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Abstract: Marine water quality significantly impacts human livelihoods and production such as
fisheries, aquaculture, and tourism. Satellite remote sensing facilitates the predictions of large-
area marine water quality without the need for frequent field work and sampling. Prediction of
diffuse attenuation coefficient (Kd), which describes the speed at which light decays as it travels
through water, obtained from satellite-derived ocean color products can reflect the overall water
quality trends. However, current models inadequately explore the complex nonlinear features of
Kd, and there are difficulties in achieving accurate long-term predictions and optimal computational
efficiency. This study innovatively proposes a model called Remote Sensing-Informer-based Kd
Prediction (RSIKP). The proposed RSIKP is characterized by a distinctive Multi-head ProbSparse
self-attention mechanism and generative decoding structure. It is designed to comprehensively and
accurately capture the long-term variation characteristics of Kd in complex water environments while
avoiding error accumulation, which has a significant advantage in multi-dataset experiments due
to its high efficiency in long-term prediction. A multi-dataset experiment is conducted at different
prediction steps, using 70 datasets corresponding to 70 study areas in Hangzhou Bay and Beibu
Gulf. The results show that RSIKP outperforms the five prediction models based on Artificial Neural
Networks (ANN, Convolutional Neural Networks (CNN), Gated Recurrent Unit (GRU), Long Short-
Term Memory Recurrent Neural Networks (LSTM-RNN), and Long Short-Term Memory Networks
(LSTM)). RSIKP captures the complex influences on Kd more effectively to achieve higher prediction
accuracy compared to other models. It shows a mean improvement of 20.6%, 31.1%, and 22.9%
on Mean Absolute Error (MAE), Mean Square Error (MSE), and Mean Absolute Percentage Error
(MAPE). Particularly notable is its outstanding performance in the long time-series predictions of
60 days. This study develops a cost-effective and accurate method of marine water quality prediction,
providing an effective prediction tool for marine water quality management.

Keywords: water quality prediction; diffuse attenuation coefficient; informer; RSIKP; Hangzhou Bay;
Beibu Gulf; long time-series; multi-dataset experiment

1. Introduction

In recent years, marine ecosystems have been impacted by both natural and anthro-
pogenic events, resulting in critical circumstances. The rising pollution levels in seawater
pose a threat to marine organisms and human health. Consequently, it is urgent to imple-
ment timely and effective water quality management to proactively mitigate or prevent
potential harm [1].

Water quality prediction is an essential task in water quality management and plays
a significant role in environmental monitoring, ecosystem sustainability, and the mari-
culture industry. Currently, water quality prediction models can be broadly categorized
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into two primary classes: physical mechanism-based models and data-driven models.
Physical models often require significant amounts of data and processing time [2], as well
as a lengthy process of parameter estimation, calibration, and validation [3]. With the
rise of machine learning and deep learning, the adoption of data-driven models [4] for
water quality prediction has become widespread due to their ability to capture nonlinear
information [5].

Javier García-Alba et al. [6] applied Artificial Neural Networks (ANN) to predict water
quality and achieved higher prediction accuracy and lower computational costs compared
to traditional prediction models. Zhou et al. [7] used an improved grey relational analysis
algorithm to identify pivotal features from a multitude of features and constructed an
LSTM model to predict water quality in Victoria Bay. Peda Gopi Arepalli et al. [8] predicted
water quality in salmon farming areas based on the Gated Recurrent Unit (GRU). Their
findings showed that the GRU outperformed both ANN and LSTM. Additionally, Lalit
Kumar et al. [1] investigated the performance of ANN, Support Vector Regression (SVR),
and LSTM-RNN for predicting turbidity in Hong Kong waters. The results indicated that
LSTM-RNN had the best prediction performance.

The preceding demonstrates the feasibility and effectiveness of neural network models
for water quality prediction. Current water quality prediction studies often use on-site
measurement stations to collect original water quality data. However, this method of
data collection requires significant investments in human resources, materials, and time,
especially for research with an extensive study area. The utilization of satellite ocean color
data products for the prediction of water quality indicators, such as diffuse attenuation
coefficient and chlorophyll-a concentration, has emerged as a viable and promising ap-
proach due to the rapid development of remote sensing technologies. However, adverse
conditions such as cloud cover, sunlight pollution, and high satellite view angles have a
significant impact on ocean color data from satellite sensors, such as MODIS and VIIRS. As
a result, a large number of missing values are observed in the products. This impediment
makes it challenging for researchers to acquire comprehensive and high-quality time-series
data on area water quality indicators. In 2022, Liu et al. [9] adaptly integrated data from
OLCI-Sentinel-3A, VIIRS-SNPP, and VIIRS-NOAA-20. They employed the Data Interpo-
lating Empirical Orthogonal Functions (DINEOF) method to effectively interpolate the
missing data, generating high-quality global gap-free ocean color products.

Compared with VIIRS, OLCI has a narrower mapping bandwidth of 1270 km and
a higher spatial resolution of 300 m, which significantly increases the quantity of valid
data and improves the quality of the exported global gap-free products. Furthermore,
the reliability of this product was demonstrated by calculating the average of the recon-
structed/original monthly median ratios. This study utilized the global gap-free ocean color
products as the source of experimental data due to their high completeness and reliability.
The diffuse attenuation coefficient at 490 nm (Kd(490)) in the product is an apparent optical
parameter [10]. It is primarily influenced by the intrinsic optical properties of water [11],
which reflects the light attenuation caused by compounds in the water (phytoplankton,
organic and inorganic particles, and colored dissolved organic matter (CDOM)) [12] and wa-
ter molecules [13]. Researchers commonly use the attenuation of light in the water column
caused by the scattering and absorption of particles and molecules as a measure of water
turbidity. This approach establishes a correlation between water quality and a quantitative
measure of light transmission capacity [14]. Therefore, Kd(490) is a key indicator used to
measure turbidity and water quality [15,16]. The prediction of Kd(490) in marine waters
contributes to a comprehensive understanding of water quality dynamics. In addition, it
provides decision-making support for optimizing marine conservation strategies.

Current models have not fully explored the complex nonlinear features among rele-
vant sequences in water quality prediction. Issues such as inadequate long-term prediction
accuracy and suboptimal computational efficiency persist. The Transformer model [17],
with its unique attention mechanism, can address the challenges posed by traditional mod-
els when handling nonlinear and nonsmooth time-series data. However, the Transformer
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continues to exhibit high time complexity when used for time-series prediction. This refers
to the computational requirements that increase dramatically as the input sequence grows.
Additionally, it also often exhibits high memory usage and sudden drops in prediction
accuracy [18].

Therefore, this study introduces the Informer model to capture the long-term depen-
dencies in the Kd(490) time series by adaptively learning the key features, which effectively
solves various issues in the Transformer. The Informer integrates innovative elements such
as a highly flexible attention mechanism and a generative decoding structure, showcasing
robust adaptability to variations in sequence length. This facilitates the efficient processing
of Kd(490) time-series data at different prediction steps. The Informer exhibits stronger
adaptability and generalization capabilities when processing Kd(490) time-series data
with intricate influencing factors. This renders it widely applicable across a spectrum of
marine scenarios.

Conventional water quality prediction methods rely on on-site measurement station
data, which results in high input costs and limited prediction areas. Meanwhile, its pre-
diction accuracy is insufficient. To address the above issues, this study proposes a model
called Remote Sensing-Informer-based Kd Prediction (RSIKP). The model cleverly utilizes
global gap-free ocean color products and applies Informer to the prediction of Kd(490)
for the first time. Additionally, we conduct a comprehensive comparison of RSIKP with
five commonly used time-series prediction models using three error evaluation metrics:
Mean Absolute Error (MAE), Mean Square Error (MSE), and Mean Absolute Percentage
Error (MAPE).

The research findings suggest that RSIKP outperforms the alternative model by an
average of 24.9% across three error metrics, demonstrating superior capability in the
long-term prediction of Kd(490). The proposed model is capable of accurately predicting
the overall water quality in large-area sea marine water without the need for on-site
measurement stations. This reduces the cost of prediction and provides effective references
for the management of water quality in the relevant areas.

2. Methodology of Informer

The Google Machine Translation team first proposes the Transformer model [19]. This
model demonstrates strong sequential data modeling capabilities in the field of natural
language processing. Therefore, many researchers believe that Transformer has significant
potential in time-series prediction. However, it is difficult to make effective predictions
for longer time series due to its quadratic time complexity (i.e., the execution time is
proportional to the square of the length of the input sequence), high memory usage, and
sudden drops in prediction accuracy. Informer [20], a variant of Transformer, is presented
at the Annual Meeting of the Association for the Advancement of Artificial Intelligence
(AAAI) [18]. Informer preserves the structure of the encoder–decoder and introduces
a ProbSparse self-attention mechanism based on a long-tail distribution to reduce time
complexity. Meanwhile, Informer effectively addresses issues of high memory usage and
sudden drops in prediction accuracy through the incorporation of a distillation mechanism
and a generative decoder.

Informer is a crucial component of RSIKP, and it is combined with satellite-derived
ocean color products to predict the waters’ Kd in Hangzhou Bay and Beibu Gulf, fully
leveraging its strengths in time-series prediction. The structure of Informer is shown in
Figure 1. The left portion of the figure depicts the encoder, which is employed to extract
the long-term dependencies of the Kd(490) long sequence inputs. The orange squares
represent the Multi-head ProbSparse self-attention mechanism. This structure replaces
the traditional self-attention mechanism to reduce time complexity and memory usage.
The pink squares represent the one-dimensional convolutional layer and the max-pooling
layer, collectively constituting the distillation layer. The right portion of the figure depicts
the decoder, which is responsible for the generative decoding of the intermediate vector
output from the encoder. This process generates predictions of future Kd(490) of marine
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areas. In the proposed model, Informer is capable of accurately predicting the Kd(490) of
marine areas. The functionalities of the encoder and decoder of the Informer model will be
explained separately in the following sections.

Water 2024, 16, x FOR PEER REVIEW 4 of 25 
 

 

output from the encoder. This process generates predictions of future Kd(490) of marine 
areas. In the proposed model, Informer is capable of accurately predicting the Kd(490) of 
marine areas. The functionalities of the encoder and decoder of the Informer model will 
be explained separately in the following sections. 

 
Figure 1. The structure of Informer. 

2.1. Encoder 
The encoder comprises a distillation layer and a Multi-head ProbSparse self-attention 

mechanism. The design aims to capture long-term dependencies from long-sequence in-
puts. The distillation layer uses a one-dimensional convolution operation and a pooling 
layer to prioritize high-importance features. This distillation process reduces the length of 
the input sequence by half for the next layer and effectively addresses the issue of high 
memory usage. The process from layer j  to layer 1+j  is as follows: 

[ ]( )( )( )
AB

t
j

t
j ConvldELUMaxPool XX =+1  (1)

The ProbSparse self-attention mechanism is considered a core component of the en-
coder. It optimizes the model’s encoding of crucial feature information achieved by selec-
tively emphasizing more significant query matrices. This approach reduces the need for 
unnecessary attention-counting calculations. Additionally, the attention mechanism’s 
Multi-head structure enhances the model’s ability to comprehend input information in 
multiple dimensions. This enhancement enables prediction results to include information 
on a wider range of feature dimensions, effectively enhancing prediction accuracy. In the 
Transformer framework, the traditional self-attention mechanism takes a tuple as input 
and scales the dot product through the query-key-value (Q-K-V) method. The mathemat-
ical expression for this mechanism is as follows: 

Figure 1. The structure of Informer.

2.1. Encoder

The encoder comprises a distillation layer and a Multi-head ProbSparse self-attention
mechanism. The design aims to capture long-term dependencies from long-sequence
inputs. The distillation layer uses a one-dimensional convolution operation and a pooling
layer to prioritize high-importance features. This distillation process reduces the length
of the input sequence by half for the next layer and effectively addresses the issue of high
memory usage. The process from layer j to layer j + 1 is as follows:

Xt
j+1 = MaxPool

(
ELU

(
Convld

([
Xt

j

]
AB

)))
(1)

The ProbSparse self-attention mechanism is considered a core component of the
encoder. It optimizes the model’s encoding of crucial feature information achieved by
selectively emphasizing more significant query matrices. This approach reduces the need
for unnecessary attention-counting calculations. Additionally, the attention mechanism’s
Multi-head structure enhances the model’s ability to comprehend input information in
multiple dimensions. This enhancement enables prediction results to include information
on a wider range of feature dimensions, effectively enhancing prediction accuracy. In the
Transformer framework, the traditional self-attention mechanism takes a tuple as input and
scales the dot product through the query-key-value (Q-K-V) method. The mathematical
expression for this mechanism is as follows:

A(Q, K, V) = so f tmax

((
QKT)
√

n

)
V (2)
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where Q ∈ RLQ×n, K ∈ RLK×n, and V ∈ RLV×n are query matrix, key matrix, and value
matrix, respectively. And n is the input dimension. K corresponds to V, while Q queries
the corresponding V based on K.

The attention score for the i-th query matrix is defined as a kernel smoother and is
expressed in probability form as

A(qi, K, V) = ∑
j

k
(
qi, kj

)
∑
l

k(qi, kl)
vj = Ep(kj |qi)

[vj] (3)

where p(ki|qi ) =
k(qi ,kj)

∑
l

k(qi ,ki)
, k(qi, ki) selects the asymmetric exponential kernel exp(qik

T
j /
√

n),

E is the expected value, and p is the conditional probability.
To identify query vectors that have a significant influence on attention scores,

Zhao et al. [18] used the Kullback–Leibler (KL) divergence formula to measure the sparsity
of the i-th query vector. Equation (4) quantifies the deviation of the attention distribution
probabilities from the uniform distribution.

M(qi, K) = ln
LK

∑
j=1

exp
(qikj√

n

)
− 1

LK

LK

∑
j=1

qik
T
j√

n
(4)

where the first term represents the Log-Sum-Exp (LSE) of the i-th query vector across all
keys, while the second term represents its arithmetic mean. If the value of M(qi, K) is large,
it indicates that the attention probability distribution of the current query vector is more
diverse and distinct from the uniform distribution. This implies that the value of the dot
product between the current query vector and all key vectors is more diverse. Therefore,
the current query vector is considered to be an active query vector whose corresponding
element occupies a pivotal position within the entirety of the sequence.

The attention score is calculated by taking the dot product of each key vector with
the Top-u query vectors after filtering the query matrix. This process is defined by the
following equation:

A(Q, K, V) = so f tmax


(

¯
QKT

)
√

n

V (5)

Unlike Equation (2),
¯
Q refers to the Top-u query matrices that have large contribution

values to the attention score. This reduces the computational complexity from O(L2) to
O(L log L), decreasing the computation load of the self-attention mechanism.

2.2. Decoder

The decoder includes a masked Multi-head ProbSparse self-attention mechanism, a
Multi-head attention mechanism, and a fully connected layer. Its input sequence consists
of two parts. The former is a historical sequence that is used to aid in prediction. The
latter is the placeholder sequence to be predicted, where 0 values are used for sequence
placeholders. At moment t, the input sequence is represented as

Xt
de = Concat

(
Xt

token, Xt
0
)
∈ R(Ltoken+Ly)nmodel (6)

The masked Multi-head ProbSparse self-attention mechanism in the decoder effec-
tively prevents each time step from being interfered with by the future time steps’ infor-
mation, avoiding the auto-regressive phenomenon. Upon completion of the self-attention
and attention calculation with the encoder, the final output is obtained through a fully
connected layer. The generative decoder in Informer requires only one forward pass to
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produce all prediction results, which further improves prediction speed and reduces the
risk of error accumulation.

The RSIKP parameter settings used in this study are shown in Table 1.

Table 1. Parameters setting of RSIKP.

Parameters Description Value

gpu GPU cuda1
loss loss function “mse”

patience early stopping patience 3
inverse inverse of data True
enc_in encoder input size 1
dec_in decoder input size 1

dec_out decoder output size 1
n_heads numbers of heads 8
d_model model dimension 512
dropout dropout 0.05

batch_size Batch size 32
enc_layers layers of encoder 2
dec_layers layers of decoder 1
seq_length sequence length 15–90
lab_length lable length 7–60
pre_length prediction length 7–60

train_epochs train epochs 500
learning_rate leaning rate 0.0001

3. Experimental Methods
3.1. Study Area

In this study, we select 70 study areas in Hangzhou Bay and Beibu Gulf based on
the daily mean Kd(490). The daily mean Kd(490) of all study areas ranges from 0.04 m−1

to 5 m−1, covering areas with varying levels of turbidity. The shape of the study area
is approximated as a square with sides of 9 km, based on the inherent properties of the
utilized products.

3.1.1. Hangzhou Bay

Hangzhou Bay is an estuary situated in the northern part of Zhejiang Province, China.
It is bordered to the north by the mouth of the Yangtze River, connected to the west by the
Qiantang River, and faces the East China Sea to the east. The Bay’s geographical coordinates
range from 120.9 to 122.1◦ E and 29.9 to 30.9◦ N. Its shape resembles a trumpet, with a
concave north and a convex south. The bay spans about 85 km from its apex at the Sipu
section to its mouth at the Luchao Port section. Its width gradually increases from 19.4 km
to 98.5 km towards the east.

The Hangzhou Bay region is crucial to the economic and social development of
Zhejiang Province. It is a robust tidal estuary with limited water exchange, connecting
to the East China Sea. The global greenhouse effect has caused a rise in sea levels and an
increase in the frequency of tidal fluctuations. As a result, this phenomenon further reduces
water exchange and restricts the dispersion of pollutants [21]. According to data released
by the State Oceanic Administration, Hangzhou Bay has consistently exhibited Class IV
poor water quality since 2001, making it the bay with the most unfavorable water quality
among the 16 bays included in the statistics [22].

The left portion of Figure 2 shows the spatial distribution of Kd(490) in Hangzhou
Bay on a given day. The 3 subplots in the right portion of the figure illustrate the variation
of kd(490) with longitude and time at 3 given latitudes. Their enlarged figures are shown
as Figures A1–A3 in Appendix A, where specific latitudes and longitudes are noted. The
period of analysis is from February 2018 to October 2023. The Hangzhou Bay exhibits a
high turbidity level, with Kd(490) varying spatially and temporally between 4 and 6 m−1.



Water 2024, 16, 1279 7 of 25

We select 20 study areas in Hangzhou Bay, and the locations, along with the daily mean
Kd(490) values for each area, are shown in Figures 3 and 4. It is pertinent to mention that
the specific latitude and longitude data for the 20 study areas are presented in Table A1 in
Appendix A, with the numbers 1–20.
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3.1.2. Beibu Gulf

The Beibu Gulf is situated in the northwestern region of the South China Sea, with
geographical coordinates ranging from 18.1 to 21.6◦ N and 105.6 to 109.7◦ E. It is bordered
by the Leizhou Peninsula of Guangdong, Hainan Island, Guangxi Zhuang Autonomous
Region, and Vietnam. The Gulf is abundant in marine biological resources and biodiver-
sity [23], with a continental coastline of approximately 1595 km and an island coastline of
up to 605 km.

The construction of the Beibu Gulf Economic Zone has been designated as a national
strategy. As a result, the layout of heavy chemical industries and coastal industries are
expanding in the region. However, this expansion poses significant challenges to the
ecosystem of the Beibu Gulf, which raises widespread concerns about ecological security
matters such as water security and environmental security in the region.

Similar to Figure 2, the left portion of Figure 5 shows the spatial distribution of Kd(490)
in the Beibu Gulf on a given day. The 3 subplots in the right portion of the figure illustrate
the variation of kd(490) with longitude and time at 3 given longitudes. Their enlarged
figures and specific latitude and longitude information are shown as Figures A4–A6 in
Appendix A. In the coastal waters of Beibu Gulf, the Kd(490) values are relatively high and
vary in range from 0.5 to 2.8 m−1, indicating turbid waters. However, for the majority of
the Beibu Gulf’s sea areas, the Kd(490) is below 0.3 m−1, indicating clear or relatively clear
waters. Research on turbidity mechanisms in marine waters has shown that water turbidity
is typically dominated by seasonal phytoplankton in waters with Kd(490) ≤ 0.3 m−1.
In contrast, in waters with Kd(490) > 0.3 m−1, water turbidity is typically attributed to
high sediment concentration loads due to various physical processes, such as sediment
resuspension and river runoff [14]. Using Kd(490) = 0.3 m−1 as a threshold, we can ascertain
the turbidity mechanisms of marine waters, as well as the degree of turbidity. Consequently,
this study classifies 50 selected areas in the Beibu Gulf into two groups based on the daily
mean Kd(490) = 0.3 m−1, i.e., the Beibu Gulf turbid group and the Beibu Gulf clear group.
Figures 6 and 7 show the location and daily mean Kd(490) for each study area. The specific
latitude and longitude information for the 50 study areas is presented in Table A1 of
Appendix A, with numbers 21–70.
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3.2. Experimental Framework

The basic framework of the diffuse attenuation coefficient prediction experiment
includes data preprocessing, data splitting, model training, model evaluation, and result
analysis, as shown in Figure 8.



Water 2024, 16, 1279 11 of 25
Water 2024, 16, x FOR PEER REVIEW 12 of 25 
 

 

 
Figure 8. Framework of the experiment. 

4. Results and Discussion 
This study systematically evaluates the prediction performance of RSIKP and five 

other common prediction models by comparing and analyzing their error metrics on the 
Hangzhou Bay dataset group, the Beibu Gulf turbid dataset group, and the Beibu Gulf 
clear dataset group. In the experiments, we set different prediction step lengths (pre_len) 
at 15 days (15 d), 30 days (30 d), and 60 days (60 d). Tables 2–4 summarize the mean error 
metrics of all models on the three dataset groups, and the best results are shown in bold. 
In addition, we visualize the comparative results of the error metrics on each dataset 
through the line plots (refer to Figures 9–11). 

Table 2. Mean error metrics for all models on the Hangzhou Bay dataset group. 

Figure 8. Framework of the experiment.

• Data preprocessing: The global daily gap-free Kd(490) product used in this study
covers the period from 9 February 2018 to 2 October 2023. The daily global Kd(490)
data products are sampled based on the selected study areas. The time-series datasets
for Kd(490) are obtained for each study area. The datasets are categorized into 3 groups
based on the area location and daily mean Kd(490), i.e., the Hangzhou Bay dataset
group, the Beibu Gulf turbid dataset group, and the Beibu Gulf clear dataset group.
To address missing values in individual datasets, we use temporal linear interpolation.
Additionally, we standardize the time-series data to facilitate model training.

• Data splitting: In this study, we divide the training, validation set, and test set accord-
ing to the ratio of 7:1:2. The length of the test set spans over a year, which enhances
the reliability of the test results to some extent.

• Model training: The RSIKP, ANN, CNN, GRU, LSTM-RNN, and LSTM models are
analyzed and compared on the 3 dataset groups mentioned above at 15-day, 30-day,
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and 60-day prediction steps. It is conducted to identify the model that demonstrates
optimal performance.

• Model evaluation: Mean Absolute Error (MAE), Mean Square Error (MSE), and Mean
Absolute Percentage Error (MAPE) are commonly used error evaluation metrics. MAE
represents the real error between actual values and predicted values and is solely
dependent on the data size. MSE guarantees that each term is positive and possesses
differentiability. MAPE, which is expressed as a percentage, serves as a valuable
metric for comparing predictions across various proportions. The 3 error metrics are
expressed as

MAE =
1
N

N

∑
i=1

∣∣Ki − K̂i
∣∣ (7)

MSE =
1
N

N

∑
i=1

(
Ki − K̂i

)2

(8)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣Ki − K̂i
Ki

∣∣∣∣ (9)

where Ki is the i-th actual Kd(490), K̂i is the i-th predicted Kd(490), and N is the total
number of predicted points.

• Results analysis: We visualized the error metrics of each model on different dataset
groups. We could then more intuitively compare and analyze the performance of the
models. In addition, we analyzed the variation in prediction performance of models
as the prediction step increased.

4. Results and Discussion

This study systematically evaluates the prediction performance of RSIKP and five
other common prediction models by comparing and analyzing their error metrics on the
Hangzhou Bay dataset group, the Beibu Gulf turbid dataset group, and the Beibu Gulf
clear dataset group. In the experiments, we set different prediction step lengths (pre_len) at
15 days (15 d), 30 days (30 d), and 60 days (60 d). Tables 2–4 summarize the mean error
metrics of all models on the three dataset groups, and the best results are shown in bold. In
addition, we visualize the comparative results of the error metrics on each dataset through
the line plots (refer to Figures 9–11).

Table 2. Mean error metrics for all models on the Hangzhou Bay dataset group.

pre_len
Model RSIKP ANN CNN GRU LSTM-RNN LSTM

15 d
MAE 0.5219 0.5302 0.6615 0.6487 0.5808 0.6552
MSE 0.4471 0.4604 0.7124 0.6912 0.5582 0.7147

MAPE 13.0709 13.5310 16.7819 16.4885 14.8375 16.5615

30 d
MAE 0.5517 0.6107 0.7285 0.6795 0.6104 0.7061
MSE 0.4763 0.5993 0.8511 0.7442 0.6036 0.7867

MAPE 13.8742 15.6400 18.4566 17.4800 15.5915 18.0747

60 d
MAE 0.5437 0.7433 0.8087 0.7312 0.6629 0.7106
MSE 0.4676 0.8845 1.0333 0.8273 0.6986 0.8046

MAPE 14.3187 19.0921 20.7217 19.2146 17.2930 18.6928

The bold numbers indicate the lowest error value of all models.
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Table 3. Mean error metrics for all models on the Beibu Gulf turbid dataset group.

pre_len
Model RSIKP ANN CNN GRU LSTM-RNN LSTM

15 d
MAE 0.2023 0.2137 0.2740 0.2530 0.2317 0.2667
MSE 0.0973 0.1046 0.1682 0.1578 0.1258 0.1733

MAPE 29.5971 33.3157 42.6953 38.3391 35.8097 39.6464

30 d
MAE 0.2217 0.2687 0.3237 0.2812 0.2546 0.2922
MSE 0.1132 0.1536 0.2234 0.1811 0.1404 0.1929

MAPE 32.5673 42.2344 51.6866 43.4737 39.4721 43.6236

60 d
MAE 0.2262 0.3373 0.3635 0.3028 0.2588 0.2941
MSE 0.1168 0.2372 0.2483 0.2000 0.1525 0.1815

MAPE 32.9484 53.8294 61.9271 48.2803 40.1906 46.1878

The bold numbers indicate the lowest error value of all models.
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Table 4. Mean error metrics for all models on the Beibu Gulf clear dataset group.

pre_len
Model RSIKP ANN CNN GRU LSTM-RNN LSTM

15 d
MAE 0.0284 0.0295 0.0374 0.0340 0.0311 0.0346
MSE 0.0038 0.0040 0.0063 0.0062 0.0048 0.0051

MAPE 18.6176 19.6451 24.9659 22.2344 20.7147 22.9925

30 d
MAE 0.0324 0.0395 0.0489 0.0391 0.0355 0.0434
MSE 0.0045 0.0063 0.0089 0.0057 0.0051 0.0081

MAPE 22.1245 27.1191 34.1425 28.6891 25.3383 30.1258

60 d
MAE 0.0313 0.0532 0.0635 0.0426 0.0378 0.0426
MSE 0.0039 0.0096 0.0126 0.0065 0.0059 0.0071

MAPE 22.1100 39.3913 47.4426 31.3254 28.1619 30.0850

The bold numbers indicate the lowest error value of all models.
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4.1. Analysis of Error Metrics

In Hangzhou Bay’s highly turbid waters, RSIKP demonstrates exceptional prediction
performance. The mean values for MAE, MSE, and MAPE are 0.5391, 0.4637, and 13.7546,
respectively. These metrics represent the most favorable outcomes among all models. Fur-
thermore, as depicted in Figure 9, the error line of RSIKP (labeled in red) gradually diverges
from the error lines of other models as the prediction step increases. The observation
suggests that RSIKP has a growing advantage in prediction performance as the prediction
step increases.

When pre_len = 15 d, the error metrics of ANN on individual datasets are similar
to those of RSIKP. However, the mean values of MAE, MSE, and MAPE of RSIKP are
significantly better than those of ANN. Out of the 20 datasets, RSIKP outperforms ANN in
terms of MAPE on 18 datasets. Javier García-Alba and Amir Hamzeh Haghiabi et al. [6,24]
used ANN for water quality prediction and had better prediction results. The ANN exhibits
strong nonlinear modeling abilities due to the inclusion of the Rectified Linear Unit (ReLU).
However, compared to RSIKP, ANN has limitations in comprehensively and centrally
capturing the variation features of Kd(490) due to inherent structural constraints. And
it tends to over-adapt to noise and subtle features in the training data, which makes it
difficult to generalize to new data and results in prediction biases. In RSIKP, the Multi-head
self-attention mechanism allows for a thorough extraction of features from the Kd(490)
time series across multiple dimensions. Therefore, RSIKP can more accurately capture the
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variation features of Kd(490) induced by natural or anthropogenic events. Additionally,
the sparsity of self-attention allows the RSIKP to focus on capturing more critical features
of Kd(490) variations. Due to its comprehensiveness and precision in feature extraction,
RSIKP demonstrates excellent performance in short-term and mid-term prediction.

When pre_len = 30 d and pre_len = 60 d, the overall prediction performance of LSTM-
RNN is slightly inferior to that of RSIKP. However, it is noteworthy that RSIKP outperforms
LSTM-RNN in three error metrics on all 20 datasets. L Kumar et al. [1] applied LSTM-RNN
in turbidity prediction in Hong Kong waters. The model effectively addresses the issues
of gradient vanishing and exploding in RNN by introducing LSTM structure and can
better capture time dependencies. However, the recurrent structure and dynamic decoding
structure of LSTM-RNN result in lower computational efficiency and persistent error
accumulation. In contrast, RSIKP has lower computational complexity and can avoid the
problem of error accumulation with its ProbSparse self-attention mechanism and generative
decoding structure. Therefore, compared to LSTM-RNN, RSIKP demonstrates superior
efficiency in long-sequence prediction and achieves higher accuracy.

The LSTM and GRU, two crucial variants of RNNS, both demonstrate a remark-
able ability to effectively capture long-term dependencies when dealing with time-series
data. As a result, their prediction performance exceeds that of ANN and CNN when
pre_len = 60 d. LSTM is constructed by three gate structures, i.e., the input gate, the forget
gate, and the output gate. And the cell state introduced in LSTM preserves long-term
information in the Kd(490) time series better. GRU is composed of two gate structures, i.e.,
the update gate and the reset gate. It demonstrates superior prediction efficiency due to
its simple structure. However, the merging of the cell state and hidden state into a single
state in GRU may result in the loss of long-term information. Therefore, the prediction
performance of GRU is inferior to that of LSTM when pre_len = 60 d. Additionally, among
the six models, the CNN demonstrates relatively poor predictive performance. Although
it can capture some local features in time series, its insufficient consideration of temporal
dependencies still results in sub-optimal performance in temporal prediction.

On the Beibu Gulf turbid dataset group, we observe distinctions between RSIKP and
other models, which are similar to those observed in the Hangzhou Bay dataset group.
Among all models, RSIKP shows the best performance on all three error metrics. And it is
noteworthy that the error metrics of all models exhibit an increase compared to those on
the Hangzhou Bay dataset group. In response to this phenomenon, we conduct a detailed
analysis of this dataset group. The study areas corresponding to the Beibu Gulf turbid
dataset group are located near the coastline, characterized by high population density and
industrial development within the coastal regions. The frequent anthropogenic events
impact the variations of Kd(490) in coastal waters, resulting in a high degree of instability
and stochasticity in the corresponding Kd(490) time series. This makes predictions more
difficult. However, RSIKP still maintains robust prediction performance with a mean
prediction accuracy of nearly 70% on the Beibu Gulf turbid datasets, which are characterized
by highly complex features. Therefore, it can be concluded that RSIKP demonstrates
outstanding adaptability and reliability in complex and unstable marine environments and
has stronger robustness against variations in datasets. In spite of the complexity of the
factors affecting Kd(490), an important indicator of marine water quality, RSIKP maintains
good predictive accuracy and reliability. This finding provides substantial support for
marine water quality predictions.

On the Beibu Gulf clear dataset group, RSIKP still demonstrates outstanding prediction
performance. Our analysis reveals a clear seasonality in the time series of Kd(490) in this
group. According to Shi Wei et al.’s study on turbidity mechanisms in marine waters,
the variation of Kd(490) is dominated by seasonal phytoplankton blooms in waters with
Kd(490) ≤ 0.3 m−1 [15]. Thus, it is evident that seasonal features dominate among the
various features. The RSIKP can accurately capture the seasonal features in the variations
of Kd(490) due to its centralized learning features and deep network structure. Apart from
seasonality, other factors such as ocean currents and wind [25] also affect the variations
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of Kd(490). The RSIKP can extract these underlying features through its robust multi-
dimension feature extraction capability. Therefore, the RSIKP still demonstrates superior
prediction performance compared to other models in time series with clear seasonality.

4.2. Effect of Prediction Step on Performance

After analyzing the experimental results on the three dataset groups, it is observed
that the mean error metric of ANN is second only to RSIKP when pre_len = 15 d. The
prediction performance of LSTM-RNN is second only to RSIKP when pre_len = 30 d and
pre_len = 60 d. For the three prediction models that perform prominently, we further
compare and analyze the changes in their error metrics as the prediction step increases.
To quantify the extent of the changes in the error metrics, we introduce three metrics, i.e.,
GMAE, GMSE, and GMAPE. These metrics indicate the rate of change in three error metrics
as the prediction step increases. The expressions for three metrics are as follows:

GMAE =

(
MAEpre_len2 −MAEpre_len1

)
MAEpre_len1

∗ 100% (10)

GMSE =

(
MSEpre_len2 −MSEpre_len1

)
MSEpre_len1

∗ 100% (11)

GMAPE =

(
MAPEpre_len2 −MAPEpre_len1

)
MAPEpre_len1

∗ 100% (12)

where pre_len1 and pre_len2 represent two different prediction steps, with pre_len2 being
greater than pre_len1. For example, we use Equation (10) with pre_len1 = 15 d and
pre_len2 = 30 d to calculate GMAE between prediction steps of 15 days and 30 days (15–30 d).
Table 5 and Figure 12 illustrate the trend in the error metrics of the three models on the
three dataset groups as the prediction step increases.

Upon analyzing Figure 12 and Table 5, it is evident that the error metrics of RSIKP show
only a slight upward trend as the prediction step increases. The average MAPE of RSIKP
only increases by 13.2% when pre_len is increased from 15 d to 60 d, maintaining satisfactory
prediction performance. Notably, as pre_len increases from 30 d to 60 d, the MAE and MSE
metrics of RSIKP exhibit a marginal decrease in the Hangzhou Bay dataset group and the
Beibu Gulf clear dataset group. This observation further confirms the high applicability
of RSIKP in long-time-series prediction. In contrast, while the prediction performance of
ANN can approach that of RSIKP when pre_len = 15 d, the three error metrics of ANN
increase significantly as the prediction step increases. Specifically, the average MAPE of
ANN increases by 67.7% when pre_len increases from 15 d to 60 d, indicating a substantial
degradation in prediction performance. Therefore, It can be concluded that ANN is only
suitable for the shorter time-series prediction. The error metrics of LSTM-RNN exhibit a
relatively small change rate compared to ANN. However, the change rate in error metrics
of LSTM-RNN is significantly higher than that of RSIKP on the Hangzhou Bay dataset
group and the Beibu Gulf clear dataset group. Furthermore, the overall error of LSTM-
RNN is significantly higher than that of RSIKP. The above analysis demonstrates the clear
advantages of RSIKP in long time-series prediction.
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Table 5. The change rate in error metrics of RSIKP, ANN, and LSTM-RNN as the prediction step
increases on 3 dataset groups.

Dataset Group Change Rate RSIKP ANN LSTM-RNN

Hangzhou Bay

15–30 d
GMAE 5.7099 15.1829 5.0964
GMSE 6.5310 30.1694 8.1333

GMAPE 6.1457 15.5864 5.0817

30–60 d
GMAE −1.4501 21.7128 8.6009
GMSE −1.8266 47.5889 15.7389

GMAPE 3.2038 22.0723 10.9130

15–60 d
GMAE 4.1770 40.1924 14.1357
GMSE 4.5851 92.1156 25.1523

GMAPE 9.5464 41.0990 16.5493

Beibu Gulf turbid

15–30 d
GMAE 9.5897 25.7370 9.8835
GMSE 16.3412 46.8451 11.6057

GMAPE 10.0354 26.7703 10.2274

30–60 d
GMAE 2.0298 25.5303 1.6496
GMSE 3.1802 54.4271 8.6182

GMAPE 1.1702 27.4539 1.8203

15–60 d
GMAE 11.8141 57.8381 11.6962
GMSE 20.0411 126.7686 21.2242

GMAPE 11.3231 61.5737 12.2338
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Table 5. Cont.

Dataset Group Change Rate RSIKP ANN LSTM-RNN

Beibu Gulf clear

15–30 d
GMAE 14.0845 33.8983 14.1479
GMSE 18.4211 57.5000 6.2500

GMAPE 18.8365 38.0451 22.3204

30–60 d
GMAE −3.3951 34.6835 6.4789
GMSE −13.3333 52.3810 15.6863

GMAPE −0.0655 45.2530 11.1436

15–60 d
GMAE 10.2113 80.3390 21.5434
GMSE 2.6316 140.0000 22.9167

GMAPE 18.7586 100.5146 35.9513

5. Conclusions and Prospects

The diffuse attenuation coefficient (Kd) is a crucial apparent optical parameter that
reflects the rate of light attenuation in the water. It serves as an important indicator of water
quality and turbidity. This paper innovatively applies RSIKP to the prediction of Kd in
marine waters. Multi-dataset prediction experiments are conducted at different steps for
20 areas in Hangzhou Bay and 50 areas in the Beibu Gulf. And we evaluate the performance
of six prediction models using three error metrics. The results show that RSIKP achieves
the optimal performance on three dataset groups. This model outperforms the other five
models by averages of 20.6%, 31.1%, and 22.9% on MAE, MSE, and MAPE, which demon-
strates its strong prediction potential in the prediction of marine waters’ Kd. Furthermore,
we analyzed the effect of the prediction step on performance for high-performing predic-
tion models, i.e., RSIKP, ANN, and LSTM-RNN. The MAPE of RSIKP increased by only
13.2% on average when the prediction step increased from 15 days to 60 days. In contrast,
both ANN and LSTM-RNN experience a much larger increase in MAPE, with an average
increase of 67.7% and 21.6%, respectively. This statement proves that the RSIKP is capable
of maintaining excellent performance in long-time-series prediction. The RSIKP proposed
in this study achieves accurate prediction of the variations of Kd(490) in marine water, a key
indicator of water quality. In particular, RSIKP demonstrates superior performance in the
60-day long-term prediction compared to other prediction models, enabling the monitoring
of water quality trends over a longer period of time in the future. This augments the ability
to monitor and respond to variations in seawater quality, which promotes the optimization
of environmental conservation measures in the coastal region.

It is our hope that researchers will apply remote sensing data and neural network
models to water quality prediction with greater frequency to address the high cost and
large regional constraints on water quality prediction. This will enhance the maturity
of the application of remote sensing data in water quality prediction. Additionally, the
improvement of the precision of water quality prediction will provide more scientific and
reliable guidance for marine water quality management and environmental management
in coastal areas. Finally, considering the outstanding performance of RSIKP, we also plan
to integrate it into water quality prediction in specific waters. Our aim is to make practical
contributions to water quality management.
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Appendix A

Table A1. The specific latitude and longitude of the study areas in Hangzhou Bay and Beibu Gulf.

Sea Location Number Latitude Longitude

Hangzhou Bay

1 30.792◦ N 121.875◦ E
2 30.542◦ N 121.875◦ E
3 30.292◦ N 121.875◦ E
4 30.125◦ N 121.875◦ E
5 30.792◦ N 121.708◦ E
6 30.625◦ N 121.708◦ E
7 30.458◦ N 121.708◦ E
8 30.292◦ N 121.708◦ E
9 30.125◦ N 121.708◦ E

10 30.708◦ N 121.542◦ E
11 30.541◦ N 121.542◦ E
12 30.292◦ N 121.542◦ E
13 30.708◦ N 121.458◦ E
14 30.458◦ N 121.458◦ E
15 30.625◦ N 121.375◦ E
16 30.375◦ N 121.375◦ E
17 30.625◦ N 121.292◦ E
18 30.542◦ N 121.208◦ E
19 30.458◦ N 121.042◦ E
20 30.291◦ N 120.875◦ E

Beibu Gulf

21 21.375◦ N 109.125◦ E
22 21.375◦ N 109.292◦ E
23 21.375◦ N 109.375◦ E
24 21.375◦ N 109.625◦ E
25 21.375◦ N 109.792◦ E
26 21.375◦ N 109.875◦ E
27 21.208◦ N 109.125◦ E
28 21.208◦ N 109.208◦ E
29 21.208◦ N 109.292◦ E
30 21.208◦ N 109.458◦ E
31 20.792◦ N 108.875◦ E
32 20.792◦ N 109.042◦ E
33 20.792◦ N 109.375◦ E
34 20.542◦ N 107.375◦ E
35 20.542◦ N 107.542◦ E
36 20.542◦ N 107.792◦ E
37 20.542◦ N 108.042◦ E
38 20.542◦ N 108.292◦ E
39 21.458◦ N 109.625◦ E
40 21.125◦ N 109.625◦ E
41 20.958◦ N 109.625◦ E
42 20.708◦ N 109.708◦ E
43 20.458◦ N 109.792◦ E
44 20.292◦ N 109.875◦ E
45 21.042◦ N 109.375◦ E
46 20.875◦ N 109.458◦ E
47 20.708◦ N 109.542◦ E
48 20.625◦ N 109.458◦ E
49 20.458◦ N 109.542◦ E
50 20.292◦ N 109.625◦ E

https://coastwatch.noaa.gov/cwn/products/noaa-msl12-multi-sensor-dineof-global-9km-gap-filled-products-chlorophyll-diffuse.html
https://coastwatch.noaa.gov/cwn/products/noaa-msl12-multi-sensor-dineof-global-9km-gap-filled-products-chlorophyll-diffuse.html
https://coastwatch.noaa.gov/cwn/products/noaa-msl12-multi-sensor-dineof-global-9km-gap-filled-products-chlorophyll-diffuse.html
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Table A1. Cont.

Sea Location Number Latitude Longitude

Beibu Gulf

51 20.708◦ N 106.958◦ E
52 20.625◦ N 106.875◦ E
53 20.625◦ N 106.792◦ E
54 20.542◦ N 106.792◦ E
55 20.458◦ N 106.708◦ E
56 20.292◦ N 106.708◦ E
57 20.208◦ N 106.708◦ E
58 20.875◦ N 108.042◦ E
59 20.875◦ N 108.208◦ E
60 20.875◦ N 108.375◦ E
61 20.875◦ N 108.542◦ E
62 18.708◦ N 106.792◦ E
63 18.542◦ N 106.875◦ E
64 18.625◦ N 106.958◦ E
65 18.708◦ N 107.042◦ E
66 18.458◦ N 107.208◦ E
67 18.792◦ N 106.875◦ E
68 18.875◦ N 107.042◦ E
69 18.542◦ N 107.042◦ E
70 18.458◦ N 106.958◦ E
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