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Abstract: In biosorption research, a fairly broad range of mathematical models are used to 

correlate discrete data points obtained from batch equilibrium, batch kinetic or fixed bed 

breakthrough experiments. Most of these models are inherently nonlinear in their 

parameters. Some of the models have enjoyed widespread use, largely because they can be 

linearized to allow the estimation of parameters by least-squares linear regression. 

Selecting a model for data correlation appears to be dictated by the ease with which it can 

be linearized and not by other more important criteria such as parameter accuracy or 

theoretical relevance. As a result, models that cannot be linearized have enjoyed far less 

recognition because it is necessary to use a search algorithm for parameter estimation. In 

this study a real-coded genetic algorithm is applied as the search method to estimate 

equilibrium isotherm and kinetic parameters for batch biosorption as well as breakthrough 

parameters for fixed bed biosorption. The genetic algorithm is found to be a useful 

optimization tool, capable of accurately finding optimal parameter estimates. Its 

performance is compared with that of nonlinear and linear regression methods. 
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List of Symbols, Acronyms and Abbreviations 

b  Langmuir constant 

BDST  Bed-depth-service-time 

Ce  Equilibrium solution concentration 

Ci  Feed solution concentration 

Ct  Solution concentration at fixed bed outlet at time t 

COD  Coefficient of determination 

erf(x)  Error function of x 

GA  Genetic algorithm 

k1  Lagergren rate constant 

kBA  Bohart-Adams rate constant 

kn  nth order rate constant 

KF  Freundlich parameter 

n  Reaction order 

nF  Freundlich exponent 

N  Sorption capacity of sorbent per unit volume of fixed bed 

p  Number of observations 

qe  Sorbed concentration at Ce 

qm  Langmuir saturation capacity 

qt  Sorbed concentration at time t 

SSE  Sum of squared errors 

t  Time 

tc  Characteristic time 

u  Superficial velocity 

wj  Weighting factor for observation j 

yexp,j  Measured value for observation j 

ypred,j  Model-predicted value for observation j 

expy   Mean of measured values 

Z  Total bed depth 

 tc  Standard deviation 

1. Introduction 

Biosorption employs inactivated materials of biological origin as sorbents to sequester toxic 

pollutants such as heavy metal ions from waste streams [1-3]. The biosorption process is perceived as a 

surface phenomenon independent of metabolism, where various physico-chemical mechanisms operate. 

Because there is little biological basis in the uptake process, from a practical standpoint, biosorption is 

no different to conventional adsorption. This allows the whole process to be analyzed in terms of 

mathematical models developed in the adsorption literature with very few or no modifications. It is 

thus not surprising that most of the models used in the biosorption field were developed by the gas 

adsorption community. A well-known example is the Langmuir isotherm model—originally 
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formulated for describing the physical adsorption of gases to inorganic surfaces—which is often used 

to correlate biosorption equilibrium data. Additional examples include simplified mass transfer models 

which are used to describe the kinetics of biosorption in batch contactors and continuous flow models 

which are used to characterize the breakthrough behavior in fixed bed columns packed with 

biosorbents. Although some of these models can have mechanistic relevance under some 

circumstances, they are often used in an empirical way to correlate the process information represented 

by a body of discrete data points generated from experimentation. The efficacy of these models 

depends on how well their parameters can be estimated from observed data. 

A cursory examination of the recent biosorption literature reveals that the more popular models tend 

to be those that can be linearized to allow the estimation of parameters by means of linear regression. 

Examples of such models include the aforementioned Langmuir isotherm equation, the Freundlich 

isotherm equation, the pseudo-first order and second order kinetic equations, and the Bohart-Adams or 

bed-depth-service-time (BDST) fixed bed equation. This ease of fitting has played a large part in 

making these models popular in biosorption modeling. However, the use of linearized forms of 

nonlinear models for the purpose of parameter estimation is undesirable for numerous reasons that 

have been discussed repeatedly in the literature [4]. Historically, linearization procedures were 

developed before the proliferation of computer resources to allow practitioners to evaluate parameters 

in nonlinear models by graphical plots. Given their well-publicized deficiencies, it is puzzling that 

these graphical methods are still a firmly entrenched part of the biosorption modeling landscape in the 

present research environment where virtually everyone has access to computers and software capable 

of analyzing nonlinear functions. 

To avoid the limitations associated with linearized approaches, nonlinear regression analysis is 

often recommended for fitting nonlinear equations to experimental data [4]. Besides standard nonlinear 

regression techniques, there are several stochastic search methods in the field of natural computing that 

can facilitate the estimation of parameters in nonlinear models. Notable examples include particle 

swarm optimization and genetic algorithm (GA) optimization. Recently, particle swarm optimization 

has been successfully applied to estimating bioaccumulation and biosorption parameters [5-7]. On the 

other hand, although the GA approach has been shown to offer good performance in a variety of 

application domains, it has rarely been used in biosorption studies. Recently, Leitch et al. [8] applied 

the GA method to a kinetic parameter estimation problem. The GA is a well-developed and robust 

optimization method, and several commercial software packages as well as add-ins for Microsoft 

Excel are available that require minimal effort by the user. Using data taken from the literature, the 

potential of the GA is evaluated here on its ability to provide accurate parameter estimates for a fairly 

wide range of equilibrium isotherm, batch kinetic and fixed bed breakthrough models. In addition, the 

performance of the GA is compared with that of Gauss-Newton-Levenberg-Marquardt nonlinear 

regression as well as ordinary linear regression in cases where models can be linearized. 

2. Parameter Estimation Methods 

Under the assumption that the structure of a selected model is correct, parameter estimation (known 

also as model calibration) aims to find the model parameters which give the best fit to a set of 
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experimental data. A brief account of the three parameter estimation methods considered in this study: 

GA optimization, nonlinear regression and linear regression, is given here. 

2.1. Genetic Algorithm Optimization 

The GA approach, first introduced by Holland [9] and developed further by Goldberg [10], has been 

successfully applied to a variety of optimization problems. It is a stochastic global optimization 

method based on an iterative procedure that mimics the process of biological evolution. Unlike 

gradient-based approaches to nonlinear parameter identification, the GA method requires no 

calculation of the gradient and tends to find the global optimal solution without becoming trapped at 

local minima. 

The GA used in this study is based on a scheme with a floating-point representation [11] and 

operates in the following manner. The algorithm begins with a population of randomly created 

individuals (initial parameter estimates) and each is evaluated for its fitness in solving the given 

optimization task. Each iteration, called a generation, involves a competitive selection to remove poor 

individuals. Following selection, the genetic operators of crossover and mutation are applied to the 

best individuals to produce offspring. These children (new parameter estimates) then form the basis for 

the next generation. The entire process is reiterated until convergence within a population is achieved. 

The selection algorithm used is a combination of tournament selection and elitism. Tournament 

selection works by choosing two individuals randomly from the population and bringing the better 

individual forward into the next generation. In the elitism case some of the best individuals are allowed 

to live into the next generation without disruption from crossover or mutation. 

Several tuning parameters set by the user control the GA and affect its operation. These tuning 

parameters include the population size, crossover probability, mutation probability, and generation 

number. In general, choosing these tuning parameters is problem dependent. Brief experimentation 

indicated that the GA program was robust to tuning parameter variations. Full details of the GA 

optimization method are given by Goldberg [10]. 

To conduct nonlinear parameter identification using the GA, optimal parameters of a particular 

model with respect to a given set of data were determined by minimizing the sum of the squared errors 

(SSE) between measured and calculated values:  

 
2

, , 

1

SSE
p

j pred j exp j

j

w y y


  
   (1)  

where SSE is the objective function to be minimized, p is the number of observations, wj is an 

appropriate weighting factor for observation j, taken to equal unity in this paper, and ypred,j, yexp,j are the 

model-predicted and measured values for observation j, respectively. 

2.2. Nonlinear and Linear Regressions 

The nonlinear regression method used here is based on a combination of Gauss-Newton and 

Levenberg-Marquardt algorithms. The nonlinear least-squares procedure is an iterative method 

requiring an initial approximation to the parameters and providing successively better approximations. 

The iterative process is repeated until a termination criterion is met. Model parameters were 
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determined by minimizing the SSE between measured and calculated values. The nonlinear regression 

method is very efficient and converges to the optimal solution if the initial guess for the parameters is 

of good quality. For models that can be linearized, parameters were determined using the standard 

linear regression function provided in Excel. 

2.3. Goodness-of-Fit Measure 

In this study, the following coefficient of determination (COD) is used to assess the goodness-of-fit 

of a model to measured data:  

 
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 (2)  

where expy  is the mean of measured values and all other variables are as defined above. A COD of  

1 indicates a perfect fit to the data. 

3. Results and Discussion 

Given a model and a set of experimental data, the objective of parameter estimation is to calibrate 

the model so as to reproduce the experimental results in the best possible way. The test models which 

were used in this study fall into three groups: equilibrium isotherm models, batch kinetic models, and 

continuous flow fixed bed models. The model calibration or fitting was conducted using the GA 

optimization method and data taken from the literature. The performance of the GA was gauged 

relative to Gauss-Newton-Levenberg-Marquardt nonlinear regression as well as linear regression in 

cases where models can be linearized. 

3.1. Equilibrium Isotherms 

Many pure component sorption isotherms have been developed from both fundamental and 

empirical viewpoints. Most of these isotherms were originally developed to describe gas adsorption to 

porous sorbents. Here, we restrict our interest to two widely used equations: the Langmuir and the 

Freundlich, which have proved to be useful for engineering applications. 

The two isotherm equations were fit to a set of equilibrium data on lead uptake by orange peels 

reported by Schiewer and Balaria [12]. This data set is interesting in that the data do not tend to a 

maximum asymptotically at high concentrations. It is instructive to see how well the data comply with 

the Langmuir and Freundlich equations. Briefly, the equilibrium experiments were conducted with a 

biosorbent dosage of 0.1 g/L (peel size 0.6–1 mm) in batch contactors for 3 h at pH 5 and 21–25 °C by 

varying the initial metal ion concentration from 20 to 400 mg/L. Samples were filtered using a 0.2-μm 

membrane filter, and the lead concentration of the filtrate was analyzed using atomic absorption 

spectrometry. The uptake on the biosorbent at equilibrium was calculated by material balance. The 

equilibrium data for this system are shown in Figure 1. This figure illustrates the nonlinear nature of 
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the equilibrium relationship, which is characterized by a somewhat shallow slope at low solution 

concentrations and absence of a plateau at high concentrations. 

Figure 1. Experimental isotherm for lead biosorption on orange peels; data of Schiewer 

and Balaria [12]. 

 

3.1.1. Langmuir equation 

The two-parameter Langmuir equation is given by: 

1

m e
e

e

q bC
q

bC



 (3)  

where qe is the equilibrium sorbed concentration and Ce is the equilibrium solution concentration. The 

two parameters to be optimized are the saturation capacity qm and the Langmuir constant b. At 

sufficiently low sorbed concentrations the Langmuir equation approaches linearity (Henry’s law). At 

higher loadings the equation tends to a maximum asymptotically. When the product bCe is large, 

Equation (3) reduces to the rectangular form typical of highly favorable sorption. The Langmuir 

equation is derived from a sound theoretical footing and is based on several assumptions [13]. 

Biosorbents, due to their complex surface structure, rarely satisfy the assumptions made in the 

Langmuir theory. In this context, the Langmuir equation may be viewed as a convenient tool for 

reproducing the correct shape of biosorption equilibrium curves rather than a mechanistic model. 

The Langmuir expression has been shown to provide a useful quantitative representation of the 

equilibrium behavior of many biosorption systems. The standard practice in applying the Langmuir 

equation to biosorption data is to rearrange the equation so that qm and b can be obtained by  

least-squares linear regression. Different linearization methods are available, as shown in Table 1. The 

terminology for the four linearized equations in Table 1 is adopted by extension from analogous 

linearized versions of the Michaelis-Menten equation used in enzyme kinetics studies. While linearized 

Michaelis-Menten equations are noted to be only of historical interest, their linearized Langmuir 

counterparts are still being used in the biosorption field. Plotted in Figure 2 are the linearized data of 

Figure 1 for the different linearization methods presented in Table 1. The goodness-of-fit indicated by 

R
2
 for each plot is also given in the figure. Table 2 summarizes the values of qm and b obtained from 

these transformations. COD scores calculated from Equations (2) and (3) with the derived parameters 

are also shown in Table 2. 
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Table 1. Four linearized forms of the Langmuir equation. 

Linearization plot Equation form 

Lineweaver-Burk 

 

Hanes-Woolf 

 

Eadie-Hofstee 

 

Scatchard 
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Figure 2. Equilibrium data in Figure 1 fitted with the following linearizations:  

(a) Lineweaver-Burk. (b) Hanes-Woolf. (c) Eadie-Hofstee. (d) Scatchard. 

 

Table 2. Parameter estimation in the Langmuir equation by the linear regression, nonlinear 

regression and GA methods. 
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As Figure 2 shows, the Lineweaver-Burk plot with an R
2
 of 0.976 provided the best fit among the 

four linearizations. However, it also had the lowest COD (0.414), as shown in Table 2. Note that the R
2
 

value was obtained with the transformed data while the COD value was calculated on the 

untransformed data. It is evident that the fitted qm and b based on the transformed data of the 

Lineweaver-Burk linearization perform poorly when they are substituted back into Equation (3). This 

phenomenon illustrates the limitations associated with the transformation of data required by the 

Lineweaver-Burk plot. The main problems with the Lineweaver-Burk linearization are that most of the 

data points clump near the origin and the slope of the linear plot is extremely sensitive to variability at 

low values of Ce (high values of 1/Ce) [14], as can be seen in Figure 2a. Although the Hanes-Woolf 

plot yielded the second highest R
2
, it provided the best result as indicated by the highest COD score. 

Next, the Langmuir equation (Equation (3)) was fit to the Figure 1 data by using the nonlinear 

regression and GA methods. The best parameter estimates are tabulated in Table 2. Both methods 

found identical parameter estimates and yielded a much higher COD score relative to the four 

linearizations. Of the four linearizations tested, the Hanes-Woolf plot found the most similar estimates 

of qm and b to the GA. Still, the Hanes-Woolf-derived qm and b were, respectively, 26% smaller and 

117% bigger than the GA-generated qm and b. Therefore, the GA improved the parameter accuracy 

considerably. Figure 3 compares the performance of the four linearizations and GA in visual terms. 

The Langmuir equation containing the Lineweaver-Burk-derived parameters systematically 

underestimated the measured values of qe at high concentrations, suggesting that the derived 

parameters are not adequate at these concentration levels. All qe values calculated with the  

GA-generated parameters fall close to the 1:1 line (solid line in Figure 3), confirming the superiority of 

the GA over the four linearizations. Although the limitations of linearized Langmuir equations have 

been noted for some time [14-16], out of inertia they are found to persist in biosorption modeling. 

There is little doubt that the antiquated practice of linearization has no place in today’s research 

environment. 

Figure 3. Comparison between the Figure 1 equilibrium data and qe calculated from the 

Langmuir equation (Equation (3)) containing parameters estimated from the following 

linearizations: Lineweaver-Burk (open circles), Hanes-Woolf (triangles), Eadie-Hofstee 

(diamonds), Scatchard (squares), and parameters estimated from the GA (filled circles). 
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3.1.2. Freundlich equation 

Originally developed for gas adsorption [17], the Freundlich equation has been used extensively in 

the correlation of sorption of organics from aqueous solutions onto activated carbon. The  

two-parameter equation takes the form:  

Fn

eFe CKq   (4)  

where qe, Ce are similarly defined in Equation (3) and KF, nF constitute the two unknown parameters. If 

the sorption is favorable, then nF < 1. Unlike the Langmuir equation, Equation (4) has neither a proper 

Henry law behavior at low sorbed concentration nor a finite saturation limit when sorbed concentration 

is sufficiently high. As a result, it is not applicable over a large range of equilibrium data. The 

Freundlich equation may be linearized as follows:  

eFFe CnKq lnlnln   (5)  

Table 3 summarizes the optimal estimates obtained from Equation (5) by the linear regression 

approach and from Equation (4) by the GA and nonlinear regression methods. There was essentially no 

difference in the GA and nonlinear regression-derived parameters. Likewise, the differences in the 

parameters between the linear regression approach and the other two techniques appear trivial. In 

contrast to the four linearized Langmuir equations, the linearized Freundlich equation performed much 

better in correlating the Figure 1 data. This phenomenon is most likely due to the absence of a plateau 

in the data (see Figure 1). 

Table 3. Parameter estimation in the Freundlich equation by the linear regression, 

nonlinear regression and GA methods. 

Estimation method    g/Lmmol
1 FF nn

FK 
  nF COD 

Linear regression (Equation (5)) 

Nonlinear regression 

Genetic algorithm 

1.554 

1.550 

1.550 

0.609 

0.607 

0.607 

>0.999 

>0.999 

>0.999 

3.2. Batch Kinetic Models 

Batch uptake experiments are routinely carried out to assess the kinetic behavior of pollutant 

sorption to the surface of a biosorbent. The time taken for the biosorbent to become saturated depends 

on the rate of uptake. The uptake rate could be considered reaction control if reaction is much slower 

than diffusion (film and/or intraparticle diffusion) or diffusion controlled if the opposite is true. The 

majority of biosorption studies favor the use of reaction-based kinetic models in correlating batch 

uptake data although no evidence is presented to indicate that diffusion is not the rate controlling 

mechanism for the biosorption. This is in large part due to the fact that the commonly used reaction 

kinetic models can be integrated to yield analytical expressions that can be linearized to allow the 

estimation of parameters by linear regression. Here we examine parameter estimation in one such 

reaction kinetic model that can be linearized, the Lagergren equation (known also as the pseudo first 

order rate equation), and a general nth order rate equation that cannot be linearized. 
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The two rate equations were fit to a set of kinetic data on lead uptake by orange peels reported by 

Schiewer and Balaria [12]. The kinetic experiment was conducted with an initial metal concentration 

of 0.1 mmol/L and a biosorbent dosage of 0.1 g/L (peel size 1–3 mm) in a batch contactor at pH 5 and 

21–25 °C. Samples were taken periodically using a syringe, filtered using a 0.2-μm membrane filter, 

and the lead concentration of the filtrate was analyzed using atomic absorption spectrometry. The 

uptake on the biosorbent was calculated by material balance. Figure 4 depicts the kinetic data for this 

system. We chose this data set because the ascending part of the kinetic profile is well characterized by 

a sufficient number of data points. This is an important requirement when testing the correlative power 

of a kinetic model. 

Figure 4. Experimental uptake curve for lead biosorption on orange peels; data of 

Schiewer and Balaria [12]. 

 

3.2.1. Lagergren equation 

The century-old Lagergren rate equation [18] is given by: 

 1
t

e t

dq
k q q

dt
   (6)  

where qt is the sorbed concentration at any time t, qe is the equilibrium sorbed concentration, and k1 is 

the first order Lagergren rate constant. The analytical solution of Equation (6) for the initial condition 

of qt = 0 at t = 0 can be written as: 

 11 expt eq q k t      (7)  

Equation (7) may be rearranged to yield the following linearized equation:  

  1ln lne t eq q q k t    (8)  

In Equation (8) qe and k1 are fitting parameters. Note that this linear regression procedure requires a 

value of qe in order to calculate the left side of Equation (8). The logarithmic term ln(qe − qt) dictates 

that qe be assigned the maximum measured value. For the Figure 4 data, the maximum value is given 

by the second last data point measured at 120 min. The qe term on the left side of Equation (8) was 

thus assigned the value of this data point (qe = 0.79 mmol/g). Figure 5 shows the data in Figure 4 

plotted according to Equation (8). It can be seen that the linear fit is satisfactory as indicated by the 

high value of R
2
. The two parameters qe and k1 on the right side of Equation (8) were determined, 
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respectively, from the y-intercept and slope of the linear plot. Listed in Table 4 are the  

derived parameters. 

The fitted value of 0.32 mmol/g for qe was much lower than the assigned value of 0.79 mmol/g for 

qe which was used to generate the linear plot in Figure 5. Furthermore, the COD value was rather low 

(Table 4), indicating significant differences between the calculated and measured qt. A comparison 

between the Figure 4 data and qt calculated from the Lagergren equation (Equation (7)) with the 

derived parameters is shown in Figure 6 (open circles). The figure includes results calculated from a 

general nth order rate equation and these will be discussed in the next section. Figure 6 shows that all 

calculated values of qt were much smaller than the measured values of qt. The poor representation of 

the untransformed data indicates that the linearized Lagergren equation is inadequate for  

parameter estimation.  

Figure 5. Kinetic data in Figure 4 plotted according to the linearized Lagergren equation 

(Equation (8)). 

 

Table 4. Parameter estimation in the Lagergren equation by the linear regression, nonlinear 

regression and GA methods. 

Estimation method qe (mmol/g)  k1 (min
−1

) COD 

Linear regression (Equation (8)) 

Nonlinear regression 

Genetic algorithm 

0.32 

0.71 

0.71 

0.028 

0.268 

0.268 

0.512 

0.819 

0.819 

Tabulated in Table 4 are the best estimates obtained by fitting the Lagergren equation (Equation (7)) 

to the Figure 4 data using the GA and nonlinear regression methods. Both methods yielded equivalent 

parameter estimates. These qe and k1 estimates were, respectively, 122% and 857% larger than the 

linear regression-generated qe and k1. The higher COD and the proximity of calculated qt to the 1:1 line, 

as indicated by the filled circles in Figure 6, suggest that the GA was capable of finding realistic 

parameters that fit the measured data quite well. For this data set, the performance of the linear 

regression approach was obviously inferior to that of the GA. Although the linearized Lagergren 

equation ((Equation (8)) is clearly unsatisfactory, it remains the equation of choice for parameter 

estimation in many biosorption studies that employ the Lagergren equation. The nonlinear Lagergren 
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equation (Equation (7)), by contrast, is often ignored because it is necessary to go beyond linear 

regression in order to estimate its parameters from measured data. 

Figure 6. Comparison between the Figure 4 kinetic data and qt calculated from the 

Lagergren equation (Equation (7)) with the linear regression-derived parameters (open 

circles) and GA-generated parameters (filled circles) listed in Table 4. Also shown are qt 

calculated from the nth order equation (Equation (10)) with the GA-derived parameters 

(triangles) given in Table 5. 

 

3.2.2. nth Order Rate Equation 

Because the integrated form of the first order Lagergren equation can be linearized, it has been used 

to model countless batch biosorption systems. However, as pointed out by various investigators [19-22], 

it makes no modeling sense to preset the reaction order which should be treated as an adjustable 

parameter in correlating biosorption data. Accordingly, a general nth order rate law can be written as: 

 nten
t qqk

dt

dq
  (9)  

where qt, qe, t are similarly defined in Equation (6) and kn, n indicate the nth order rate constant and 

reaction order, respectively. When n = 1 we recover the first order Lagergren equation. Note that n as 

defined in Equation (9) may be a noninteger. The integrated form of Equation (9) for the initial 

condition of qt = 0 at t = 0 is given by [19]: 

      n

n

n

eet tknqqq
 

11 1 1  (10)  

In Equation (10) three unknown parameters, kn, n (n ≠ 1) and qe, are to be determined 

simultaneously, which of course cannot be estimated using linear regression. Note that Equation (10) 

may be recovered from a more general solution of the nth order rate law incorporating the concept of 

fractal kinetics [23]. 

Equation (10) was fit to the Figure 4 data by using the GA and nonlinear regression methods, and 

both methods converged on the same optimal solution, as shown in Table 5. This demonstrates the 

efficacy of the GA as a parameter estimation tool for nonlinear models that cannot be linearized. 

Values of qt calculated from Equation (10) with the GA-derived parameters are compared with the 

Figure 4 data in Figure 6 (triangles). Both the graphical comparison (Figure 6) and the COD statistics 
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(Tables 4 and 5) indicate that the three-parameter nth order rate equation provided a better description 

of the kinetic data compared to the two-parameter Lagergren equation. This is not surprising because 

models with more adjustable parameters will almost always result in a better fit. However, the fact that 

Equation (10) cannot be linearized is likely to limit its application in the correlation of biosorption 

kinetic data. Note that the nonlinear regression method was sensitive to initial parameter guesses. For 

instance, no convergence difficulties were observed when the starting point of the parameter vector (qe, 

kn, n) was chosen to be (10, 10, 10). However, false convergence was encountered with the starting 

point (100, 100, 100). As noted above, rather than operating on a single set of parameters, the GA 

makes use of a population of parameter sets (individuals). For the nth order rate equation, the GA was 

able to obtain the optimal parameter set within a search range having upper parameter limits as high as 

(10,000, 10,000, 10,000). 

Table 5. Parameter estimation in the nth order rate equation by the nonlinear regression 

and GA methods. 

Estimation method qe (mmol/g)  kn ((mmol/g)
1−n

/min) n COD 

Nonlinear regression 

Genetic algorithm 

0.90 

0.90 

0.84 

0.84 

3.89 

3.89 

0.971 

0.971 

3.3. Fixed Bed Models 

Commercial applications of biosorbents will most likely be conducted using fixed bed columns 

which are widely used in activated carbon adsorption processes. From the perspective of process 

modeling, the dynamic behavior of a fixed bed column is described in terms of the effluent 

concentration-time profile, that is, the breakthrough curve. The shape of this curve is determined by 

the nature of the equilibrium isotherm and influenced by the individual transport processes in the 

column and the sorbent. 

Comprehensive fixed bed models taking account of the nonlinear equilibrium behavior and dispersive 

effects (axial dispersion, finite resistance to mass transfer, and sorption kinetics) are described in terms of 

partial differential equations and generally require a numerical solution. To circumvent the mathematical 

and numerical complexities, simplified or short-cut methods are used extensively for the initial design 

and analysis of fixed bed columns. Many of the widely used simplified models for correlating the 

breakthrough curves of activated carbon columns are well covered in the book by Cooney [24]. In 

general, these models are very straightforward, easy to apply, and provide acceptable modeling power. 

We illustrate here two such simplified fixed bed models that can be used to analyze biosorption columns: 

the Bohart-Adams equation and the Belter-Cussler-Hu equation. 

The two fixed bed equations were fit to a set of breakthrough data on nickel uptake by a seaweed 

biosorbent reported by Borba et al. [25]. We chose this data set because all essential fixed bed details for 

calculating the input parameters in the Bohart-Adams equation are given in the article. The  

laboratory-scale column with 2.8 cm internal diameter was packed with seaweed biomass (Sargassum 

filipendula) to a height of 30.5 cm. The pH and temperature of the feed solution were adjusted to  

3.0 and 30 °C, respectively. Several breakthrough experiments were conducted using different feed flow 

rates. Solution samples were taken periodically at the column outlet and analyzed for nickel 
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concentration using atomic absorption spectrometry. One of the reported breakthrough data  

sets—obtained with a feed nickel concentration of 2.12 meq/L and a feed flow rate of 0.006 L/min—is 

shown in Figure 7. 

Figure 7. Experimental breakthrough curve for nickel biosorption on seaweed biomass; 

data of Borba et al. [25]. 

 

3.3.1. Bohart-Adams equation 

In the Bohart-Adams fixed bed model it is assumed that the sorbate-sorbent interaction is 

represented by a quasi-chemical rate equation and that axial dispersion is zero [26,27]. A simplified 

version of the Bohart-Adams analytical solution is given by: 

 

1

1 exp

t

i BA BA i

C

C k NZ u k C t


   

 (11)  

where Ct is the solution concentration at the fixed bed outlet at time t, Ci is the feed concentration, kBA 

is the Bohart-Adams rate constant, N is the sorption capacity of the sorbent per unit volume of the bed, 

Z is the total bed depth, and u is the superficial velocity. In Equation (11) kBA and N are fitting 

parameters. Equation (11) may be rearranged in the following manner to allow parameter estimation 

by linear regression: 

ln 1i BA
BA i

t

C k NZ
k C t

C u

 
   

 
 (12)  

from which it is evident that a plot of the left side of Equation (12) versus t should be linear. With 

known Ci, Z and u, the two parameters N and kBA are given by the y-intercept and slope of the  

plot, respectively. 

Figure 8 depicts the Figure 7 breakthrough data plotted according to Equation (12). It is clear that 

the transformed data did not conform to a linear trend. To get a linear fit, it was necessary to exclude 

the last three data points (filled circles in Figure 8). By this adjustment, a reasonably good fit was 

achieved, yielding an R
2
 of 0.931. Listed in Table 6 are the values of N and kBA obtained from the 

linear plot. The values of other variables, used in the calculation, are as follows: Z = 30.5 cm,  

Ci = 2.12 meq/L and u = 0.097 cm/min. Figure 9 compares the Figure 7 data with Ct/Ci calculated from 

the Bohart-Adams equation (Equation (11)) with the derived parameters (open circles). It can be seen 
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that the Bohart-Adams equation containing the linear regression-generated parameters underestimated 

breakthrough concentrations in the low Ct/Ci region. This discrepancy is undesirable because the initial 

portion of a breakthrough curve determines the breakthrough time for a specified  

breakthrough concentration. 

Figure 8. Breakthrough data in Figure 7 plotted according to the linearized Bohart-Adams 

equation (Equation (12)). Data points denoted by filled circles are excluded from the linear fit. 

 

Table 6. Parameter estimation in the Bohart-Adams equation by the linear regression, 

nonlinear regression and GA methods. 

Estimation method N (meq/L)  kBA (L/meq min) COD 

Linear regression (Equation (12)) 

Nonlinear regression 

Genetic algorithm 

5.29 

4.54 

4.54 

0.0035 

0.0029 

0.0029 

0.963 

0.998 

0.998 

Figure 9. Comparison between the Figure 7 breakthrough data and Ct/Ci calculated from 

the Bohart-Adams equation (Equation (11)) with the linear regression-derived parameters 

(open circles) and GA-generated parameters (filled circles) tabulated in Table 6. Also 

shown are Ct/Ci calculated from the Belter-Cussler-Hu equation (Equation (13)) with the 

GA-derived parameters (triangles) given in Table 7. 

 

Next, the Bohart-Adams equation (Equation (11)) was fit to the Figure7 data by using the GA and 

nonlinear regression methods. Table 6 shows that both techniques found equivalent parameter 
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estimates. The COD was higher than that of the linear regression approach. As can be seen in Figure 9, 

values of Ct/Ci calculated from Equation (11) with the GA-derived parameters (filled circles) lie much 

closer to the 1:1 line for the entire data range. Even with a judicial selection of data points to aid the 

parameter estimation, the linear regression approach performed worse than the GA. This does not 

imply that the functional form of the Bohart-Adams equation is inadequate, merely that the suboptimal 

linear regression-derived parameters impair its correlative capability. An agreement between the 

Bohart-Adams equation and the breakthrough data can be reached as long as optimal parameter 

estimates are used in the equation. 

For a typical breakthrough concentration ratio (Ct/Ci) of 0.1, the Bohart-Adams equation containing 

the linear regression-generated parameters predicts a breakthrough time of 488 min. From Figure 7 it is 

seen that the corresponding experimental breakthrough time is approximately 357 min. The predicted 

breakthrough time is thus 37% bigger than the observed breakthrough time. In contrast, a much better 

agreement can be obtained with the GA-derived parameters. In this case, the predicted breakthrough 

time for Ct/Ci = 0.1 is 313 min, which is only 13% smaller than the observed breakthrough time. From 

the foregoing discussion, it is clear that the linear regression approach yielded suboptimal parameters 

which can overestimate the breakthrough time substantially. Additionally, the linear regression 

approach relied on the use of a subset of the data points to achieve a good fit. The GA and nonlinear 

regression methods, by contrast, are free from these deficiencies. Despite its shortcomings, the 

linearized Bohart-Adams equation is a very popular modeling tool. Also shown in Figure 9 are results 

calculated from the Belter-Cussler-Hu equation (triangles), and these are discussed in the next section. 

3.3.2. Belter-Cussler-Hu Equation 

A semiempirical fixed bed model proposed by Belter et al. [28] is given by: 

1
1 erf

2 2

t c

i c

C t t

C t

  
    

   

 (13)  

where Ct, Ci, t are similarly defined in Equation (11) and tc (characteristic time), tc (standard 

deviation) are parameters. The quantity erf(x) is the error function of x. Because the Belter-Cussler-Hu 

model is nonlinear in the parameters, tc and  can be found only by search. Equation (13) was fit to the 

Figure 7 data by using the nonlinear regression and GA methods. Both methods were equally 

successful in estimating the two parameters from the breakthrough data, as shown in Table 7. 

Comparing the COD statistics in Tables 6 and 7 indicates that the Belter-Cussler-Hu equation was 

marginally better than the Bohart-Adams equation in correlating the breakthrough data. The same 

conclusion may be seen in Figure 9, which shows computed results of the Belter-Cussler-Hu equation 

(triangles) and those of the Bohart-Adams equation (filled circles). 

Table 7. Parameter estimation in the Belter-Cussler-Hu equation by the nonlinear 

regression and GA methods. 

Estimation method tc (min)   COD 

Nonlinear regression 

Genetic algorithm 

670.3 

670.3 

0.41 

0.41 

0.999 

0.999 
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Despite their comparable correlative power, the Belter-Cussler-Hu equation is far less popular than 

the Bohart-Adams equation. There is little doubt that the nonlinear nature of the Belter-Cussler-Hu 

equation is a major reason for its limited reach within the biosorption community. In a limited number 

of previous studies [29-36], nonlinear regression was used to fit the Belter-Cussler-Hu equation to 

experimental breakthrough data. Here we show that the GA is an effective alternative to the nonlinear 

regression approach. 

4. Conclusions 

Virtually all the mathematical models used to describe biosorption characteristics are inherently 

nonlinear; fitting the models to measured data therefore requires the use of iterative optimization 

techniques. To avoid the use of optimization methods, practitioners often select models that can be 

transformed to linearized forms so that model parameters can be obtained by linear regression. It is 

well known that using linearized versions of nonlinear models to correlate measured data can often 

lead to statistical deficiencies and inaccurate parameter estimates. Moreover, the bias towards models 

that can be linearized restricts the testing of models that cannot be linearized. 

As can be seen from the analysis and results of this investigation, the genetic algorithm optimization 

method has proved very successful in fitting a variety of nonlinear isotherm, kinetic and fixed bed 

equations to experimental biosorption data. For models that can be linearized, the performance of the 

real-coded GA was superior to that of ordinary linear regression. In all the cases shown here, the 

correlative power of the GA was found to be comparable to that of nonlinear regression. Generally, 

gradient-based nonlinear regression techniques require initial parameter guesses that lie in the vicinity 

of the optimal values in order to avoid convergence difficulties while the GA method is able to 

minimize a nonlinear model within search ranges that vary over several orders of magnitude, so good 

initial guesses are not required. This was shown to be the case with the fitting of the three-parameter 

nth order rate equation. In conclusion, the GA has been demonstrated to be very effective as a 

parameter estimation tool in biosorption modeling, offering a useful alternative to standard nonlinear 

regression techniques. 
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