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Abstract: In recognizing the pervasive nonstationarity of hydrometeorological variables, a paradigm
shift towards alternative analytical methodologies is imperative for refining hydroclimatic data mod-
eling and prediction. We introduce a novel approach leveraging nonstationary Graphical Modeling
and Bayesian Networks (NGM-BNs) tailored for hydrometeorological applications. Demonstrated
through monthly streamflow forecasting in the Kashgar River Basin of China, our method illumi-
nates the temporal evolution of network relationships, underscoring the dynamism inherent in both
input variables and modeling parameters. The key to our approach is identifying the most suitable
time horizon (MST) for model updates, which is intricately problem-specific and crucial for peak
performance. This methodology not only unveils changing predictor significance across varying
flow conditions but also elucidates the fluctuating temporal links between variables, especially under
the lens of climate change, for instance, the growing impact of snowmelt on the Kashgar Basin’s
streamflow. Compared to stationary counterparts, our nonstationary Bayesian framework excels
in capturing extreme events by adeptly accommodating temporal shifts, outperforming traditional
models including both stationary and nonstationary variants of Support Vector Regression (SVR) and
Adaptive Neuro-Fuzzy Inference Systems (ANFIS).

Keywords: monthly streamflow prediction; nonstationarity; Bayesian network; support vector
regression; Kashgar River

1. Introduction

The hydrologic cycle, a multifaceted system characterized by the spatiotemporal
variability of its components, is regulated by an array of hydroclimatic processes within
a constantly evolving terrestrial landscape and a shifting climate. Consequently, the
presumption of stationarity, i.e., the system responses vary within a fixed range of variability,
has become a subject of doubt for numerous hydroclimatic phenomena [1–3]. In light of
the nonstationary attributes, including the dynamic linkages between the predictor and
predictand within hydrological variables, it is crucial to devise a sophisticated algorithm.
This algorithm should not only learn from but also adapt to the temporally evolving
terrestrial environment and climatic conditions [4–7].

In the realm of hydroclimatic forecasting, particularly for streamflow prediction, it is
widely recognized that a multitude of input variables exert varying degrees of influence
on streamflow fluctuations, with their significance oscillating across spatial and temporal
dimensions [8,9]. Among the multiple kinds of hydroclimatic factors intertwined with
streamflow variations, one can enumerate rainfall, cryospheric dynamics, snowmelt, soil
moisture, climatic pressure, potential evapotranspiration and soil moisture, among others.
Given the vast and interdependent series of potential influencing variables in hydroclimatic
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analysis, pinpointing and quantifying the intricate relationships between these variables
and streamflow variation pose a significant challenge. This complexity and limited un-
derstanding of the inherent dependency structure frequently compel the inclusion of an
extensive range of influential factors, thereby inducing obstacles related to high dimen-
sionality in the modeling process [10–13]. Additionally, the potential for overlapping
information from various interrelated variables exists, as does the possibility of omitting
key variables due to an incomplete understanding of their intricate associations. Therefore,
acquiring full insight into the conditional independence structure is crucial for identifying
a precise and comprehensive set of influential variables to use as prospective predictors.

Graphical Modeling (GM), a network-based approach, presents a viable option for
uncovering potential conditional independence structures and facilitating the selection of
directly influential variables [14,15]. These network structures, often termed graphs, are
composed of nodes that symbolize the variables and edges that denote the connections
between them. These network concepts have been leveraged in the process of recent
hydrological and hydroclimatic modelling research [16–18]. Tsonis et al. [19] highlighted
how network structures can be adeptly utilized to interpret the behavior of interactive
systems, such as those found in climatology. GM-derived networks have been applied to
the hydroclimatic analysis involving streamflow and droughts, as detailed in the studies
by Ramadas et al. [20] and Ramadas and Govindaraju [21]. Furthermore, both Halverson
and Fleming [22] and Phillips et al. [23] confirmed the advantages of encoding runoff data
at regional scale from the perspective of network.

The current prediction models are centered on stationarity networks with links that
represent constant (time-invariant) connections among nodes. Nevertheless, the hypothesis
of nonstationarity challenges the fixed nature of these links. Recent findings indicate that
associations among hydroclimatic variables are subject to change over time, suggesting
that not all connections, or edges, remain constantly active in a nonstationary system.
Fluctuations in the dynamic terrestrial environment and shifts in climate patterns impact the
intricate interplay among hydroclimatic variables. These interactions are further influenced
by alterations in the underlying processes, such as variations in temperature, potential
evapotranspiration, relative humidity, snowmelt and soil moisture, which all contribute to
changes in streamflow.

Consequently, the networks can evolve over time, with edges appearing, vanishing, or
reemerging, and even experiencing shifts in connection strengths. This necessitates con-
tinual updates to the network structure to effectively address the inherent nonstationarity
within the system. This study aims to introduce the use of dynamic Bayesian networks
within hydroclimatic modeling to better manage the nonstationarity brought about by
the time-varying nature of hydroclimatic variables, which are influenced by shifts in the
terrestrial environment and climate patterns. Current models for predicting streamflow
are often hampered by a lack of capacity to accommodate the temporal dynamics that
exist in the relationships between influencing factors. Many models possess insufficient
mechanisms to adapt to the evolving connections that are fundamental to hydrological
processes, especially in the face of environmental changes.

This study aims to introduce the application of time-varying Bayesian networks in
hydroclimatic modeling to address the nonstationarity triggered by the evolving character-
istics of hydroclimatic variables under changing environmental and climatic conditions.
Traditional streamflow prediction models are often restricted and unable to account for
the temporal evolution of relationships with causal factors. Many existing models lack the
capacity to manage the dynamic interactions central to hydrological processes, especially
ignoring alterations. While some methodologies attempt to mitigate this by parameter
updates, exploring the shifting correlations between input/causal variables and outcomes
remains imperative, presenting a complex yet crucial challenge. The main findings of this
study are stated from three angles: (1) to develop a nonstationary Graphical Modeling-
Bayesian-network-based (NGM-BNs) model to forecast the monthly streamflow at Jilintai
station of Kashgar River basin in China; (2) to investigate whether the incorporation of
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nonstationarity of hydrometeorological variables would enhance the prediction of monthly
streamflow; (3) to make a deep comparison of the performance of the proposed model
against classical data-driver approaches, such as Adaptive Neuro-Fuzzy Inference System
(ANFIS) [24] and Support Vector Regression (SVR) [25].

2. Study Area and Data

The Kashgar River Basin in Xinjiang is geographically situated between 81◦50′ E to
84◦45′ E and 43◦25′ N to 44◦20′ N latitude, encompassing a total area of 9578 km2. The
Kashgar River flows from east to west through Nileke County, veers south after passing
through the Tuohai mountain exit, and finally joins the Ili River at Yama Ferry, with a
total length of 297 km. The river system is characterized by a narrow, willow-leaf-shaped,
pinnate pattern (see Figure 1). Located in the hinterland of the Eurasian continent, the
Kashgar River is subject to a typical temperate continental arid climate. The basin has an
average annual temperature of 5.7 ◦C and an average annual precipitation of 353.4 mm,
with the maximum daily rainfall recorded at 33.4 mm and an average annual evaporation
rate of 1471.8 mm. Recorded temperature extremes have reached a high of 37.9 ◦C and a
low of −39.9 ◦C.
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Figure 1. Overview of the study region.

Streamflow data for this research were gathered daily from the Jilintai station. The
study period spans from January 1961 to December 2015, selected based on data availabil-
ity. The study utilizes input variables represented by the standardized anomaly values
of several hydroclimatic factors. These include Temperaturet (Tmpt), Precipitationt and
Precipitationt−1 (Pret, Pret−1), Relative Humidityt (Rhmt), Potential Evapotranspirationt (Pett),
Vapour pressuret (Vapt), Soil Moisturet (Smt), Terrestrial water storaget (Twst), Snow water
equivalent (Swet), and Streamflowt (St f t) with the superscript t denoting the specific time
step. The predictive target is the following time step’s Streamflowt+1 (St f t+1) at the (t + 1)
time step. The standardized anomaly values for each month are calculated by deducting the
monthly mean from each data point and normalizing this figure using the standard devia-
tion for that particular month. For this study, daily precipitation data were acquired from
the Chinese National Meteorological Information Center, accessible at http://data.cma.cn/

http://data.cma.cn/


Water 2024, 16, 1064 4 of 16

(accessed on 20 March 2024). Precipitation data at monthly scale were transformed by
accumulating daily data on each specific month. Gridded relative humidity, potential
evapotranspiration and vapor pressure data were downloaded from the Climatic Research
Unit (CRU) time series [26]. The monthly soil moisture, terrestrial water storage and snow
water equivalent data were taken from Miao and Wang [27]. The hydrometeorological
information was extracted from the above grid points located within the study basin.

3. Methodology

A systematic flowchart of the proposed nonstationary Graphical model (GM) and
Bayesian networks-based model (NGM-BNs) is plotted in Figure 2. In comparison to the
use of stationary GM-BNs with only one static network structure (bottom panel in Figure 2),
NGM-BNs should consider a number of time-varying network structures corresponding
to predictand–predictor association under nonstationary scenarios. As shown in Figure 2,
M phases of nonstationary modelling of NGM-BNs were decided by predicting the time
horizon (n). In this study, 15 years are used as size of testing periods, which represents
that M =

⌊
15
n

⌋
+ 1. Throughout the M phases of NGM-BNs modeling, various forms of

dynamic network structures are discerned via GM-based Bayesian networks (BNs), which
elucidate the interrelationships among numerous interdependent variables. In the final
step, the variables that exert direct influence, commonly termed as the ‘parents’ of the
target variables, are pinpointed within these nonstationary networks for integration into
the evolving prediction models. In our proposed NGM-BNs model, it is crucial to establish
a prediction time frame (n) beyond which the model requires updating to incorporate
evolving characteristics. This timeframe should be carefully balanced, sufficiently extensive
to capture temporal variations in associations, yet concise enough to prevent excessively
frequent updates. Determining an optimal n-year period is key to achieving the most
accurate predictive outcomes.

3.1. Bayesian Network-Based Prediction Models

The Bayesian network modeling workflow usually comprises three key phases:
(1) determining the network architecture utilizing a graphical-model-based framework;
(2) calculating the network’s parameters; and (3) conducting long-lead prediction of the
target variable through the Bayesian network.

In this study, we deploy Bayesian networks (BNs) grounded in Graphical Modeling,
executed using the ‘bnlearn’ package in R-Software (R-4.3.3) [28]. The optimization of the
network’s structure is carried out through the Hill Climbing (HC) greedy search algorithm,
a score-centric learning strategy. We use the Hill Climbing (HC) greedy search algorithm
for the following reasons: (1) it is easy to implement and understand; (2) it has great
efficiency in finding solution to the problem of a single peak or a smooth slope leading
to the optimum; (3) it does not occupy much computer memory. Iterative updates to the
graph’s structure are guided by the Bayesian Information Criterion (BIC) score, involving
additions, deletions or alterations of edges, with a concurrent reassessment of the network
score in each iteration. This score reflects the model’s fitting prowess, with the highest BIC
score indicating optimal fit. Following the establishment of the network structure via the
GM method, the next step is to evaluate the strength of the association between pairs of
variables (nodes) linked by an edge, termed as edge strength, which is quantifiable through
the BIC score. In our research, we have utilized the Bayesian Information Criterion (BIC)
score for the purpose of selecting the model. The calculation of the BIC score proceeds
as follows.

BIC =
n

∑
i=1

logFD
(
xi
∣∣ΛXi

)
− d

2
logN (1)

The subscript D denotes the dataset; FD symbolizes the dataset’s joint probability
distribution; ΛXi signifies the set of parent variables for Xi within graph modelling result;
d represents the count of parameters in the comprehensive distribution; N is the dataset’s
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size. The BIC score is an indicator of model adequacy: a higher score suggests a more
accurate model representation. Consequently, the graph structure that yields the highest
score is chosen.
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Upon identifying the optimal network configuration and the corresponding parent
variables, the parameters for the chosen network are determined using the maximum
likelihood estimation (MLE) technique. Let { X1, X2, . . . , Xm} be a date set composed of
m random variables corresponding to a certain network. The joint distribution of m
random variables, often referred to as the overall data distribution, can be articulated in
the following manner:

F(X1, X2, . . . , Xm|Θ) =
m

∏
i=1

F
(
Xi|ΛXi , θi

)
(2)

where θi symbolizes the array of parameters governing the conditional distribution of Xi
given its set of precursors, ΛXi . This set, ΛXi , is essentially a collection of other random
variables, also referred to as ‘parents’, which have a direct relationship with Xi. Collectively,
these parameters are denoted as Θ = {θ1, θ2, . . . , θm}. The function F

(
Xi|ΛXi , θi

)
represents

the local distribution function, which is designed to demonstrate the interdependencies
between Xi and its associated parent variables. With the graphical structure of the network
already delineated from a prior step, parameter estimation for these local distributions can
be conducted with improved efficiency.

Upon the determination of parameters for both the global and local distribution func-
tions, the Bayesian Network Model (BNM)-based predictive framework can be launched.
Forecasting the desired variable is then achieved by substituting new values for the par-
ent nodes into the local distribution function, these parent nodes are what we refer to as
potential input variables.

3.2. Identification of Dynamic Networks Based on Multiple Performance Metrics

The architecture of this network requires periodic modifications, creating a sequence
of evolving structures that embody the notion of dynamic networks [29]. The optimal
interval for these updates, known as the most suitable prediction time horizon (MST) for
model recalibration and denoted by M, is determined by the optimal predictive accuracy
of the probabilistic model in relation to the network structures identified. The underlying
principle stems from the recognition that predictive accuracy tends to diminish over time.
Consequently, the relevance of the initially identified network structure may wane due to
potential temporal variations.

The duration of the model training phase and the fine-tuning of the MST for model
recalibration are outlined as follows: The window for model development should be of
sufficient length to establish a stable network structure, yet concise enough to accurately
trace the dynamic interactions between inputs and outputs. Given that a 40-year span is
generally accepted as a climatic period, the model development is hence framed within a
sliding 40-year window. For example, assuming the MST is n years, we commence the initial
training from 1961 to 2000, with the first testing period extending from 2001 to 2000 + n.
Subsequent recalibrations, occurring every n years, prompt an n-year advancement in the
development period, now from 1961 + n to 2000 + n, and a corresponding testing period
from (2000 + n) + 1 to (2000 + 2n). This iterative process is maintained throughout the
study’s entire duration. The objective is to refine the value of n to secure an MST that ensures
the predictive model remains sensitive to significant temporal variations yet refrains from
recalibrating too often, which would offer negligible improvements in predictability. To
deduce the MST, this methodology is replicated over M phases, with the M chosen large
enough to encompass the MST by the designer’s judgment. The performance of the model
is then scrutinized across consecutive testing intervals, effectively assessing the period
from 2001 to 2015 with varying n to determine the optimal frequency of model updates.

In order to evaluate performance of the proposed NGM-BNs model, five kinds of
residue error analyzing metrics are used: (1) normalized root-mean-square error (nRMSE);
(2) Kling–Gupta efficiency (KGE) [30]; (3) Nash–Sutcliffe efficiency coefficient (NSE);
(4) index of agreement (d); and (5) coefficient of determination (R2). These five metrics of
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the BNM-based prediction model are compared with those of the ANFIS-based prediction
model and SVR-based prediction models.

4. Results
4.1. Determination of MST Based on Five Performance Metrics

Given the integration of nonstationarity within the monthly runoff forecasts in this
study, it becomes essential to determine the most suitable prediction timeframe (spanning
n years), after which the model requires an update to reflect the evolving temporal features.

In this study, each network structure during each model training period considering all
the months together as a single time series was conducted, which means the models are not
developed separately for different months of the year (month-wise strategy of prediction).

We employ a series of predetermined time spans, ranging from 1 to 6 years (i.e.,
n = 1, 2, . . . , 6 years), as our forecasting intervals. For each interval, the training phase
of the model encompasses a 40-year period. During each training phase, we construct a
Bayesian network structure. Following this, a probabilistic model leveraging the network
structure forecasts the standardized streamflow anomalies over the testing period. The
forecast outcomes are then gathered for each 15-year testing phase, covering the years
2001 to 2015. As previously stated, the analysis proceeds for all potential values of n, with
the most suitable prediction time horizon (MST) determined by the performance metrics
(KGE, nRMSE, NSE, d, R2). Figure 3 illustrates the changes in these performance metrics
as n varies, comparing actual versus predicted streamflows. It clearly shows a marked
decline in model efficacy beyond a certain threshold of n. The results from Figure 3 indicate
that under stationary conditions, neglecting the time-varying nature of the predictand–
predictor association (as shown in the ‘whole series’ in Figure 3), the performance metrics
are NSE = 0.87, R2 = 0.88, KGE = 0.87, d = 0.96 and nRMSE = 36.1%, which is poorer
compared to those of nonstationary scenarios (n = 1,2, . . .,6). When considering non-
stationary characteristics (the MST = 2 revealing it to be the most effective interval for
accurate model forecasting), the positive-direction indicators (NSE, R2, d, KGE) improved
by 4% to 6%, while the negative-direction indicator (nRMSE) decreased by 23%.
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Figure 3. Determining of the most suitable prediction time horizon (MST) for the dynamic GM-BN
model. We conducted monthly streamflow predictions for the test period of 2001–2015, utilizing the
time-varying GM-BN model. This analysis spanned forecast timeframes ranging from 1 to 6 years
to identify the MST. Illustrated through a grouped bar chart, various performance metrics for the
outcomes predicted at each timeframe were examined. The results clearly highlight a 2-year period as
the MST, revealing it to be the most effective interval for accurate model forecasting. The prediction
period marked in pink is the optimal prediction time horizon.



Water 2024, 16, 1064 8 of 16

After we have selected the MST as 2 years with the optimal performance metrics (the
biggest value of NSE, R2, d, KGE and the smallest value of nRMSE), the time-varying
network structures obtained for this study are shown in Figure 4.
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Figure 4. The final time-varying network structure with most suitable prediction time horizon (MST)
being two. The network structure was constructed by treating the data from all the months as a
unified time series, providing a consolidated view of the temporal relationships. Notations for
the variables are as follows: Temperaturet (Tmpt), Precipitationt and Precipitationt−1 (Pret, Pret−1),
Potential Evapotranspirationt (Pett), Relative Humidityt (Rhmt), Vapour pressuret (Vapt), Soil Moisturet

(Smt), Terrestrial water storaget (Twst), Snow water equivalent (Swet), and Streamflowt (St f t) are the input
variables, and Streamflowt+1 (y) is the target variable. The potential predictive relationships between
the input variables and the targeted outcomes are highlighted in red to denote the final decision of
input variables. The indirect predictive relationships between the input variables and the targeted
outcomes are marked in black arrows.

The network structure from the initial training phase (1961–2000) suggests that the
antecedents influencing streamflow include the previous month’s streamflow, terrestrial
water storage, and snow water equivalent. In this phase, the current month’s streamflow
shows a dependency on the prior month’s flow. During the subsequent training interval
(1963–2002), the identified precursors to streamflow expand to incorporate precipitation
alongside terrestrial water storage and the previous month’s snow water equivalent. Here,
the current month’s streamflow becomes conditionally independent of the previous one
when factoring in the prior month’s precipitation.

As the analysis progresses to the third phase (1965–2004), precipitation, temperature
and the previous month’s streamflow emerge as key streamflow predictors. In this instance,
the current streamflow retains its dependence on the previous month’s metrics. For the
fourth period (1967–2007), the network reveals terrestrial water storage, the prior month’s
streamflow and temperature as influential factors.
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Moving into the fifth phase (1969–2009), the focus narrows to terrestrial water storage
and the preceding month’s streamflow as significant predictors. By the time we reach
the 6th (1971–2011) and 7th (1973–2013) training periods, terrestrial water storage from
the previous month stands out as the sole notable predictor, indicating a shift where
variables tied to snowmelt increasingly drive the monthly streamflow forecasting in the
Kashgar River Basin in more recent times. Potential evapotranspiration and atmospheric
pressure are directly correlated with temperature. The final results of nonstationary GM
and Bayesian networks-based models (NGM-BNs) using the most suitable prediction time
horizon (MST) as 2 years are shown in Table 1.

Table 1. Detailed information of the nonstationary GM and Bayesian-networks-based models (NGM-
BNs) using most suitable prediction time horizon (MST) as 2 years.

Sub-Series Training Period Testing Period NGM-BNs

1 1961–2000 2001–2002 f
(

y|Swet, Twst, St f t
)

2 1963–2002 2003–2004 f
(
y|Pret, Twst, Swet)

3 1965–2004 2005–2006 f
(

y|Pret, Tmpt, St f t
)

4 1967–2006 2007–2008 f
(

y|Twst, Tmpt, St f t
)

5 1969–2008 2009–2010 f
(

y|Twst, St f t
)

6 1971–2010 2011–2012 f
(
y|Twst)

7 1973–2012 2013–2014 f
(
y|Twst)

8 1975–2014 2015 f
(

y|Twst, St f t
)

Note: Notations for the variables are as follows: Temperaturet (Tmpt), Precipitationt and Precipitationt−1 (Pret,
Pret−1), Potential Evapotranspirationt (Pett), Relative Humidityt (Rhmt), Vapour pressuret (Vapt), Soil Moisturet (Smt),
Terrestrial water storaget (Twst), snow water equivalent (Swet), and Streamflowt (St f t) are the input variables and
Streamflowt+1 (y) is the target variable.

Here, we also developed the NGM-BN models separately for different months of the
year considering cyclostationarity, which is called a month-wise strategy of prediction [31].
The corresponding results are shown in Figures 5 and 6 and Table 2. Different from the
non-month-wise strategy used in this study, which developed nonstationary network
structure considering all the months together as a single time series, the MST value of
month-wise prediction strategy (Figure 5) was different for each month (1 for January, 2 for
November, 3 for February and December, 4 for March, 5 for April, July and October, 6 for
June, August and September). As shown in Figure 6, the number of potential associations
under month-wise strategy between variables was smaller than those in Figure 4. Taking
February as an example, the performance metrics of February derived from the month-wise
strategy (NSE = 0.09, R2 = 0.25, KGE = 0.18, d = 0.68 and nRMSE = 50%) were poorer
than those of the non-month-wise strategy used in this study. The sample size from the
month-wise strategy was only 40, while the sample size from the non-month-wise strategy
(creating a dynamic network framework that treated the data from all months as a unified
time series) was 480. So, the results of the Bayesian network structure in this study were
more robust than those derived from the month-wise strategy.

4.2. Comparison of Performance of the Nonstationary Bayesian Network-Based Model with Other
Data-Driven Models

The time series plots and scatter diagrams in Figure 7 display the recorded and
forecasted monthly streamflow at Jilintai stations, derived from various models. These
visualizations facilitate a comparative analysis of the predictive accuracy of the NGM-BN
model against other methodologies. We have quantified different performance metrics
and presented them in Table 3 for each model evaluated. For the proposed NGM-BN
model (illustrated in the top right panel of Figure 7), the alignment between observed and
predicted streamflow is quantified as follows: NSE = 0.93, R2 = 0.92, KGE = 0.94, d = 0.98,
and nRMSE = 28.1%. An inspection of Figure 7 indicates that the NGM-BN model adeptly
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captures streamflow across a range of flows. However, the model’s accuracy fluctuates
throughout the year, with more pronounced errors during periods of higher flow. Present-
ing the data collectively for all months conceals these monthly discrepancies. Additionally,
peak streamflow events in 2006, 2010 and 2012 were consistently underestimated, while
those in 2002 and 2013 were overestimated by most models. Precipitation, a key factor
during months of high flow, can lead to overestimation or underestimation of streamflow
if the actual precipitation deviates from the average. Nonetheless, congruence between
rainfall variations and streamflow is not always guaranteed due to other influences such
as the wetness condition of the catchment, changes in land use and cover and evolving
terrestrial dynamics. For instance, a drier system often weakens the correlation between
rainfall and streamflow. Similarly, gradual shifts in land use and terrestrial conditions can
alter this relationship over time, resulting in a dynamic association. Moreover, changes in
soil moisture, evaporation rates, snowmelt-related indexes and other atmospheric variables
might further affect the level of synchrony between rainfall and streamflow.

Water 2024, 16, x FOR PEER REVIEW 10 of 16 
 

 

Here, we also developed the NGM-BN models separately for different months of the 
year considering cyclostationarity, which is called a month-wise strategy of prediction 
[31]. The corresponding results are shown in Figures 5 and 6 and Table 2. Different from 
the non-month-wise strategy used in this study, which developed nonstationary network 
structure considering all the months together as a single time series, the MST value of 
month-wise prediction strategy (Figure 5) was different for each month (1 for January, 2 
for November, 3 for February and December, 4 for March, 5 for April, July and October, 6 
for June, August and September). As shown in Figure 6, the number of potential associa-
tions under month-wise strategy between variables was smaller than those in Figure 4. 
Taking February as an example, the performance metrics of February derived from the 
month-wise strategy (NSE = 0.09, 𝑅  = 0.25, KGE = 0.18, d = 0.68 and nRMSE = 50%) were 
poorer than those of the non-month-wise strategy used in this study. The sample size from 
the month-wise strategy was only 40, while the sample size from the non-month-wise 
strategy (creating a dynamic network framework that treated the data from all months as 
a unified time series) was 480. So, the results of the Bayesian network structure in this 
study were more robust than those derived from the month-wise strategy. 

 
Figure 5. Determining of the most suitable prediction time horizon (MST) for the dynamic GM-BN 
model through month-wise forecasting strategy. We conducted monthly streamflow predictions for 
the test period of 2001–2015, utilizing the time-varying GM-BN model. This analysis spanned fore-
cast timeframes ranging from 1 to 6 years to identify the MST. The prediction period marked in pink 
is the optimal prediction time horizon. 

Figure 5. Determining of the most suitable prediction time horizon (MST) for the dynamic GM-BN
model through month-wise forecasting strategy. We conducted monthly streamflow predictions for
the test period of 2001–2015, utilizing the time-varying GM-BN model. This analysis spanned forecast
timeframes ranging from 1 to 6 years to identify the MST. The prediction period marked in pink is
the optimal prediction time horizon.
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Table 2. Detailed information of the nonstationary GM and Bayesian networks-based models (NGM-
BNs) for March–October based on month-wise prediction strategy.

Training Period
(Testing Period)

NGM-BNs

MST = 6

May June August September

1961–2000 (2001–2006) f
(

y|St f t
)

f
(
y|Twst) f

(
y|Pret, St f t

)
f
(

y|Twst, St f t
)

1967–2006 (2007–2012) f
(

y|St f t
)

f
(

y|Tmpt, St f t
)

f
(

y|St f t
)

f
(

y|St f t
)

1973–2012 (2013–2015) f
(

y|Swet, St f t
)

f
(

y|Pett, St f t
)

f
(

y|Swet, St f t
)

f
(

y|Pett, St f t
)

Training period
(Testing period)

MST = 5

April July October

1961–2000 (2001–2005) f
(

y|Pett, St f t
)

f
(
y|Pret) f

(
y|St f t

)
1966–2005 (2006–2010) f

(
y|Tmpt, St f t

)
f
(

y|St f t
)

f
(
y|Pret)

1971–2012 (2011–2015) f
(
y|Swet) f

(
y|Swet, St f t

)
f
(

y|St f t
)

Training period
(Testing period)

MST = 4

March

1961–2000 (2001–2004) f
(

y|St f t
)

1965–2004 (2005–2008) f
(

y|Pett, St f t
)

1969–2008 (2009–2012) f
(
y|Swet)

1973–2012 (2013–2015) f
(

y|Twst, St f t
)
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Figure 7. The comparative analysis juxtaposes the observed streamflow data against predictions de-
rived from several methodologies: the proposed non-stationary Bayesian-networks-based approach,
the traditional stationary-network-based approach, the adaptive non-stationary SVR (Support Vector
Regression) approach, its stationary SVR-based counterpart, and both the dynamic non-stationary
ANFIS (Adaptive Neuro-Fuzzy Inference System) approach and its stationary ANFIS-based variation.

Table 3. Results of various performance metrics evaluated for different models during the model
testing period from 2001 to 2015.

Performance
Metrics

Models
Nonstationary

GM-BN
Stationary

GM-BN
Nonstationary

SVR
Stationary

SVR
Nonstationary

ANFIS
Stationary

ANFIS

R2 0.88 0.86 0.43 0.86 0.86
nRMSE 0.281 0.361 0.388 0.892 0.422 0.98
NSE 0.93 0.87 0.85 0.20 0.82 0.03
d 0.98 0.96 0.96 0.80 0.96 0.86
KGE 0.94 0.87 0.84 0.62 0.85 0.22
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In Figure 7, the top left panel illustrates the predictive capabilities of the stationary-
network-based model. This model’s performance in exhibiting the divergence between
observed and predicted streamflow is quantified by the following metrics: NSE = 0.87,
R2 = 0.88, KGE = 0.87, d = 0.96, and nRMSE = 36.1%. The stationary GM-BN model demon-
strates a notable ability to replicate low-flow events, nearly matching the performance of
temporal-network-based methods. Yet, the latter, specifically the proposed nonstation-
ary NGM-BN-based approach, excels in capturing high-flow scenarios. This superior
performance in both high- and low-flow situations highlights the overall effectiveness of
the temporal-network-based approach over the conventional time-invariant model. This
advantage is particularly relevant in the context of nonstationarity, as many basins are
experiencing shifts in interannual streamflow variability, positioning temporal networks as
a viable alternative.

The results for Support Vector Regression (SVR) are depicted in Figure 7, specifically
in the third (stationary; middle left panel) and fourth (nonstationary; middle right panel)
panels. Analogously, the Adaptive Neuro-Fuzzy Inference System (ANFIS) outcomes
are presented in the fifth (stationary; bottom left panel) and sixth (nonstationary; bottom
right panel) panels. The detailed parameter settings of SVR and ANFIS are exhibited in
Tables S1 and S2.

The analysis reveals that both SVR and ANFIS models with nonstationary frameworks
outperform their stationary versions. The nonstationary SVR, in particular, manages satis-
factory results for average and low-flow periods but struggles significantly with high-flow
predictions. The performance of the stationary SVR model is even less impressive. When
comparing network-based approaches, as shown in Table 3, the nonstationary variant (top
right panel of Figure 7) excels over the time-invariant SVR models. Table 3 conveniently
consolidates performance metrics for all four models, facilitating straightforward compari-
son. In summary, a comprehensive evaluation of the different methods strongly supports
the adoption of the proposed nonstationary-network-based approach.

Consolidating the findings, it becomes clear that the relationships between hydrocli-
matic variables are not static but evolve over time. Given that stationary models assume
a fixed relationship between dependent and independent variables, their predictive ac-
curacy is inherently limited. Conversely, accurately determining the dynamic interplay
among the variables is key to enhancing model performance. This study confirms the supe-
rior predictive capability of the proposed nonstationary-network-based approach, which
acknowledges and leverages these time-varying connections. The advantages of this ap-
proach are especially pertinent in the context of a changing climate where the assumption of
stationarity is increasingly unreliable. Therefore, the nonstationary-network-based method
is advocated as a promising alternative for hydroclimatic modeling under such conditions.

5. Discussion

This study introduces dynamic Bayesian networks as a robust methodology for hy-
drometeorological forecasting, designed to address the evolving dynamics of a system
with interconnected variables. Traditional modeling often relies on the assumption of
static relationships. Yet, the necessity to account for nonstationarity, driven by changing
terrestrial and climatic conditions, is increasingly evident. This work not only presents but
also validates the efficacy of a novel network-based strategy that incorporates nonstation-
arity into hydroclimatic analysis. Leveraging the capabilities of Nonstationary Graphical
Models and Bayesian Networks (NGM-BNs), this study develops adaptive, time-sensitive
predictive models that reflect the hydroclimatic system’s temporal variations.

This study further argues that the network structures may evolve over time, reflecting
the dynamic nature of the system. Consequently, the approach advocated here involves
periodic updates to both the network structures and the model’s predictive parameters
at regular intervals, referred to as the most suitable prediction time horizon (MST), to
accurately reflect these changes. In this study, the value of MST is identified as 2 years
for non-month-wise strategy prediction, which develops nonstationary network structure
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considering all the months together as a single time series. The MST value of the month-wise
prediction strategy (Figure 5) was different for each month (1 for January, 2 for November,
3 for February and December, 4 for March, 5 for April, July and October, 6 for June, August
and September). Due to the poor performance of the month-wise prediction strategy
(NSE = 0.09, R2 = 0.25, KGE = 0.18, d = 0.68 and nRMSE = 50%), the non-month-wise
strategy prediction was adopted in this study.

Since the length of the time series was definitely a potential factor influencing the
performance of the proposed NGM-BNs model, we used another basin of China, the Huaihe
River Basin, which has a sample size of 804, to reverify its wide applicability. The compared
results of the nonstationary Bayesian Network model and stationary models are shown
in Table S3. Not only are the performance metrics of the nonstationary Bayesian network
models significantly better than those of the stationary models (NSE = 0.96, R2 = 0.97,
KGE = 0.97, d = 0.98 and nRMSE = 22.5%), but the predictive capabilities of the other
two data-driven models (SVR and ANFIS) have also been significantly improved due to
the increase in sample size. Although our study focused more on the incorporation of
nonstationarity to enhance the predicting accuracy of Bayesian Network models, it is also
beneficial to ensure enough dataset size to improve the ability of the proposed model. If
the sample size is very low, the performance of the proposed NGM-BNs model would be
definitely influenced. As a result, the NGM-BNs-based monthly streamflow forecasting
should have more abundant data in the future.

6. Conclusions

This study focuses on the hydroclimatic modeling of monthly streamflow, which
involves a number of interrelated variables that interact in complex patterns, exemplifying
the utility of the proposed method. We have achieved the following conclusions:

(1) Utilizing this approach, we uncover network structures that accurately map the
dependencies among these variables. Analysis of the network configurations indicates
a robust link between the streamflow of the current month and that of the preceding
month in most cases.

(2) In the later stages of network structure analysis (specifically the 6th and 7th phases of
this study), it becomes apparent that the previous month’s terrestrial water storage
emerges as a singular significant predictor. This suggests that, against the back-
ground of climate change, factors related to snowmelt have taken on a more pro-
nounced role in determining the monthly streamflow within the Kashgar River Basin
in recent periods.

(3) Employing the nonstationary-network-based approach yields significantly enhanced
outcomes in comparison to static models, capturing the nuances of both high- and
low-flow occurrences with greater fidelity.

(4) Across the board, it is evident that approaches incorporating nonstationarity con-
sistently outperformed their stationary equivalents. This underscores the superior
performance of models that adjust over time, with the proposed network-based mod-
els leading the pack due to their capacity to accommodate the dynamic correlations
among hydroclimatic factors. The strength of the proposed model lies in its adeptness
at capturing both extremes of flow magnitudes, which not only exemplifies its preci-
sion but also suggests its potential utility in enhancing water resource management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w16071064/s1, Figure S1: Plot of the Huaihe River Basin, China;
Table S1: Control parameters for support vector regression (SVR) for stationary and nonstationary
cases; Table S2: Control parameters for adaptive-network-based fuzzy inference system (ANFIS) for
stationary and nonstationary cases. Table S3: Results of various performance metrics evaluated for
different models during the model testing period from 2001 to 2015 at Huaihe River Basin.
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