
in future climate scenarios. The characterization of historical and future droughts over the CPRB is
therefore valuable in developing an improved understanding of the risks of drought.
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1. Introduction

Droughts are a type of major natural disaster that occur in many parts of the world.
They are different from other natural disasters in many aspects. Most frequently occurring
disasters, such as floods and storms [1], are rapid-onset hydrologic events taking place
in specific and limited areas and causing immediate damage and losses. A drought is
a slow-developing, gradual natural hazard that can occur anywhere in the world. The
identification of the onset and termination of a drought is difficult. Droughts can have a
serious impact on health, agriculture, economies, and the environment [2]. The impacts of
droughts are widespread, non-structural, and less observable because the impacts often
accumulate slowly over an extended period. It therefore remains a challenge to measure
and fully account for the impact of a drought [3–6]. Droughts have been recognized as
the most complex and most destructive natural disasters in terms of their impacts on a
higher number of people compared to other forms of hazards [7,8]. According to the Food
and Agriculture Organization (FAO), droughts are the world’s costliest natural disasters,
accounting for USD 6–8 billion annually, and impacting more people than any other form
of natural disaster.
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According to the Special Report on Extremes (SREX) published by the Intergovern-
mental Panel on Climate Change (IPCC) in 2021, some regions have experienced increasing
lengths and intensities of flood and/or drought events. It is important to develop an in-
creased understanding of historical droughts to prepare for future drought conditions. As
droughts will continue to be a crucial problem in the world, much effort is needed to better
understand and mitigate their effects. To describe drought characteristics, such as their
frequency, intensity, and duration, drought indices, based on climatic and hydrological
variables, are often used. Unlike the time series of a single variable, drought indices con-
sider a range of variables that can influence drought conditions, such as precipitation, soil
moisture, and evapotranspiration, and they provide a more comprehensive overview of the
state of drought in an area. Using drought indices can offer a better understanding of the
complex factors that contribute to droughts. Drought indices are useful tools for drought
monitoring and prediction, which provide necessary information to make decisions related
to water management and resource allocation, as well as for planning and preparedness
efforts in the event of a drought.

Thailand is one of the most drought-prone countries in the Asia–Pacific region [9].
Thailand has experienced droughts almost every year [10]. The probability of a drought
event in Thailand for any given year is 45% [11]. According to the Department of Disaster
Prevention and Mitigation (DDPM), 2013, 2014, 2015, 2016, and 2019 were severe drought
years in the recent decade. In terms of water management, the drought in 2015 was the
worst in the past 50 years. On 1 November 2015, the quantity of usable water for the
upcoming dry season in the three major storage dams in the CPRB (see Figure 1) was at a
critical level. The usable water reserve in the Bhumibol Dam was recorded at 1184 MCM
(Million Cubic Meters), which was the lowest in the past 53 years. The Sirikit Dam had
a reserve of 2056 MCM, which was the lowest in 20 years. The reserved water in Pasak
dam was 637 MCM, which was the lowest in 17 years since its inception [10]. While
there have been several drought studies in Thailand, most of these studies often examined
historical drought conditions over the northeastern regions, e.g., [9,12–17]. Studies of
drought characteristics and their changes due to climate change impacts in the CPRB
are limited.

This study aims to develop an improved understanding of drought characteristics for
the CPRB in Thailand, which is considered the most important basin in Thailand for several
reasons such as economic development, agricultural production, and cultural and historical
significance. The specific objectives are (1) to assess the accuracy of multiple RCMs in
simulating streamflow over the CPRB and (2) to investigate the potential impacts of climate
change on hydro-meteorological droughts using the standardized hydro-meteorological
drought indices. The findings from this study can be used to evaluate the drought situations
in other parts of Thailand or comparable climate regions to improve drought monitoring
and warning.
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2. Study Area

The Chao Phraya River Basin (CPRB), shown in Figure 1, was selected as the study
area. It is located approximately between 13◦30′ N to 19◦50′ N latitude and 98◦10′ E to
101◦30′ E longitude. The approximate basin area of the CPRB is 158,507 km2, accounting for
about 30% of the total country’s area. The elevation of the basin ranges from 0 to 3019 m
above the mean sea level. The upper basin consists of alternating parallel ranges lying
north–south and valleys forming the basins and headwaters of the four major tributaries
of the Chao Phraya River—the Ping, Wang, Yom, and Nan rivers that drain southward.
Located at the upper Ping and Nan rivers are the Bhumibol and Sirikit dams, respectively.
The Pasak dam is built across the Pasak River in the southeast of the CPRB. The Chao
Phraya dam at the central part of the CPRB is a diversion dam regulating the flow to the
central plain, which stretches from the northern ranges and valleys down to the Gulf of
Thailand. The Tha Chin River is a distributary that splits west from the Chao Phraya River
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in Chai Nat Province and flows directly to the sea. The Pasak River collects water from
the east basin and joins the Chao Phraya River in Ayutthaya Province. The lower CPRB
contains alluvial plains that are productive for agriculture. The analysis of the land use
data from the Land Development Department (LDD), Thailand shows that about 45% of
the CPRB comprises agricultural areas but only 12% of them are in an irrigation zone. Most
agriculture in the CPRB is highly vulnerable to droughts because it relies heavily on rainfall.
Agricultural produce is severely affected when there is low rainfall during September and
October or when there is a long dry spell in June or July.

Thailand has distinct wet and dry climates. The main driver of seasonal rainfall
variability is monsoon winds [18,19]. Based on the data in Table 1, which were obtained
from the Thai Meteorological Department (TMD), the average annual rainfall in the CPRB
is 1143 mm. A slight increasing rainfall gradient is found from the south to the north.
Heavy rainfall is common during the rainy season from mid-May to mid-October when
the Southwest monsoon brings warm moist air from the Indian Ocean. The dry season
from mid-October to mid-February is caused by the northeast monsoon that flows from
the cooler South China Sea. The period from mid-February to mid-May is the transitional
period between monsoons, and this is when the weather becomes warmer. The average
annual streamflow in the CPRB calculated from the data of the Royal Irrigation Department
(RID), Thailand, as listed in Table 1, is approximately 1732 MCM. About 96% of the average
annual streamflow is from the rainy season, and the rest is from the dry season. Droughts
in Thailand are often caused by a lack of rainfall or less rainfall in the wet season and a
long absence of rainfall in the dry season.

Table 1. Summary of data used in this study.

Data Period Spatial Resolution Source

Observed rainfall 1986–2016 Point Thai Meteorological Department (TMD)

Observed streamflow 1986–2016 Point Royal Irrigation Department (RID), Thailand

RCMs (MPI, IPSL, ICHEC)
1986–2099
2015–2049
2075–2099

25 km SEACLID/CORDEX-SEA

DEM 2019 30 m SRTM-USGS https://earthexplorer.usgs.gov
(accessed on 23 August 2021)

Land use 2015 100 m Land Development Department (LDD), Thailand

Soil type 2007 100 m Land Development Department (LDD), Thailand

3. Materials and Methods

This study used the daily rainfall data from 68 gauges of the Thai Meteorological
Department (TMD) between the years of 1986 and 2016. The daily streamflow data of
5 gauges in the Ping (P.1), Wang (W.1A), Yom (Y.1A), Nan (N.1), and Chao Phraya (C.2) Rivers
from the 1986–2016 period were provided by the Royal Irrigation Department (RID). The
locations of the gauges are shown in Figure 1. A schematic diagram of the overall framework
is shown in Figure 2. Historical and future periods were defined to assess the impact of climate
change on droughts. The observed rainfall and streamflow data were used for calibration and
validation of Soil & Water Assessment Tool (SWAT) model and calculation of baseline drought
indices. After bias correction, the ability of the Regional Climate Models (RCMs) in generating
streamflow in a historical period was evaluated. The output from all selected RCMs was
investigated with particular emphasis on the results of drought indices obtained from the best
performing RCM. Additional results of drought indices obtained from less performing RCMs
are provided in Appendices A and B. Details regarding SWAT modeling, RCM, and drought
indices are provided in the following sections.

https://earthexplorer.usgs.gov
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3.1. SWAT Modeling

The SWAT is a physically semi-distributed, continuous time hydrologic model [20,21]
developed by the Agricultural Research Service (ARS) of the United States Department of
Agriculture (USDA), Texas A&M University, and several federal agencies [22,23]. SWAT
is one of the most widely used models in the world and has proven to be effective in
simulating hydrology and hydro-meteorological extremes in river basins of varying scales
around the world, particularly in Southeast Asia [24,25], where the quality of hydro-
climatic data remains problematic [5,26]. It has demonstrated the potential to provide
valuable insights into the impacts of land use, land management practices, and extreme
climatic conditions.

SWAT simulates hydrological processes by dividing the spatial characteristics of
the basin into subbasins and hydrological response units (HRUs) based on the unique
combination of soil, land use, and slope features. The water balance equation, which is
fundamental to SWAT simulation, is solved for each HRU. The simulation of the basin’s
hydrology is separated into two phases. The land phase controls the amount of water that
is available to flow into the main channel. The routing phase involves the movement of
water through the channel network and ultimately to the outlet. A full description of the
SWAT model can be found in [22].

Based on the review of SWAT studies in Southeast Asia presented in [27], about 50% of
a total of 126 articles identified from 1998 to 2018 were conducted in Thailand and Vietnam.
The main SWAT applications in the regions covered the model capability assessment, land
use, and climate change assessment. The applications for simulating extreme events are
particularly limited; thus, this area of research requires more attention. The SWAT model
was applied in this study to simulate the streamflow for the near future (2025–2049) and
far future (2075–2099) time periods. Calibration and validation of the SWAT model were
conducted in the 1986–1995 and 1996–2005 periods accordingly using the SWAT-CUP
tool [28] and manual adjustment. The performance of the calibrated model in simulating
historical and future streamflow was evaluated using statistical parameters, including
coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), and root mean square
error (RMSE). The SWAT model performance ratings for a monthly time step simulation
were classified as “very good”, “good”, “satisfactory”, and “unsatisfactory” when the NSE
values ranged from 0.75 to 1, from 0.65 to 0.75, and from 0.50 to 0.65 and when they were
<0.5, respectively. NSE values greater than 0.5 were considered acceptable [29,30]. The
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performance ratings for the daily time step simulation are relaxed with poorer values of
performance statistics [31].

3.2. Regional Climate Model (RCM)

Based on the glossary of the American Meteorological Society (AMS), a regional climate
model (RCM) is defined as “a numerical climate prediction model forced by specified lateral
and ocean conditions from a general circulation model (GCM) or observation-based dataset
(reanalysis) that simulates atmospheric and land surface processes, while accounting for
high-resolution topographical data, land-sea contrasts, surface characteristics, and other
components of the Earth-system”.

The RCM was developed to bridge the gap between the global but coarse estimates
of the GCM, which typically had a spatial resolution of 100–300 km [32], and studies of
regional phenomena with finer spatial resolutions [33], which are currently approximately
50 km to 12 km [34]. Driven by lateral boundary conditions and reanalysis data, RCMs can
account for local-scale forcings and processes that are governed by complex topography,
coastlines, inland bodies of water, and land cover distribution [35]. With an improved
spatial resolution, RCMs can reproduce more accurate climate information than GCMs [36].
RCMs have widely been used to study regional climate variability, climate extremes, and the
impacts of climate change [37–40]. A large number of RCMs are available from laboratories
worldwide, and the number of new RCMs has been continuously increasing [35].

RCMs from the Southeast Asia Regional Climate Downscaling/Coordinated Regional
Climate Downscaling Experiment—Southeast Asia (SEACLID/CORDEX-SEA) were used
in several climate change studies in Southeast Asia. Recent peer-reviewed publications and
more details of the CORDEX-SEA can be found in, e.g., [32,41–45].

Despite this advancement, there remains a need for further improvements regard-
ing the uncertainty associated with climate projections. This is particularly the case of
tropical climate regions where large discrepancies between historical simulation and fu-
ture projections of precipitation are well known among the CMIP5 GCMs [46,47] and
RCMs [48]. Several studies have used multi-model ensemble approaches to reduce intra-
and inter-model uncertainty [48–52]. While ensemble projection can provide valuable
information about the degree of uncertainties and risks associated with different RCMs,
it also introduces ambiguity into decision-making processes because it presents a range
of possible outcomes rather than a single, deterministic result. This can complicate the
decision-making process [51,53,54].

In this study, the precipitation data from three RCMs including MPI, IPSL, and ICHEC
under the two Representative Concentration Pathway (RCP) scenarios of RCP4.5 and
RCP8.5 were obtained from the SEACLID/CORDEX-SEA, bias corrected with the widely
used quantile mapping method [55], and used as input to the calibrated SWAT model. To
avoid subjectivity in the interpretation of the RCM’s performance, the best performing RCM
was identified based on statistical performance values and was used further, primarily for
the representation of the future drought assessment. The RCMs and dataset used for the
SWAT simulation are summarized Table 1.

3.3. Drought Indices and Drought Characteristics

Droughts can be classified into four types based on the sequence of occurrence [56].
Meteorological droughts caused by precipitation deficit and dry weather are the first to
occur prior to other types of droughts. When there is a prolonged period of dryness with
little or no rainfall, it can lead to a decrease in soil moisture and agricultural drought, which
affects the growth and production of crops. The evolution of an agricultural to hydrological
drought is when there is a deficiency in the availability of water resources, such as surface
water, groundwater, and water stored in reservoirs. If a hydrological drought continues
for an extended period, it can have adverse socio-economic impacts, such as increased
food prices, a loss of jobs, and reduced economic growth. A socio-economic drought can
have severe consequences on the livelihoods of people living in affected regions. It is noted
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that not all droughts follow this exact progression and that the severity and duration of a
drought can vary depending on the region and its specific climate conditions. Additionally,
the impacts of drought can be influenced by human factors, such as land use change and
water management practices [57].

Many studies have used standardized drought indices, such as Standardized Precipi-
tation Index (SPI), Standardized Streamflow Index (SSI), and Standardized Precipitation
Evapotranspiration Index (SPEI), to characterize droughts [9,14,24,58–65] because they
are the most widely used, they are easy to calculate and interpret, they have multiple
scales, and they can be compared across space and time to assess the effectiveness of
drought mitigation strategies [66]. In this study, the SPI and SSI were used to investigate
the meteorological and hydrological perspectives of drought in the CPRB. The calculation
of standardized indices involves fitting a probability distribution function to the long-term
record for each location and accumulation period. Then, the observed amount for the
given accumulation period is standardized by subtracting the mean and dividing it by
the standard deviation of the fitted distribution. Equation (1) is the main equation for
calculating the SPI and is also applicable to the SSI.

SPIn =
xn − x

S
(1)

where SPIn could be calculated over different n accumulation periods, xn is the total
precipitation over the past n months, and x and S are the mean and standard deviation of
the long-term precipitation record for the n accumulation period.

The SPI was developed by the authors of [67] and was highlighted by the World
Meteorological Organization as a starting point for meteorological drought monitoring [3]
because the first indication of water scarcity is often a lack of precipitation, and the restora-
tion of precipitation is a signal of the termination of drought. This makes the SPI possibly
the best drought indicator [66] and a suitable meteorological drought index [9].

The SPI only requires precipitation received over a certain period of time to mea-
sure the relative deviation of precipitation from normality. Different time scales were
suitable for measuring droughts for different purposes. The short accumulation periods
(1 month to 3 months) represent meteorological and agricultural droughts because they
affect water availability in the unsaturated zone. The relatively long accumulation periods,
such as 6–24 months, largely represent hydrological droughts because they have an impact
on surface and groundwater resources. The short accumulation periods of drought indices
arewidely used for agricultural purposes and short-term drought monitoring, while the
long accumulation periods of drought indices are suitable for water resource manage-
ment [9,64,68]. The SSI can be calculated in a similar way as the SPI, but the only difference
is that the SSI uses streamflow instead of precipitation as input data [69].

The SPI and SSI have been used complementarily to explain the hydrologic aspects of
droughts [62] and to characterize hydro-meteorological droughts. Both indices have been
employed as proxies to assess hydro-meteorological droughts because of their ability to
represent the magnitude, duration, and extent of drought in a parsimonious way [64]. In
this study, a 1-month accumulation period is not used to avoid large positive or negative
values of drought indices that could cause a misinterpretation of the results [62,70]. Instead,
the SPI and SSI were calculated based on short (3 months), medium (6 months), and
long timescales (12 months), which are typical for drought studies. A drought event was
identified when the value of SPI or SSI was lower than zero. The classification of droughts
based on the study by McKee et al. [67] is shown in Table 2.

The analysis of drought characteristics is based on the Theory of Runs (ToR) [71],
which is a statistical property of sequences applied to define drought characteristics, namely
drought event (DE), drought duration (DD), drought severity (DS), and drought intensity
(DI). The ToR has been extensively used for drought assessment [70–72] since it explains a
variety of aspects of droughts through a simple graphic representation, as shown in Figure 3.
A DE is a period in which the value of SPI/SSI falls consecutively below the critical
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threshold value. Once a DE is identified, the DD, DS, and DI can subsequently be obtained.
The DD defines the duration of the drought in months in which the SPI/SSI values are
negative for a drought event. The DS is the summation of the absolute values of the SPI in
a DE. The DI can be defined in two ways: the absolute lowest value of the index (DI1) and
the ratio between the DS and DD in a DE (DI2).

Table 2. Drought classification.

SPI/SSI Values Drought Category

0 to −0.99 Mild drought
−1.00 to −1.49 Moderate drought
−1.50 to −1.99 Severe drought

≤−2.00 Extreme drought
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4. Result and Discussion
4.1. Calibration and Validation of SWAT Model

The SWAT model was calibrated in the 1986–1995 period and validated in the 1996–
2005 period to ensure that it can reasonably simulate hydrological processes and estimate
the SSI index. Figure 4 shows the calibration and validation results of the streamflow
simulation at five major stations of the CPRB. The SWAT model performed satisfactorily
well in simulating daily streamflow for both calibration and validation periods for all
stations. However, the SWAT model showed difficulties in capturing the peak flows. As
depicted in Figure 4, the model had an underestimation at the high flow years in the rainy
season. This is believed to be caused by the simplification of the model to represent the
spatial heterogeneity of the basin.

The rainfall data that were used to drive the SWAT model could be another factor ex-
plaining the underestimation of the peak flows because the streamflow on the northern loca-
tions (P.1, W.1A, Y.1A, and N.1) depends on a limited number of rainfall stations, which are
mostly located in the valleys where the effect of orographic was not strongly represented.

The values of R2, NSE, and RMSE found for the CPRB vary in the ranges of 0.54–0.69,
0.51–0.62, and 92.80–285.20 m3/s for both the calibration and validation periods, respec-
tively. Only a slight deterioration in performance was found when moving from the
calibration to validation period. Such values of R2 and NSE lie in the ranges reported in [27]
for the SWAT streamflow simulation in Thailand and in the CPRB [73]. A reasonable agree-
ment between the observed and simulated streamflow in the calibration and validation
periods suggested that the calibrated SWAT model could provide sufficient reliability in
a streamflow simulation under future scenarios, which will allow for the assessment of
future droughts.
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Figure 4. Daily hydrographs of observed and simulated streamflow for calibration (1986–1995) and
validation (1996–2005) periods at five stations in CPRB.
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4.2. Identification of Historical Drought Characteristics

To characterize historical droughts, the SPI from 68 rain gauges and the SSI from five
streamflow gauges were calculated using the rainfall and streamflow data in the 1986–2016
period. Figure 5 shows the time series of the spatial averaged SPI and SSI over the CPRB for
the accumulation periods of 3, 6, and 12 months representing the multi-temporal nature of
droughts. Droughts were often observed during dry months corresponding to the pattern of
seasonal monsoon rainfall over the CPRB. Figure 5 exhibits similar patterns for the SPI and
SSI for all accumulation periods, but the SSI has a delayed response compared to the SPI.
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A stronger correlation between the SPI and SSI was found when moving from a shorter
to a longer time scale. The correlation of 0.77 indicates a close relationship between the SPI
and SSI at a 12-month time scale. The lag of the SSI is short, approximately 1–3 months,
as can be identified from the cross-correlation function in Figure 6. Similar findings were
observed in previous studies [14,74,75]. The maximum values of the cross-correlation
function vary from 0.58 for a 3-month accumulation period to 0.69 and 0.81 for longer
accumulation periods of 6 and 12 months, accordingly.
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An assessment of droughts in similar climate regions in the Srepok River Basin,
Vietnam conducted in [75] found that the R2 between the SPI and SSI at 3, 6 and 12 months
ranged between 0.75 and 0.91, and the highest R2 of the SPI with SSI was obtained at
a short lag of 1 month for all accumulation periods. The strong relationship between
the SPI and SSI was also found in other climate regions, such as the semi-arid region
discussed in [74], which evaluated multilevel drought hazards in the Karkheh River Basin
in Iran. The values of R2 of the SPI with SSI at 3- to 12-month accumulation periods ranged
between 0.51 and 0.84. This study suggested a 3-month lag between the SPI and SSI.

Because hydrological droughts are subsequent to meteorological droughts, it is un-
surprising that the values of the cross-correlation function are very low for negative lags.
Comparing the meteorological and hydrological droughts, it can be seen that hydrological
droughts are less frequent but more severe and last longer than meteorological droughts
for all accumulation periods, as represented by the drought characteristics in Table 3. Both
the SPI and SSI indicate the longest drought occurred in the 1989–1994 period. Two periods,
1997–1999 and 2013–2016, are considered major drought periods, as the SPI and SSI often
fall below zero and vary in the negative range for many months in those periods.

Table 3. Historical drought characteristics in the CPRB represented by the SPI and SSI for 3-, 6-, and
12-month accumulation periods.

Meteorological Drought Hydrological Drought
SPI3 SPI6 SPI12 SSI3 SSI6 SSI12

Average drought event (time/year) 1.52 1.00 0.42 0.90 0.65 0.26
Total number of drought events (times) 47 31 13 28 20 8

Average drought duration (months) 3.79 5.81 14.23 6.68 9.25 22.50
Maximum drought duration (months) 23 23 47 30 46 61

Average drought severity −1.62 −2.73 −6.40 −4.13 −5.92 −15.03
Maximum drought severity −8.84 −12.77 −22.55 −27.31 −40.03 −49.22

Average drought intensity based on DI1 −0.58 −0.59 −0.59 −0.60 −0.57 −0.84
Maximum drought intensity based on DI1 −2.11 −1.85 −1.19 −2.29 −2.03 −1.88
Average drought intensity based on DI2 −0.34 −0.34 −0.31 −0.33 −0.30 −0.45

Maximum drought intensity based on DI2 −1.27 −0.81 −0.75 −1.05 −0.94 −0.85

The identified drought periods correspond with the records of DDPM showing that
the 1990–1993 and 2014–2016 periods were particularly dry, suggesting the application
of the SPI and SSI for drought monitoring and warning in the study area. Ref. [16] also
identified that the recent past years from 2011 to 2015 were recurrent drought periods for
many parts in the Sakae Krang River basin, which is one of the subbasins of the CPRB.

A smaller variation and longer recovery of hydrological drought, as indicated by
the SSI, could be explained by the detention of soil moisture and the contribution of the
baseflow to the total streamflow. In Table 3, maximum intensity and maximum severity
refer to the lowest negative values of the drought parameters. Little differences between
the intensities of the SPI and SSI are detected for short- and medium-term droughts, but
the SSI becomes more intense than the SPI for long-term droughts.

Table 3 summarizes meteorological drought characteristics based on the SPI. For short
and medium time scales, drought events are found almost every year. Differences in
the magnitude and duration of droughts at different time scales can be detected. The
longer the time scales, the longer the duration, the higher the severity, and the lower the
maximum intensity. Compared to other accumulation periods, the 6-month (medium-term)
accumulation period was suggested to best describe the hydro-meteorological drought
features [63,76,77]. For SPI6, the average number of drought events is 1 time/year; the
maximum duration is 23 months; the maximum severity is −12.77; the maximum intensity
of DI1 is −1.85; and the maximum intensity of DI2 is −0.81. The authors of [9] used SPEI
to characterize droughts in the Mun River basin in northeastern Thailand, and the average
drought durations at 3-, 6-, and 12-months timescales were found to be 5, 8, and 16 months,
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respectively. This suggests that the northeastern part of Thailand could be more vulnerable
to longer drought durations in the future compared to the central area.

Because hydrological droughts are driven by seasonal rainfall and meteorological
droughts, the characteristics of SSI presented in Figure 7b show a similar trend to that
of the SPI in that the short accumulation period of 3 months exhibits stronger temporal
fluctuations than that of 6- and 12-month periods. As the time scale increases, the duration
and severity increase, but the maximum intensity decreases. For SSI6, the average number
of drought events is 0.65 times/year; the maximum duration is 46 months; the maximum
severity is −40.03; the maximum intensity of DI1 is −2.03; and the maximum intensity of
DI2 is −0.94.
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Figure 7. Comparison of monthly average observed and RCM precipitation (a) before bias correction
and (b) after bias correction.

4.3. Assessment of Climate Change Impacts on Hydro-Meteorological Droughts
4.3.1. Bias Correction of RCMs

Quantile mapping is a statistical technique that can be used to correct biases in RCMs.
The cumulative distribution functions (CDFs) of the RCM were adjusted to align with the
CDF of the observed data. In this study, bias correction using the quantile mapping method
was applied to the three selected RCMs. Examples of the results of bias correction for the
RCMs over the period of 1986–2005 are provided in Figures 7 and 8. Figure 7 presents how
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closely the monthly precipitation from RCMs fits with the observations, while Figure 8
shows how much the correlation between the RCMs and observations can be improved after
bias correction. The quantile mapping method was found to reduce bias and improve the
monthly precipitation for all of the selected RCMs. A large improvement in adjusting the
RCM’s precipitation was achieved for the ICHEC and MPI when the extreme precipitation
values approximately over 600 mm could be reduced close to the maximum observation
around 215 mm. After bias correction, the values of R2, NSE, and RMSE of the three RCMs’
ranged from 0.58 to 0.67, from 0.40 to 0.63, and from 31.40 to 39.80 mm/month. The MPI
yielded the best performance with the highest values, namely R2 = 0.67, NSE = 0.63, and
RMSE = 31.40 mm/month, followed by IPSL and ICHEC. It is important to note that, while
the empirical quantile mapping method was proven to perform satisfactorily for this study,
the results could be sensitive to the choice of calibration time period [78]. The choice of
the best RCM may then be altered when the future state of climate becomes unpredictable
due to several factors involving a chaotic system, such as uncertainty, randomness, and
the divergence from initial conditions as it moves beyond a time horizon [79,80]. Thus, the
robustness of the bias correction method applied here cannot be guaranteed and it is less
decisive on the choice of the RCM.
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4.3.2. Changes in the Future Precipitation and Streamflow

The bias-corrected precipitation from the ICHEC, IPSL, and MPI was input into the
calibrated SWAT model to simulate streamflow in the near future (2025–2049) and far future
(2075–2099) periods. Figures showing the monthly average precipitation and streamflow in
the baseline and future periods obtained from the three RCMs are provided in Appendix A.

The projected changes in future precipitation and streamflow, which were com-
pared with the monthly average values in the baseline period of 1986–2016, are shown
in Figures 9 and 10 and Table 4. Figure 9 indicates that the projected precipitation obtained
from all RCMs generally decreases for almost all months in both periods and both climate
scenarios. Particularly, rainfall in the wet months of May and September reduces by about
50% for all models and all scenarios. A milder increase of 8–22% in dry season precipitation
was found for RCP4.5 (Figure 9a,b), while a larger increase of up to 85% could occur under
RCP8.5 in the far future, especially when the MPI was used (Figure 9d). The differences in
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the projected changes in the monthly average precipitation in the near and far futures are
more noticeable for RCP8.5 than for RCP4.5.
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Table 4. Changes in annual precipitation (in mm).

RCP or RCM
Near Future Far Future

ICHEC IPSL MPI ICHEC IPSL MPI

RCP4.5 −440.76 −489.15 −422.55 −395.19 −434.06 −367.14
RCP8.5 −445.95 −486.02 −381.73 −345.80 −378.55 −210.81

Figure 10a shows that the projected streamflow decreases in most months in the near
future period under RCP4.5. This pattern of change corresponds with the change in the
projected precipitation under the same condition. The changes in the projected monthly
streamflow are highly variable when moving from the near to far future period and from
low to high trajectory. The streamflow under RCP8.5 in the far future (Figure 10d) shows
an opposite change to the precipitation (Figure 9d) in several months. This is probably due
to a combined effect of a milder decrease in projected precipitation in the far future under
RCP8.5 and an insufficient representation of evaporation due to a warmer climate, which
can be considered the limitation of this study. Changes in annual streamflow are shown
in Table 5.

Table 5. Changes in annual streamflow (in m3/s).

RCP or RCM
Near Future Far Future

ICHEC IPSL MPI ICHEC IPSL MPI

RCP4.5 −377.51 −538.27 −703.28 −76.10 −337.67 −234.20
RCP8.5 −171.48 −369.67 −435.37 423.08 19.78 109.98

Changes in the future precipitation and streamflow were also detected in other basins
influenced by similar climate regimes. For example, under the impact of climate change
scenario RCP 8.5 of the four RCMs (HadGEM3-RA, SNU-MM5, RegCM4, and YSU-RSM),
the streamflow in the Srepok Basin, Vietnam in the future period of 2016–2040 would be
expected to decrease by about 12% due to a decrease in precipitation and an increase in
evapotranspiration [75]. A reduction in the projected precipitation and streamflow is likely
to induce higher risk of drought and make the CPRB more vulnerable in the future. Thus,
the future management of drought would require more stringent measures to deal with
uncertainty and possibly more severe drought conditions.

4.3.3. Future Drought Characteristics

This section discusses how climate change can influence future drought characteristics.
The results based on MPI form the predominant part of this section. Additional results
shown in Appendix B allow for a further investigation of the SPI and SSI developed from
ICHEC and IPSL.

Figure 11 shows the temporal variation in the SPI and SSI in the future periods obtained
from the MPI model. The lag of responses is not clear. The relationship between the SPI and
SSI is much deteriorated, suggesting a substantial change in the future drought signal as it
moves from meteorological to hydrological drought. The propagation of drought through
the hydrological cycle would be less predictable, especially for the near future period when
the maximum r value at a 12-month time scale is only 0.39 for RCP8.5 (Figure 11c). Higher
r values can be obtained when ICHEC or IPSL are used (see Figures A3 and A4). Similar
difficulty in translating meteorological to hydrological drought was also discussed in [74].
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Figure 11. Temporal variation of spatial averaged time series for SPI and SSI over CPRB at 3-, 6- and
12-month time scales calculated based on MPI model. (a) RCP4.5 near future scenario; (b) RCP 4.5 far
future scenario; (c) RCP8.5 near future scenario; (d) RCP8.5 far future scenario. Color scale moving
from yellow to red represents mild, moderate, severe, and extreme drought categories, respectively.

A poor relationship between the SPI and SSI is found for short and medium time
scales. Better agreement between the SPI and SSI is obtained for a long time scale. The
relationships between the SPI and SSI are relatively high for the baseline and far future
and lower for the near future period. The agreement in this tendency was for all RCMs,
as seen in Figure 11, Figure A3, and Figure A4. The cause of these fluctuations is unclear,
but it is probably due to the randomness that is typically associated with the inherent
unpredictability of future climate phenomena [79,81].

The frequency of hydro-meteorological drought would decrease in both near and far
future periods. A strong temporal fluctuation with alternating wet and dry conditions
can be seen from the values of SPI and SSI at all time scales varying in a wide range. As
can be seen in Figure 11a, for RCP4.5, 2039–2043 and 2046–2048 are the periods of major
hydro-meteorological drought events with a long duration and high severity. For RCP8.5,
as shown in Figure 11c, the period of major hydro-meteorological drought is expected to
come earlier during 2028 and 2032.

For the near future period, the longest meteorological and hydrological durations are
52 and 61 months, accordingly. The lowest SPI and SSI are −3.10 and −1.80, respectively.
Figure 11b–d show that the meteorological drought duration in the far future will generally
be shorter. Its maximum drought duration would reduce from the near future period to
47 months. The lowest SPI is −3.18, which is similar to the value in the near future period.
The hydrological drought conditions would not change much from their conditions in the
near future period. The maximum period of hydrological drought and the lowest SSI in the
far future are 61 months and −1.75, accordingly.

However, these analyses of droughts were primarily based on a single RCM and
may not yet provide a robust implication of the future evolution of hydro-meteorological
drought. In addition, randomness and uncertainty from other sources such as the unpre-
dictability of natural and anthropogenic forcings and nonlinearities in the climate system
that cannot be fully accounted for by the methods or models used in this study may limit
the interpretation of the obtained results.

The projected changes in the characteristics of the meteorological and hydrologi-
cal droughts in the near and far future periods are shown in Figures 12 and 13, which
are represented by the drought parameters calculated over a 6-month time scale, as it
was suggested to be the appropriate time scale for drought characterization [63,76,77].
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The projected changes in SPI6 and SSI6 were compared to those of the baseline period
of 1986–2016.
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Figure 13. Relative change in SSI6 based on MPI model. (a) RCP4.5 scenario; (b) RCP8.5 scenario.

Figure 12 shows that the projected meteorological drought would occur less frequently
but last for a longer duration with a higher intensity and severity in both periods and
both climate scenarios. The change in maximum severity could be as high as 330% com-
pared to that of the baseline period. This is believed to be caused by a decrease in the
projected rainfall, as explained in Section 4.3.2. Although the decrease in precipitation for
the 2075–2099 period under RCP8.5 was less than that under RCP4.5 (Figure 9b) and the de-
crease in precipitation for the 2075–2099 period was less than that for the 2025–2049 period,
the longest drought duration of 48 months from April 2076 to March 2080 that would occur
under RCP8.5 led to the maximum severity of 330%. This is because the SPI values can
be summed up over the longest duration of 48 months compared to a shorter duration of
over 22 months (May 2030 to Feb 2032) for RCP8.5 in the near future and over 33 months
(May 2077 to Jan 2080) for RCP4.5 in the far future.

Figure 13 shows that the projected change in hydrological drought characteristics is
smaller than that of the meteorological drought. Under RCP4.5, the number of drought
events would reduce in the near future but increase in the far future. The drought would
be shorter and less severe than a historical drought. For RCP8.5, droughts tend to be less
frequent and less severe. However, the intensity could be higher for both future periods.
The results reveal that climate change has the potential to alter drought behavior. While it
is noted that another variable, such as groundwater, might have an important role in the
drought process, the results presented in this study primarily rely on precipitation and
streamflow, which are simple but informative.
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5. Conclusions

This study aims to investigate the characteristics of hydro-meteorological droughts
and possible alterations caused by climate change in the CPRB using the SWAT model,
RCMs, and drought indices.

The main findings concluded from this study are as follows: (1) The bias-corrected
MPI fits best with the observations of the CPRB when compared to IPSL and ICHEC.
(2) The SWAT model performs sufficiently well in simulating streamflow in the CPRB
under future climate scenarios. (3) The characteristics of historical drought in the CPRB
are associated with the seasonal rainfall pattern; hydro-meteorological droughts were
often found during the dry months, and the lag between meteorological and hydrological
droughts is approximately 1–3 months depending on the time scales. (4) Climate change
was found to alter the hydro-meteorological drought behaviors in the CPRB; meteorological
drought tends to be affected more than hydrological drought in both future periods and
under both scenarios. This is possibly due to the role of the soil moisture and baseflow that
retards the change in the streamflow.

The findings from this study offer a more comprehensive understanding of future
hydro-meteorological droughts over the CPRB where droughts have long been overlooked.
Using limited numbers of rainfall events, streamflow gauges, and RCMs and presenting
the results based on the spatially averaged values of the drought indices greatly limit the
ability to characterize drought conditions on a local scale.

Future studies should increase the number of gauging stations or incorporate a high
resolution of satellite-based products into the analysis, and it is strongly encouraged to
use the ensemble mean to represent the multi-RCM results and add more hydrological
variables to calculate drought indices that could offer a more reliable characterization of
droughts, especially on local and regional scales. This study has contributed to an im-
proved understanding and characterization of droughts over the CPRB. Valuable findings
based on this study can be used to support water resource management decision making
during droughts.
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Appendix A

This appendix provides figures of the monthly average precipitation and streamflow
in the baseline and future periods produced from ICHEC, IPSL, and MPI.
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Appendix B

This appendix provides figures of the temporal variation in the spatial averaged time
series for the SPI and SSI in the future periods produced from ICHEC and IPSL.
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scenario. Color scale moving from yellow to red represents mild, moderate, severe, and extreme 
drought categories, respectively. 

Figure A3. Temporal variation in spatial averaged time series for SPI and SSI over CPRB at 3-, 6-,
and 12-month time scales calculated based on ICHEC model in future periods. (a) RCP4.5 near
future scenario; (b) RCP4.5 far future scenario; (c) RCP8.5 near future scenario; (d) RCP8.5 far future
scenario. Color scale moving from yellow to red represents mild, moderate, severe, and extreme
drought categories, respectively.
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and 12-month time scales calculated based on IPSL model in future periods. (a) RCP4.5 near future 
scenario; (b) RCP4.5 far future scenario; (c) RCP8.5 near future scenario; (d) RCP8.5 far future sce-
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Figure A4. Temporal variation in spatial averaged time series for SPI and SSI over CPRB at 3-,
6-, and 12-month time scales calculated based on IPSL model in future periods. (a) RCP4.5 near
future scenario; (b) RCP4.5 far future scenario; (c) RCP8.5 near future scenario; (d) RCP8.5 far future
scenario. Color scale moving from yellow to red represents mild, moderate, severe, and extreme
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