
Citation: Wang, H.; Zeng, P.; Liu, Z.;

Li, W.; Zhou, J. Optimization of LID

Strategies for Urban CSO Reduction

and Cost Efficiency: A Beijing Case

Study. Water 2024, 16, 965.

https://doi.org/10.3390/w16070965

Academic Editor: Craig Allan

Received: 28 February 2024

Revised: 19 March 2024

Accepted: 25 March 2024

Published: 27 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Optimization of LID Strategies for Urban CSO Reduction and
Cost Efficiency: A Beijing Case Study
Hao Wang 1 , Pengfei Zeng 1, Zilong Liu 2, Wentao Li 1,3 and Jinjun Zhou 1,*

1 Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology,
Beijing 100124, China

2 Beijing Municipal Institute of City Planning and Design, Beijing 100045, China
3 Guangzhou Municipal Engineering Design & Research Institute Co., Ltd., Guangzhou 510095, China
* Correspondence: zhoujj@bjut.edu.cn

Abstract: Combined sewer overflow (CSO) can lead to serious urban water environment pollution
and health risks to residents. Low Impact Development (LID) facilities are one of the important
measures to alleviate CSO and have been widely applied. The rational selection of LID facility types,
locations, and scales is the most important task, which can effectively improve resource utilization
efficiency. Based on the NSGA-II multi-objective optimization algorithm and coupled with the SWMM
sewer network hydraulic model, this study takes the combined sewer overflows and the construction
cost of LID facilities as optimization objectives and optimizes the types and scales of LID layout in the
study area, including eight different return periods. By using the Pareto frontier and visualizing the
results of the model, the effects of different rainfall return periods on the CSO control and investment
cost of LID layout schemes are compared. The results show the following: (1) the optimization model
can demonstrate the relationship between CSO control volume and LID construction cost under
different LID layout schemes through the Pareto frontier, showing three different trends, indicating
that the relationship between overflow volume and investment cost is nonlinear; (2) with the increase
in rainfall intensity, higher requirements are proposed for LID schemes to meet CSO control targets,
leading to a decrease in the number of Pareto frontier solution sets. Under larger rainfall intensities,
it is difficult to achieve the same overflow control effect by increasing the scale of LID construction.
Therefore, considering constraining the LID construction cost between RMB 5.3 and 5.38 million is
helpful to determine the most suitable solution; (3) in the optimal layout schemes under different
return periods, 87.3% of the locations where LID is deployed have similar scales. Based on these
locations with a relatively large proportion of deployment, it can be determined that special attention
should be paid to spatial positions in LID planning and construction. This study provides valuable
insights for solving combined sewer overflow problems and optimizing urban drainage management
and provides guidance for future planning and decision-making processes.

Keywords: SWMM; combined sewer overflows; low impact development; NSGA-II

1. Introduction

The combined sewer overflow refers to the direct discharge of untreated rainwater
runoff into water bodies when rainfall runoff exceeds the capacity of the drainage system,
leading to pollution [1]. CSO is a common cause of urban water body pollution, primarily
due to the lag in the development of drainage systems compared to urban expansion [2].
In recent years, significant changes in urban land cover have increased the frequency of
CSO [3]. However, improving the interception factor through sewer network reconstruc-
tion to alleviate CSO is challenging due to constraints such as infrastructure complexity,
land limitations, engineering difficulties, and social impacts [4]. In this context, Green
Infrastructure/Low Impact Development has gained widespread attention as a surface
runoff control method [5,6]. LID, as a rainwater management concept, aims to minimize
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the environmental impact of land development and maintain rainwater runoff at levels
resembling natural conditions [7].

LID facilities, including permeable pavement, green roofs, and rain gardens, play a
significant role in reducing surface impervious rate and enhancing rainwater retention,
infiltration, and reuse. By decreasing the volume of runoff entering drainage systems,
LID facilities can mitigate urban flooding disasters [8], optimize rainwater resource uti-
lization [9], and mitigate CSO pollution [10]. Previous research by numerous researchers
and experts has extensively explored and applied LID facilities. Liu et al. [11] devised a
comprehensive evaluation methodology and investigated the runoff control efficacy of
various LID facility types. Studies conducted by Gao and Zeng et al. [12,13] have yielded
valuable insights into integrating different LID facilities to address urban flooding scenarios.
Additionally, Liao et al. [14] explored strategies that integrate LID with traditional sewer
network refurbishment to minimize the frequency and impact of CSO incidents. These stud-
ies furnish crucial theoretical underpinnings and practical directives for comprehending
and implementing LID in managing rainwater and CSO challenges.

In the deployment of LID facilities, optimizing their placement is important. This opti-
mization can improve resource utilization efficiency, mitigate surface waterlogging issues,
alleviate network loads, and comprehensively address multiple objectives, thereby offering
scientific decision support for policymakers. Yao et al. [15] investigated the planning and
design strategies for the spatial location of green roofs in urban catchment areas to minimize
runoff and peak flow. Tansar et al. [16] examined the spatial-scale impact of LID facilities
on flood prevention across various rainfall scenarios by strategically siting them upstream,
midstream, and downstream within a region. Cheng et al. [17] analyzed the arrangement
of LID facilities focusing on three control objectives: runoff control, flood control, and
waterlogging mitigation. Integrating hydrological modeling with multi-objective optimiza-
tion methods is recognized as an effective approach to maximizing the performance of
LID facilities under constrained conditions. In a related study, Saniei et al. [18] optimized
the size, type, and location of LID in urban watersheds by integrating the SWMM with
the NSGA-II algorithm, taking into account long-term rainfall conditions in the urban
watershed. Ambrogi et al. [19] coupled NSGA-II with the SWMM to determine the optimal
locations for bioretention cells, green roofs, and permeable pavements, aiming to maximize
infiltration with LID at the lowest cost in a small urban watershed. Similarly, Yu et al. [20]
utilized NSGA-II, developing an SWMM- and MATLAB-based method for LID deployment
planning, with findings indicating the efficacy of multi-objective optimization in reducing
runoff. These studies on LID layout optimization all utilized runoff volume, runoff depth,
and peak flow as control objectives. However, using surface runoff indicators as control
metrics for LID facilities may not fully optimize performance during the overflow process
in detention basins within the network system.

To solve the above problems, this study couples NSGA-II with SWMM to construct a
multi-objective optimization model. Considering the reduction in LID construction and
operation costs, as well as the overload status of weirs in combined sewer systems, the
optimal combination and scale of LID types are determined. Using the optimization model,
simulations are conducted under different rainfall scenarios to compare the differences in
LID deployment optimization results under various design storms. Based on the simulation
results, decisions regarding LID design choices are made, and critical LID deployment
locations are identified to provide rational construction recommendations.

2. Materials and Methods

Figure 1 illustrates the technical route of this study. Initially, data concerning the
drainage network and land cover within the research area, along with design rainfall data
for different return periods, are collected. Subsequently, the SWMM software (version
5.2) is utilized to construct the hydraulic model of the drainage network in the study area,
followed by calibration and validation processes. Next, parameters for LID facilities are
generalized and configured. On the Python (version 3.10) platform, the SWMM model is
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coupled with the NSGA-II multi-objective optimization model, with the types and areas
of LID facilities in each sub-catchment as optimization variables. Through simulation,
optimized deployment schemes for LID under different return periods, as well as the
effectiveness of CSO control and LID construction costs, are obtained and analyzed, high-
lighting disparities in optimal LID deployment schemes under different return period
rainfall events.
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Figure 1. Flowchart of the modeling framework used in this study.

2.1. Study Area

The study area is located in the core functional area of Beijing, the capital of China
(39◦54′ N, 116◦25′ E), which is an important center for the country’s political and cultural ac-
tivities as well as international exchanges. The region is in a warm, semi-humid continental
climate zone, with an average annual precipitation of about 698.4 mm, 80% of which occurs
during the rainy season (June to September). As shown in Figure 2, the drainage area of
the research area is approximately 3.27 square kilometers, mainly comprising residential
land, public facilities land, commercial land, and green space, with impermeable surfaces
predominating. To the west, there is a channel flowing from north to south, turning east at
its southernmost point. The interception main pipe is laid along this channel. This area
belongs to the old city area, with outdated living environment facilities and inadequate
infrastructure. The construction standards of the drainage system are outdated, leading
to frequent overflow of the pipe network and a higher pollution load from rainwater
discharge. To address the problem of CSO, it is recommended to design and implement
LID measures within the research area.

Water 2024, 16, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 2. Overview of the urban drainage area. 

2.2. Design Storms 

The study aims to assess the effectiveness of LID facilities in mitigating CSO 

incidents during rainstorm events of varying return periods. The design rainfall utilized 

in this analysis follows the formula outlined in the Beijing local standard [21]. The 

equation for rainstorm intensity is presented as follows (Equation (1)): 

q=
A+C log

10
P

(t+B)n
=

12.126+15.012 log
10
P

(t+13.8)0.748
 (1) 

where q is the designed rainstorm intensity (mm/min); t is the rainfall duration (min); P 

is the return period (year); n is the attenuation coefficient of the rainstorm; and A, B and 

C are regional parameters, the values are calculated as 12.126, 15.012 and 13.8. 

Figure 3 illustrates the design rainfall patterns and depths for duration spanning 

eight return periods. 

 

Figure 3. Design rainfall for eight different return periods in Beijing. 

2.3. Storm Water Management Model 

2.3.1. Construction of SWMM Model 

The study employs the Storm Water Management Model (SWMM) developed by 

the United States Environmental Protection Agency (version 5.2) to simulate the 

Figure 2. Overview of the urban drainage area.



Water 2024, 16, 965 4 of 18

2.2. Design Storms

The study aims to assess the effectiveness of LID facilities in mitigating CSO incidents
during rainstorm events of varying return periods. The design rainfall utilized in this
analysis follows the formula outlined in the Beijing local standard [21]. The equation for
rainstorm intensity is presented as follows (Equation (1)):

q =
A + Cln P
(t + B)n =

12.126 + 15.012ln P

(t+13.8)0.748 (1)

where q is the designed rainstorm intensity (mm/min); t is the rainfall duration (min); P is
the return period (year); n is the attenuation coefficient of the rainstorm; and A, B and C are
regional parameters, the values are calculated as 12.126, 15.012 and 13.8.

Figure 3 illustrates the design rainfall patterns and depths for duration spanning eight
return periods.
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2.3. Storm Water Management Model
2.3.1. Construction of SWMM Model

The study employs the Storm Water Management Model (SWMM) developed by the
United States Environmental Protection Agency (version 5.2) to simulate the hydrological
processes in the study area. It investigates the combined sewer overflow behavior in
the sewer network under various LID deployment schemes. Based on data provided by
the local drainage management department, a SWMM model of the study area’s sewer
network was constructed, as shown in Figure 4a. The total length of the sewer network
is 32.9 km, comprising 1615 nodes (including 489 rainwater nodes, 625 combined sewer
nodes, and 501 sewage nodes), 1620 pipe segments, 5 interceptor weirs, and 8 drainage
outlets. Additionally, the study area is equipped with 2 flow meters on the sewage network
and 2 liquid level monitors on the rainwater network.

The combined sewer system requires considerations for model construction and
parameter settings for both the stormwater and wastewater models. Initially, the study area
was divided into 1114 stormwater sub-catchments using the Thiessen polygon method [22].
The Horton model was selected to calculate infiltration. This model is suitable for urban
areas based on the description of infiltration mechanisms in SWMM and the characteristics
of the underlying surface of the study area. Land use data for the study area includes roads,
buildings, green spaces, and water systems. Based on these land use data (Figure 4b), runoff
and routing parameters were determined for each sub-catchment. Empirical values for the
composite runoff coefficients corresponding to different levels of urban land distribution
according to regional planning and design [23] are provided in Table 1.
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Table 1. Empirical values of urban comprehensive runoff coefficient.

Urban Area Situation Comprehensive Runoff Coefficient

Central areas with densest buildings
(impervious area ratio > 70%) 0.6–0.8

Residential areas with denser buildings
(50% < impervious area ratio < 70%) 0.5–0.7

Residential areas with sparser buildings
(30% < impervious area ratio < 50%) 0.4–0.6

Residential areas with sparsest buildings
(impervious area ratio < 30%) 0.3–0.5

The discharge of domestic sewage requires accounting for temporal variations in
drainage. Based on daily flow monitoring data from August 2021 to July 2022, statistical
methods were employed to derive variation curves for node flow. The distributional
quality of the fitted flow data was described using the empirical distribution function-
type Kolmogorov–Smirnov test and the Anderson–Darling statistic [24]. The time-varying
curves of nodal inflow are acquired by linking the expectation of the probability density
distribution function at each moment [25]. In the SWMM model, the discharge of domestic
sewage was generalized as nodal inflow of manholes. The manhole receiving the nodal
inflow is the receiving sewage manhole in the upstream pipe section of each sewage
flow monitoring device. Drainage quotas were allocated to each sewage node based on
sub-watershed area and population density data, and sewage discharge simulations were
completed by combining the inferred temporal variation curves of the nodes. This approach
results in four sewage model curves for the study area, which are depicted in Figure 5.

2.3.2. Calibration and Verification of Model

The calibration of the model for dry conditions was performed using flow data col-
lected from sewage pipelines, while calibration for rainy conditions utilized liquid level
data from rainwater pipelines. For both dry and rainy scenarios, one calibration and one
validation scenario were selected. The Nash Efficiency Coefficient (NSE) was computed
to assess the agreement between model simulations and actual monitoring values [18].
The calibration and validation processes for the sewage flow yielded NSE coefficients of
0.88, 0.78, 0.72, and 0.73, while those for the rainwater level processes resulted in NSE
coefficients of 0.72, 0.74, 0.83, and 0.9, as illustrated in Figure 6. Thus, the model meets
the required standards and can be applied to simulate combined sewer overflows under
different rainy scenarios.
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2.3.3. LID Facilities Setting

Based on the drainage system planning and urban sponge city construction design
standards in Beijing, three LID measures were designed for the study area, including
permeable pavement, green roofs, and rain gardens [26]. As shown in Figure 4b, permeable
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pavement is built on pavement surfaces, green roofs are distributed on buildings, and rain
gardens are installed on greens. Parameters for the three LID facilities were set based on
the relevant literature and empirical values [17], as presented in Table 2.

Table 2. LID facility parameter settings.

Process Parameter Permeable Pavement Green Roof Rain Garden

Surface layer

Berm Height/mm 0.00 80.00 200.00
Vegetation Volume 0.00 0.20 0.20
Surface Roughness 0.10 0.10 0.60
Surface Slope/% 0.20 0.50 5.00

Soil layer

Porosity 0.50 0.50 0.50
Wilting Point 0.10 0.085 0.05

Field Capacity 0.20 0.20 0.10
Thickness/mm 150.00 150.00 700.00

Suction Head/mm 100.00 100.00 100.00
Conductivity Slope 30.00 30.00 30.00

Conductivity/(mm/h) 150.00 100.00 200.00

Storage layer

Void Ratio 0.75 - 0.75
Thickness/mm 200.00 - 0.00
Clogging Factor 0.00 - 0.00

Seepage Rate/(mm/h) 12.50 - 0.50

2.4. Optimization Model

The optimization model couples SWMM with optimization algorithms to optimize
the design of LID schemes. A bi-objective optimization model was proposed considering
the CSO status of the drainage system and the cost of implementing LID measures. To
ensure the model’s applicability to the study area, the optimal variables were simulated and
encoded based on the measured areas of different land cover types within each sub-basin.
Python was chosen as the development platform for the model.

2.4.1. Objective Functions

The first objective function of the optimization model considers the total overflow vol-
ume from all interceptor weirs in the study area. The aim is to minimize the total overflow
volume by selecting the design scheme with the least overflow, thus achieving optimal
pollution control performance. After SWMM simulation, the overflow processes for each
interceptor weir can be extracted from the “.rpt” file generated by SWMM operation results.

Min Vo f = ∑n
1 ∑T

1 Qt (2)

where Vo f is the total volume of CSO; Qt is the overflow flow rate of interceptor weir at t
time; T is total simulation time; and n is number of interceptor weirs.

The other objective function considers the investment cost of LID construction, aiming
to minimize the cost of LID deployment. This objective is utilized to control the budget
of the schemes, achieving higher cost-effectiveness. By attaining better benefits with the
lowest investment cost, the optimization goal is achieved.

min C = ∑n
1 Cpp × Spp + Cgr × Sgr + Crg × Srg (3)

where C is the total investments of LID facilities; Spp, Sgr, Srg are the areas of permeable
pavement, green roofs, and rain garden; Cpp, Cgr, Crg are the unit construction costs for
permeable pavement, green roofs, and rain gardens. These costs can be referenced from
the unit costs of LID facilities as outlined in the “Sponge City Construction Technical
Guide” [27] specifically in Table 3.
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Table 3. LID facility cost.

LID Facility Unit Infrastructure Cost
(RMB·m−2)

Unit Maintenance Cost
(RMB·m−2·a−1)

Permeable Pavement 200 8.70
Green Roof 300 6.00

Rain Garden 800 55.00

2.4.2. Optimal Variables

The objective of optimizing the model is to determine the layout scheme of Low
Impact Development facilities in the study area, requiring the identification of the types
and scales of LID facilities in each sub-catchment. Therefore, the optimization variables are
the deployment areas of the three types of LID facilities in each sub-catchment. Based on
the principles of deployment of LID measures in the study area outlined in Section 2.3.3
and underlying surface data, the possible distribution points and maximum areas for
the three types of LID facility have been determined, as shown in Figure 7. Using their
maximum areas as upper limits and 0 as lower limits, they serve as constraints for each
optimization variable.
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2.4.3. Linkage of NSGA-II to the SWMM model

NSGA-II is widely used in multi-objective optimization of LID measures, and is capa-
ble of generating optimal or near-optimal solutions to balance the relationships between
competing objectives. NSGA-II is developed based on the Non-dominated Sorting Ge-
netic Algorithm (NSGA). After generating offspring populations through crossover and
mutation, the offspring populations are merged with the parent population, and optimal
competition is conducted to ensure that the best individuals in the parent population
are not destroyed or lost. During the iterative computation process, SWMM is used to
simulate CSO processes under LID deployment and to solve the objective functions. Before
conducting optimization calculations, it is necessary to establish an SWMM model for the
study area and then integrate the optimization algorithm with the simulation of the SWMM
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model for iterative computation. The steps of the optimization model are summarized as
follows, as shown in Figure 8.
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Step 1: Construct an SWMM model for optimizing LID layout: based on the network
of pipes and their ancillary facilities, rainfall data, and generalized types and parameter
settings of LID facilities, construct an SWMM model for the study area, and use this model
to solve the objective function during the iterative process.

Step 2: Initialize the population: Determine the upper and lower limits of the opti-
mization variables based on the size and types of underlying surface data in the study area,
and randomly generate the LID deployment conditions within each catchment area. Each
population consists of 100 individuals, with each individual containing information on the
deployment areas of the three types of LID facilities in all sub-catchment areas.

Step 3: Calculate fitness: Use file reading and PYSWMM in Python to write the
population information of generated LID areas into the “.inp” file’s sub-catchment and
LID_USAGE fields. Then, load the SWMM dynamic link library, conduct hydrological
process simulation and result reading, and use the total overflow from weirs as the first
objective function value. Calculate the total investment cost based on the LID deployment
scheme as the second objective function value.

Step 4: Non-dominated sorting: Perform non-dominated sorting of the population
based on fitness. Between two individuals, the one with smaller values for both objective
functions has dominance. Based on the non-dominance relationship between individuals,
divide them into different ranks, where individuals with higher ranks are considered
superior LID solutions.

Step 5: Crowding distance calculation: Within each rank, calculate the crowding dis-
tance between individuals based on the difference in overflow and cost. The crowding dis-
tance indicates the density around an individual and is used to maintain population diversity.

Step 6: Select the next generation: During crossover, randomly recombine the LID
facilities within each sub-catchment of two parent individuals to generate two offspring
individuals. Mutation operations initialize the LID area in random sub-catchments of
individuals. Select individuals from the current population for crossover and mutation
operations to generate a new population.

Step 7: Repeat steps 2 to 6 until the specified number of iterations is reached.
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The model outputs a Pareto frontier to obtain the optimal solution in the form of
a two-dimensional curve in the plane. Based on the obtained Pareto front, various LID
designs and layouts can be selected according to actual needs and investment budgets. The
key NSGA-II parameters followed the study of Yang et al. with a population size of 100,
number of generations of 100, crossover probability of 0.8 and mutation probability as the
reciprocal of the length [28].

3. Results
3.1. Global Convergence Evaluation of Optimization Model

The global convergence of the optimization model refers to its ability to converge
the objective function values to a certain range as the number of generations increases.
By observing the trend of the results for each generation, one can understand the overall
change in the objective function values during the optimization process. In this study, the
global convergence of the optimization model is assessed by observing the trend of the
average values of the objective function results for each generation. When the average value
of the objective function gradually stabilizes, it indicates that the optimization algorithm
may be approaching a global optimum, as shown in Figure 9.
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In this optimization model, the total CSO overflow during a 2-year event begins to
converge around the 55th generation, while the investment costs for construction and
operation start to converge around the 60th generation. As the rainfall return period
increases, the convergence generations of the model’s average results gradually increase,
from around 60 generations to about 90 generations. Typically, all objective function values
converge after 90 generations, so setting the generation limit to 100 results in a converged
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optimization outcome. Once the model process terminates, the optimization results remain
stable. This optimization model demonstrates good performance in assessing global
convergence, providing stable optimization results and an effective method for addressing
multi-objective optimization problems.

3.2. Pareto Frontier at Different Return Periods

The results of the Pareto frontier consisting of non-dominated solutions were obtained.
As shown in Figure 10, the vertical axis represents the cost (in million RMB), and the
horizontal axis represents the overflow volume (m3). Each data point represents a solution,
indicating the overflow volume of the combined sewer network for the corresponding
scenario under given cost conditions. These data points are solutions obtained through
non-dominated sorting from the last generation’s merged population. After iterative
optimization of the model under the 2-year design storm scenario, six dominant rank
solutions were ultimately obtained. Among them, the points with Rank 0 form the Pareto
frontier, while the other points are considered non-dominated solutions. It is observed that
the Pareto frontier exhibits three different curve trends and discontinuities.
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Under the current rainfall conditions, the solutions on the Pareto frontier show a range
of variations in CSO overflow volume between 23.7 and 24.3 m3 under different LID layout
schemes, with total investment costs fluctuating between RMB 5.2 to 5.69 million. It can be
observed that the CSO overflow volume and construction costs are approximately inversely
proportional. Higher investment costs correspond to lower CSO volumes, and vice versa.
In addition to the solutions on the Pareto frontier, there are also multiple non-dominated
solutions. These non-dominated solutions are similar in shape to the Pareto frontier and
are distributed outside it according to their rank. In practical applications, different design
schemes can be selected according to planning requirements.

To compare the effects of different rainfall intensities on the optimization model
and LID layout, this study obtained the optimized simulation results of eight LID layout
methods in the study area under eight different return periods through the coupled model
of SWMM and NSGA-II. As shown in Figure 11, the Pareto frontier of CSO overflow volume
and investment cost is displayed. With the increase in the return period, the number of
solution sets on the Pareto frontier gradually decreases. When the return period is 2 years,
the maximum number of solution sets is 13, while when the return period is 100 years, the
minimum number of solution sets is 5. There is no obvious trend in the shape of the Pareto
solution set, and the curve is not monotonically decreasing, but exhibits a certain flat area
and a steep area. In the flat area, the increase in cost has a smaller impact on reducing
overflow volume, while in the steep area, even a slight change in cost will significantly
reduce overflow volume.
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By comparing these frontiers, it is observed that under the 2-year return period, the
Pareto frontier of investment cost is the highest (Figure 12), ranging from 5.3 to 5.7 million.
However, under the 20-year return period, the cost is the lowest, ranging from 4.72 to
4.91 million. With the increase in rainfall intensity, the total overflow volume continues
to increase. The range of overflow volume corresponding to the Pareto frontier increases
from 21–24.5 m3 to 51–63 m3, with an increase of about 147–159%. At the same time,
the investment cost decreases from 5.3–5.7 billion to 4.92–5.13 million, with a decrease of
20.7–23.0%. Within the same construction cost range (RMB 5.3–5.38 million), the Pareto
frontiers of the 2-year, 3-year, 5-year, and 50-year return periods intersect, so there may be
an optimal layout scheme considering comprehensive factors. Meanwhile, as the rainfall
return period increases, the slope of the Pareto frontier also increases gradually, from
−7.2 × 105 to −5.4 × 105. This indicates that the LID control effect per unit cost is
better at larger return periods. At the same time, it can be seen that the three trends of
the Pareto frontier shown in Section 3.1 are more pronounced at lower return periods
(P < 10 years), and as the return period increases, the differences between these three trends
gradually disappear.
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3.3. Optimal LID Variables of the Study Area

To further compare the impact of different rainfall intensities on the optimization
model and LID layout, this study presents the optimization solutions and results for eight
different return periods. The optimized simulation results of LID layout methods in the
study area, obtained through the coupled model of SWMM and NSGA-II, serve as the basis
for selecting the optimal layout scheme for the corresponding return period. Crowding
distance, as a measure of solution distribution, can assist in selecting solutions with better
diversity and balance. However, when choosing the optimal solution, other factors such as
target weights, feasibility, etc., should also be considered. Only through a comprehensive
consideration of these factors, balancing the actual research needs and decision-makers’
preferences, can the optimal solution be selected. As shown in Figure 13, considering
maximum crowding distance and highest unit cost-effectiveness (concave points) compre-
hensively, eight optimal solutions for different rainfall return periods were chosen.
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Figure 13. Optimal LID deployment scheme selection under different return periods.

The SWMM model was used to simulate CSO events under eight rainfall return
periods, and the layout scales of three types of LID facilities were visualized. As shown
in Figure 14, the optimal layout schemes for CSO overflow volume and investment cost
considering eight different return periods are displayed. The research results indicate that
the spatial distribution of LID layout is heterogeneous, with greater impacts in road and
building-dense areas than in other areas. Under the eight return periods, 35.7% of LID
locations have deployment proportions in the same range, while 87.3% of LID locations
have deployment proportions in adjacent ranges (with deployment proportion differences
less than 20%). These larger-scale deployment locations will be key spatial points to
consider in LID planning and construction.

As the return period increases, as shown in Figure 15, the overall proportion of LID
facilities in the optimal scheme generally shows a decreasing trend, while the CSO volume
gradually increases. There is no apparent trend in the proportion of individual LID facilities.
At the 3-year, 5-year, 20-year, and 30-year return periods, the proportion of permeable
pavement in the optimal scheme is 38.4%; at the 3-year and 5-year return periods, the
proportion of green roofs in the optimal scheme is 39.9%; at the 3-year and 5-year return
periods, the proportion of rain gardens in the optimal scheme is 29.8%.
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4. Discussion

In terms of the simulation results of the optimization model for the 2-year return
period, there are six levels of Pareto solution sets, with similar shapes and distribution
patterns among different levels, presenting a curved distribution. As the cost increases,
the overflow volume gradually decreases, reflecting the control effect of LID facilities on
CSO and the performance of the optimization model. It is observed that on this Pareto
frontier, three distinct trends emerge as the overflow volume increases. The first trend
(AB) resembles a line with a slope of 0 degrees (Figure 10), indicating the existence of
various layout schemes within this frontier where CSO control volume can be increased
without significantly increasing the input cost. The second trend (BC) resembles a line
or arc with a slope of 45 degrees (Figure 10), indicating the existence of various layout
schemes within this trend where CSO control volume can be increased, but correspondingly,
a certain construction cost is required. The third trend (CD) is more similar to a line with
a slope approaching 90 degrees (Figure 10). Unlike the first trend, on this frontier, as
the effectiveness of CSO control increases gradually with different schemes, the cost will
sharply increase. It is generally believed that as investment increases, the improvement
points in the system gradually decrease, and the remaining improvement space becomes
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more limited. This means that with each equal investment, the achievable runoff control
rate will gradually decrease. When reaching a high level of investment, the return on
investment will rapidly decrease. However, the sets of solutions on the Pareto frontier
are contrary to this. In LID multi-objective optimization, the objective functions among
different individuals are nonlinear. This means that within a certain range, increasing
investment may result in nonlinear effects, leading to unconventional changes in returns.

As the rainfall intensity increases, the CSO constraints become more stringent. This
finding indicates that higher rainfall intensity imposes greater demands on LID schemes
to meet CSO control objectives. Consequently, the number of feasible solutions decreases,
leading to a reduction in the quantity of Pareto frontier solution sets. Simultaneously,
with the increase in rainfall intensity, there is a tendency for the Pareto frontier to move
towards the lower left. This suggests an increase in CSO overflow volume, accompanied
by a decrease in LID investment costs. This implies that achieving the same overflow
control effect becomes more challenging at higher rainfall intensities by increasing the scale
of LID construction. Additionally, LID facilities with higher investments are suitable for
addressing CSO resulting from low-return period rainfall. However, blindly increasing
the construction area and cost of LID to address high-return period rainfall may not be the
optimal outcome.

According to Figure 11, the Pareto frontiers under different return periods do not
intersect in terms of CSO volume. To determine a common solution for the eight return
periods, the cost of LID is used as a constraint, and the boundaries of the feasible domain are
defined. The minimum and maximum acceptable costs for LID construction are determined
(as shown in the gray range). This helps to define the range of the feasible domain and
exclude solutions that do not meet the constraints. By determining the boundaries of the
feasible domain, the solution set can be restricted to the range of 5.3–5.38 million, filtering
out solutions within the feasible domain. This means selecting solutions that comply with
the constraint of LID construction cost. By confining the solution set within the feasible
domain, the range of optimal solutions is narrowed, ensuring that the selected solution is
the most appropriate one.

The chosen strategy of simultaneously considering maximum crowding distance
and highest cost-effectiveness (concave points) resulted in the selection of eight optimal
solutions for the different rainfall return periods. This approach ensures that the selected
solutions have both good diversity and higher economic benefits. The selection of these
optimal solutions for the eight return periods reflects a balance based on the comprehensive
consideration of crowding distance and cost-effectiveness. These results provide valuable
insights into the impact of varying rainfall intensities on the optimization model and
LID layout strategies. The optimal LID layout results for the eight return periods offer
crucial information regarding the spatial distribution and proportions of LID facilities.
The heterogeneous spatial distribution indicates variations in the impact of LID layout
across different areas, particularly in densely populated regions. This underscores the
importance of considering local characteristics and focusing on areas with high returns and
potential benefits. The variations in LID facility deployment proportions under different
return periods demonstrate the adaptability of the optimal solutions to specific rainfall
characteristics. The differences in deployment proportions reflect the trade-off between
CSO control effectiveness and investment costs, highlighting the need to strike a balance
between achieving the desired reduction in CSO and optimizing resource allocation.

The research results emphasize the importance of considering the spatial distribution
and proportions of LID facilities in urban areas. Through visualizing the results, decision-
makers can gain a deeper understanding of the optimal layout schemes under different
return periods and prioritize areas that require immediate attention. This information can
guide future planning and decision-making processes, effectively mitigating the impact
of CSO events on densely populated and highly urbanized areas. In conclusion, the
visualization of the optimal LID layout results for the eight return periods provides essential
information about the spatial distribution and proportions of LID facilities.
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5. Conclusions

This study is based on the NSGA-II multi-objective optimization algorithm and hy-
draulic network model to address CSO issues in the research area by optimizing LID
layout schemes. Firstly, the SWMM model of the study area was constructed, and the
types and scales of LID facilities were determined based on the land cover information
of each sub-catchment. These details were then used as optimization variables passed to
the SWMM model for hydrological process simulation and result retrieval. By iteratively
solving through multi-objective optimization, the optimal Pareto frontier results were
obtained. The main conclusions are as follows.

1. The stability of the optimization process and results of the coupled optimization model
were first verified. The model, under designed storm scenarios, was able to obtain re-
sults of the Pareto frontier composed of non-dominated solutions. The results indicate
that the solution sets obtained through Pareto frontier analysis exhibit different trends
concerning cost-benefit. Under low costs, enhancing CSO control effectiveness of the
optimal LID schemes requires a significant increase in construction costs; conversely,
it is the opposite under high costs. There exists a nonlinear relationship between
overflow volume and investment costs among different LID layout schemes, where
increasing the scale of LID facilities does not necessarily imply a linear improvement
in control effectiveness.

2. As rainfall intensity increases, the constraints on CSO become more stringent, resulting
in a decrease in the number of feasible solutions and consequently reducing the
quantity of Pareto frontier solution sets. Additionally, achieving the same overflow
control effect by increasing the scale of LID construction becomes more challenging
under higher rainfall intensities. LID facilities with higher investments are suitable for
addressing CSO issues caused by low-return period rainfall, but blindly increasing
the construction area and cost of LID may not be the optimal layout solution for high-
return period rainfall. When considering the eight return periods, narrowing down
the selection range by using construction costs within the range of 5.3–5.38 million as
a constraint can help find the most suitable layout scheme.

3. By considering the balance between maximum crowding distance and highest cost-
effectiveness, eight optimal solutions were selected for different rainfall return periods.
This approach ensures that the chosen solutions have diversity and higher economic
benefits. The selection range was determined for key LID layout points and their
scales in the research area, achieving a proportion of 35.7%. The variations in the
proportion of LID facility deployment under different return periods reflect the trade-
off relationship between CSO control effectiveness and investment costs.

4. The results of this study aim to construct a coupled model and identify the relationship
between LID layout schemes, investment costs, and combined sewer network over-
flow, particularly LID layout schemes under different rainfall return periods. These
provide urban drainage departments with LID solutions to address overflow risks
under various rainfall return periods, thereby enhancing the operational planning
level of drainage management departments during rainy days. Additionally, quanti-
tative comparisons were made regarding the distribution of LID layout points and
construction proportions under the eight optimal layout schemes, enabling the precise
identification of potential optimal LID layout points when rainfall occurs. This allows
drainage management departments to better address overflow risks in combined
sewer networks during rainy days.
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