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Abstract: To meet European Water Framework Directive requirements, data are needed 

on faecal indicator organism (FIO) concentrations in rivers to enable the more heavily 

polluted to be targeted for remedial action. Due to the paucity of FIO data for the UK, 

especially under high-flow hydrograph event conditions, there is an urgent need by the 

policy community for generic models that can accurately predict FIO concentrations, thus 

informing integrated catchment management programmes. This paper reports the 

development of regression models to predict base- and high-flow faecal coliform (FC) and 

enterococci (EN) concentrations for 153 monitoring points across 14 UK catchments, using 

land cover, population (human and livestock density) and other variables that may affect 

FIO source strength, transport and die-off. Statistically significant models were developed 

for both FC and EN, with greater explained variance achieved in the high-flow models. 

Both land cover and, in particular, population variables are significant predictors of FIO 

concentrations, with r
2
 maxima for EN of 0.571 and 0.624, respectively. It is argued that 
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the resulting models can be applied, with confidence, to other UK catchments, both to 

predict FIO concentrations in unmonitored watercourses and evaluate the likely impact of 

different land use/stocking level and human population change scenarios. 

Keywords: faecal indicator organisms; Water Framework Directive; bathing waters; water 

quality modelling; land cover; population; stocking density; microbial source apportionment 

 

1. Introduction 

Under the Water Framework Directive (WFD) EU member states are legally required to design 

―programmes of measures‖ to manage point and diffuse sources of faecal indicator organisms (FIOs) 

that could cause non-compliance of bathing and shellfish-harvesting waters with microbial  

standards [1,2]. To meet this requirement, data are needed to define FIO concentrations and fluxes in 

individual rivers and streams so that the magnitude of the problem can be assessed and more heavily 

polluted waters identified for potential remedial action. Knowledge is also required of the effectiveness 

of specific measures to reduce FIO concentrations, especially those aimed at addressing diffuse 

pollution sources. 

Previous studies have highlighted the importance of rainfall-induced hydrograph (―high-flow‖) 

conditions for the mobilisation and transport of FIOs within catchments, with FIO concentrations and 

discharge volumes both typically increasing by an order of magnitude compared with dry-weather 

(―base‖) flow, leading to a c.100-fold increase in export coefficients. Kay et al. [3], for example, report 

an increase in geometric mean (GM) faecal coliform (presumptive Escherichia coli) (―FC‖) export 

coefficient for 205 UK rivers and streams from 5.5 × 10
8
 cfu km

−2
 h

−1
 at base flow to  

3.6 × 10
10

 cfu km
−2

 h
−1

 at high flow, and a corresponding increase for enterococci (―EN‖) from  

8.3 × 10
7
 to 7.1 × 10

9
 cfu km

−2
 h

−1
. Unfortunately, FIO concentration data are lacking for many UK 

watercourses, and, even for those that are routinely monitored, there is often poor characterisation of 

high-flow conditions.  

Given the legal requirements of the WFD, there is an urgent imperative from the research and policy 

communities for generic models that can accurately predict base- and high-flow FIO concentrations 

across the UK, thereby informing future integrated catchment management programmes. 

While physically based watershed modelling (Hydrological Simulation Program Fortran (HSPF), 

Simulated Catchments (SIMCAT), Soil and Water Assessment Tool (SWAT), etc.) is now quite 

advanced in relation to nutrients and sediments, deployment of these model systems to FIOs is 

prevented by the absence of empirical data with which to parameterise and evaluate any of these 

models. For example, credible regionally specific in-channel deposition and re-entrainment 

coefficients, together with empirically based water column real-time T90 coefficients, are simply not 

available. A similar absence of parameterisation data is evident for the terrestrial land phase of FIO 

flux, making application of process-based models, at this stage, difficult, if not impossible. The 

development of the Scotland and Northern Ireland Forum for Environmental Research (SNIFFER) 

―screening tool‖ (at a 1 × 1 km grid cell resolution) for identifying and characterising diffuse pollution 

in Scotland and Northern Ireland has provided valuable insights into the types and strengths of FIO 
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pollution sources and the factors affecting the risk of pollutant mobilisation and delivery to 

watercourses, thus enabling the potential FIO export coefficients for catchments to be determined [4,5]. 

However, SNIFFER does not provide a basis for characterising base- and high-flow FIO 

concentrations, and the veracity of the export coefficient calculations have yet to be fully evaluated 

against data from monitored catchments. Some of the most successful catchment-scale FIO modelling 

has been undertaken using linear regression techniques to model relationships between GM FIO 

concentrations recorded at monitored sites and land use within their catchments, using variables such 

as the proportions of grassland and built-up land as proxies for key sources of faecal pollution. 

Hitherto, this work has been primarily based on individual catchment studies [6,7]. 

The aim of the present study was to extend this latter approach by investigating: (i) whether 

improved models might be achieved by augmenting the predictor variables to include both direct 

measures of the key FIO sources (i.e., human population and livestock density data) and factors that 

may affect source strength and the mobilisation, transport, die-off and sedimentation of FIOs within 

catchments (e.g., volume of runoff, soil hydrology and catchment size); and (ii) the extent to which 

models developed by combining data from discrete UK catchment studies, sampled at different times 

and under different antecedent weather conditions, are truly ―generic‖ and transferable across the UK. 

Previously, Kay et al. [3] have presented a synthesis of FIO concentration and export coefficient 

data for 205 sampling points in 15 study catchments, which are broadly representative of the diverse 

land use types and climatic regimes across the UK. Southern England and areas of chalk downland are 

the notable regions/landscapes that are not represented. In the present study, data from those points 

with catchments ≥ 5 km
2
 (153 from 14 of the study catchments) have been used to model base- and 

high-flow FC and EN concentrations during the summer bathing season, using predictor variables that 

are readily available and have national coverage. 

The transferable models presented here provide a tool for characterising FIO concentrations in rivers 

and streams across the UK, though they clearly need to be applied with some degree of caution in 

Southern England. In addition, they can provide valuable insights into the key sources and factors 

affecting transfer and survival of FIOs at a catchment scale, thereby informing the development of 

policies and prioritisation of investment to reduce microbial pollution as an optimal mix of cost-effective 

regional and site specific policy remediation strategies will be required to achieve the highest reductions. 

Importantly, too, these models can form a basis for quantifying the likely impact of different land 

use/stocking levels that might result from the implementation of measures designed to reduce FIO 

loadings, or reforms in agricultural policy/funding e.g. by linking to land use change models, such as 

those developed by Fezzi et al. [8] and Jones and Trantor [9]. 

The models presented here, developed to inform the Rural Economy and Land Use funded 

Catchment, Hydrology, Resources, Economics and Management programme [10], have been used to 

generate predictions of FIO concentrations at base- and high-flow, within the Humber river basin 

district (RBD), and generate predictions of FIO concentration reductions within that RBD following 

the implementation of seven land use management and policy instruments; fiscal constraint, production 

constraint, cost intervention, area intervention, demand-side constraint, input constraint, and  

micro-level land use management. The results of these analyses are detailed in Hampson et al. [11]. 
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2. Materials and Methods 

2.1. Study Catchments, Subcatchments, Sampling Periods, Field Methods and Laboratory Analysis 

The present data set is derived from monitoring undertaken in 14 catchment-based studies during 

the period 1995–2005. These are identified in Table 1 and their locations shown in Figure 1. 

Figure 1. Location of the 14 study catchments (1–14, as detailed in Table 1) used in the 

modelling data set and of the Haverigg catchment (labelled 15) used in independent 

model evaluation. 

 

Typically, each study extended over a six- to eight-week period during the summer bathing season 

(i.e., 15 May–30 September in England and Wales, and 1 June–15 September in Scotland), as the 

studies were aimed at improving understanding of bathing water compliance. To increase the 

robustness of the modelling, only sites that meet the following criteria have been included:  

(1) catchment (termed ‗subcatchment‘ for individual sample points) area ≥ 5 km
2
 (because of the 

relatively low resolution of the livestock census and soil hydrology data–see below); (2) < 50% of land 

within the subcatchment is located upstream of lake and/or reservoir outlets (see Section 2.2);  

(3) FIO data available for ≥ 5 samples taken under the flow conditions being modelled (i.e., base or 

high flow); (4) river discharge records available; and (5) land within the subcatchments had not been 

subject to programmes of measures (e.g., riparian fencing and buffer strips) aimed at reducing  

FIO loadings.  
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Table 1 shows the distribution of the resulting 153 subcatchments included in the present analysis. 

The majority are < 100 km
2
 (maximum, 1013 km

2
). It should be noted that there are combined sewage 

overflows (CSOs) and wastewater treatment works (WwTWs) within many of the subcatchments. The 

FIO concentrations recorded therefore reflect inputs from a combination of point and diffuse sources. 

Details of the discharge monitoring, base-/high-flow separation, water sampling and microbial analysis 

are presented in Kay et al. [12]. Presumptive FC and EN concentrations were measured using standard 

UK methods based on membrane filtration, which have not changed substantially over the study  

period [13,14]. It should be noted that with membrane filtration, as with all standard methods of 

analysis (e.g., MPN), particle-attached FIOs, which are more likely present in turbid waters under 

high-flow conditions, may be underestimated using this procedure. Normal laboratory practice in the 

UK, involving sample agitation immediately prior to filtration, seeks to minimise this effect. FIO 

enumerations are expressed as colony-forming units (cfu) 100 mL
−1

. The geometric mean  

(GM, calculated as: GM = 10
x
, where x = the mean of log10-transformed values) concentration is used 

to characterise microbial water quality under base- and high-flow conditions for each sampling point, 

as this generally has greater validity as a measure of central tendency for FIO data. 

Table 1. Catchments reported in present study. 

Catchment Study year Subcatchments
 a
 

England   

1 Holland Brook 1998 10 

2 River Ribble 2002 37 

3 Staithes Beck 1995 6 (2) 

4 Lake Windermere inputs 1999 3 

5 River Leven/Crake 2005 16 

Scotland   

6 Sandyhills 2004 4 

7 Troon coastal inputs 2000 1 

8 Killoch Burnb 2004 1 

9 River Irvine/Garnock 1998 23 

10 Ettrick Bay inputs 2004 1 

11 River Nairn  2004 8 

Wales   

12 Afonc Ogwr 1997 14 

13 Afon Nyfer 1996 17 (2) 

14 Afon Rheidol/Ystwyth 1999 12 

 Total  153 (134) 
a Number of subcatchments used in modelling. The Staithes Beck and Afon Nyfer study periods were 

relatively dry, and in each case ≥ 5 high-flow samples were only obtained for 2 subcatchments, giving a total 

of 134 high-flow sites (indicted in parentheses), cf. 153 base-flow sites; 
b Killoch Burn is located within the headwaters of the River Irvine/Garnock catchment; 
c ―Afon‖ (Welsh) = ―River‖. 
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2.2. Outputs from Lakes/Reservoirs 

Because of die-off and sedimentation of FIOs within reservoirs and lakes, waters issuing from such 

waterbodies typically have very low FIO concentrations which may poorly reflect land use, stocking 

levels, etc. within the contributing catchment [15]. For this reason, the few subcatchments in which the 

majority (≥ 50%) of land is located upstream of reservoir/lake outlets have been excluded from the 

modelling data set. In cases where any waterbody outlets are fed by areas occupying < 50% of the 

subcatchment, it has been assumed that: (i) the volume of flow derived from the waterbody is 

proportional to the area its catchment occupies within the subcatchment; and (ii) GM FC and EN 

concentrations in output waters from such waterbodies are as reported in Table 2.  

Table 2. Geometric mean faecal coliform and enterococci concentrations (cfu 100 mL
−1

) in 

waters issuing from lakes and reservoirs, based on data from Nant-y-Moch and Cwm 

Rheidol Reservoirs in Afon Rheidol/Ystywyth study, Lake Windermere in the Windermere 

study, and Fewston and Thruscross Reservoirs in Yorkshire—the latter from Kay [16]. 

 Base flow High flow 

Faecal coliforms 26 83 

Enterococci 5 16 

Using these assumptions, the GM FIO concentrations recorded at the subcatchment monitoring 

point have been separated into two components: that derived from the waterbody and that from the rest 

of the subcatchment. Data for the non-waterbody part of the subcatchment have then been used in the 

modelling. This procedure is considered preferable to excluding all subcatchments containing lakes 

and/or reservoirs. 

2.3. Land Cover Data 

The land cover data have been synthesised from the Centre for Ecology and Hydrology (CEH) Land 

Cover Map (LCM) 2000 [17] and the Ordnance Survey (OS) Meridian 2 digital boundary data [18] 

using GIS techniques [19]. The synthesis method and ‗proportional‘ interpolation methods used 

subsequently to allocate land cover data (and also human population, livestock and soil hydrology data) 

to subcatchments are detailed in Posen et al. [20]. 

2.4. Human Population Data 

Population data were derived from the Office for National Statistics (ONS) decennial census data 

for England, Scotland and Wales for 2001 [21,22], which lies roughly in the middle of the period that 

the catchment studies were undertaken (Table 1). Human population data at the ―Output Area‖ (OA) 

level were used as this is the most detailed geographic unit for which 2001 census data are available. 

Each OA has approximately 300 residents and, more importantly, OA boundaries enclose the most 

spatially compact area possible, thereby minimising interpolation errors. 
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2.5. Livestock Data 

Stocking densities have been derived from the Agcensus data set compiled from the June 

Agricultural Survey [23]. Livestock categories included in the Agcensus data sets can vary from year 

to year, and data sets are not necessarily available for every year. Additionally, there are occasional 

variations between the census forms used for England, Wales and Scotland, which can lead to minor 

inconsistencies in the data. In cases where census data are unavailable for the year an individual 

catchment was studied, or the data have been too coarsely aggregated to preserve the confidentiality of 

individual farmers (e.g., in the England 2000 and Wales 1999 censuses), the closest census year was 

used. Data for the smallest available grid-square resolution, 2 × 2 km, were used. 

The livestock categories recorded were: dairy herd, beef herd, bulls, other cattle ≥ 1-yr old, other 

cattle < 1-yr old, sheep (which also include goats, deer and horses), total pigs, indoor pigs, outdoor 

pigs, total fowl, indoor fowl and free-range fowl. It should be noted, as detailed in Table 3, that some 

of these categories were aggregated for modelling purposes, and composite variables combining the 

different livestock types, and also human population with livestock, were derived using data on E. coli 

production per animal [24], thereby providing a FIO-related weighting for different animal types. 

2.6. Soil Hydrological Data 

Data from the HOST (Hydrology of Soil Type) database [25], at a grid-square resolution of  

1 × 1 km, were used to calculate the mean standard percentage runoff (SPR) for each subcatchment. 

2.7. Statistical Analysis 

Statistical analysis was undertaken using SPSS v15.0 for Windows [26]. Multiple regression 

techniques, using a stepwise selection procedure, were used to model the relationships between GM 

FIO concentrations at base and high flow (the dependent variables, y) and the various independent 

variables (x) listed in Table 3. Log10 transformations were applied to those independent variables for 

which skewness exceeded 1.00. In the regression analysis, relationships of the following form were 

generated: y = a + b1x1 + b2x2 + … + bixi + e where a is the intercept (y at x = 0), b is the slope (change 

in y per unit change in x) and e is a random error term. Independent variables with a variance inflation 

factor > 5 (i.e., tolerance, 0.200) were excluded to minimise multicollinearity [27]; probability of F for 

a variable to enter was set at 0.05; the level of explained variance was assessed using the coefficient of 

determination (r
2
), adjusted for degrees of freedom; and the normal probability plot of standardised 

residuals was examined to confirm the validity of each model. All statistical tests were assessed at 

 = 0.05 (i.e., 95% confidence level). 

Regression models were developed for the following three sets of independent predictor variables: 

(1) all variables (as detailed in Table 3), (2) land cover variables alone and (3) population 

(human/livestock) variables alone. In the last two cases only those variables that represent likely 

sources of enhanced FIOs were included. Such a specification allows the most parsimonious models to 

be identified, thereby facilitating linkage to allied research, such as land-use change models [8,9]. 
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Table 3. Independent variables
 a

 used in regression models to predict variations in log10 geometric mean faecal coliform and enterococci 

concentrations under base- and high-flow conditions, and summary statistics for the 153 subcatchments used in the modelling. 

Variable (unit of measurement) Code
 b

 Mean Minimum Maximum Std Dev 

Population and population-related variables      

Human population (no. km−2) HUMAN * 206.0 2.1 2,178.3 398.4 

Dairy cattle (no. km−2) DAIRY * 22.9 0 84.1 21.0 

Other, i.e., non-dairy, cattle (no. km−2)  OTHCATTLE * 44.7 0.2 109.3 29.0 

All cattle (no. km−2) ALLCATTLE * 67.6 0.2 189.5 47.5 

Sheep (no. km−2) SHEEP 292.8 6.7 953.5 206.1 

E. coli input: all livestock (cfu km−2 h−1) LSTOCKEC 2.4 × 1011 5.1 × 109 7.4 × 1011 1.5 × 1011 

E. coli input: humans + livestock (cfu km−2 h−1)  TOTALEC 2.6 × 1011 1.0 × 1010 7.4 × 1011 1.5 × 1011 

Land use variables      

Temporary/permanent grassland (%) GRASSLAND 45.66 0.45 88.33 23.92 

Rough grazing (%) RGRAZING * 18.69 0 85.33 19.50 

Arable, including set-aside (%) ARABLE * 12.39 0 81.14 19.72 

Woodland (%) WOODLAND * 11.84 0.38 65.26 12.85 

Urban/suburban (%) URBAN * 8.74 0 56.88 10.67 

Other variables      

Subcatchment area (km2) AREA * 71.19 5.01 1,013.18 137.49 

Base-flow runoff (m3 km−2 h−1)  LFRUNOFF 49.47 2.43 196.33 38.99 

High-flow runoff (m3 km−2 h-1)  HFRUNOFF 216.56 7.90 845.51 170.91 

Total runoff (m3 km−2 h−1)  TOTRUNOFF 83.61 3.94 211.88 60.85 

Standard percentage runoff (SPR) c: all land (%) TOTSPR 40.28 22.47 59.41 40.28 

Standard percentage runoff (SPR): grassland (%) GRSPR 38.39 18.38 58.44 6.64 

a Data sources/derivations (see further details in text): Human population = 2001 census; Livestock numbers = Agricultural census for year nearest to study period; E. coli  

input = number of each livestock type (km−2) × mean E. coli output for each livestock type (based on Jones and White, 1984); Land use data = Centre for Ecology and Hydrology 

Land Cover Map 2000 in combination with OS Meridian 2; Runoff data = actual runoff during study period; and Standard percentage runoff (SPR) variables = Institute of 

Hydrology: Hydrology of Soil Types (―HOST‖), with area-weighted mean SPR derived using procedure described by Boorman et al. (Table 4.17, p. 60) [25]; 
b * indicates log10 transformation applied in cases where this reduces skewness of data set; 

c SPR values for individual soil types in the UK range from 2–60%. 
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2.8. Assessment of Inter-Study Transferability of Models 

A programme of out-of-sample testing was undertaken to evaluate the extent to which the models are 

truly generic and transferable to other UK catchments [28,29]. In order to minimise the effects of 

unexplained variance in the models, attention focused on the model that provided the highest level of 

explained variance. This model was re-run seven times with data for one of the seven catchment studies 

with ≥ 5 subcatchments omitted in turn. The resulting models were then used to predict the GM 

concentration for subcatchments in the omitted catchments (termed ―test catchments‖), and the mean 

error (i.e., predicted–actual concentration) and mean absolute error (i.e., absolute difference between 

predicted and actual concentration) were calculated for each study catchment. The mean error provides a 

measure of whether a model is under- (+ve values) or over-estimating (−ve values) GM FIO 

concentrations within the test catchments. In cases where the mean error and mean absolute error have 

the same value, then the GM concentrations for all of the subcatchments in the test catchment are either 

over- or under-estimated. As a further independent check, this model was applied to three sampling 

points in a further catchment (the Haverigg catchment, Cumbria), which was monitored in 2008. 

3. Results 

3.1. All-Variable Models 

The results, summarised in Table 4, show statistically significant (p < 0.05) base- and high-flow 

regression models for both FC and EN.  

Table 4. Summary of results of stepwise multiple regression models of relationship 

between log10 geometric mean faecal coliform and enterococci concentrations at base and 

high flow and all the independent variables listed in Table 3. 

  Step Variable Sign of b
 a
 Adjusted r

2
 Sig level (p) 

Base-flow models (n = 153) 

 Faecal coliforms 

  1 HUMAN + 0.363  

  2 DAIRY  + 0.418  

  3 ALLCATTLE −? 0.481  

  4 ARABLE +? 0.505  

  5 AREA +? 0.518 <0.001 

 Enterococci 

  1 URBAN + 0.294  

  2 DAIRY + 0.325  

  3 ALLCATTLE −? 0.369  

  4 ARABLE +? 0.394 <0.001 

High-flow models (n =134) 

 Faecal coliforms 

  1 DAIRY + 0.439  

  2 HUMAN + 0.595  

  3 TOTALEC + 0.631  

  4 OTHCATTLE −? 0.653 <0.001 
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Table 4. Cont. 

  Step Variable Sign of b 
a
 Adjusted r

2
 Sig level (p) 

 Enterococci 

  1 DAIRY + 0.388  

  2 HUMAN + 0.598  

  3 TOTALEC + 0.632 <0.001 
a? indicates that the sign does not conform with prior expectation. 

The levels of explained variance are higher in the two high-flow models (maximum r
2
, 0.632 for FC) 

than the base-flow models (maximum r
2
, 0.518 for FC). In each case at least three independent 

variables were entered. With the exception of AREA, which is entered at Step 5 in the base-flow FC 

model, all the variables entered are either population- or land cover-related variables (i.e., neither 

runoff during the study period nor soil hydrology (SPR) are sufficiently significant to warrant 

inclusion in the models).  

Overall, the models are dominated by the population variables, particularly HUMAN and DAIRY, 

though some land cover variables are also significant. DAIRY is entered first in the high-flow models, 

whereas HUMAN or URBAN are entered at Step 1 in the base-flow models. For all of the more 

significant predictors the sign of the slope (b) value is consistent with prior expectations. However, 

some of the less significant variables (as highlighted in Table 4) have unexpected effects. 

3.2. Land Cover-Based Models 

In each case statistically significant regression models have been generated, Table 5, with URBAN 

and GRASSLAND being the only two variables entered (i.e., RGRAZING, the other potentially 

significant FIO source, proved insufficiently significant to be included). 

While these models inevitably have lower levels of explained variance than those including all 

potential predictors, it is notable that all the models generated using land cover variables conform to 

prior expectations, with both URBAN and GRASSLAND land cover types being significant. 

Table 5. Summary of results of stepwise multiple regression models of relationship 

between log10 geometric mean faecal coliform and enterococci concentrations at base and 

high flow and those land use variables that represent likely enhanced sources of faecal 

indicator organisms—i.e., grassland, rough grazing and urban/suburban (Table 3). 

  Step Variable Sign of b Adjusted r
2
 Sig level (p) 

Base-flow models (n = 153) 

 Faecal coliforms 

  1 URBAN + 0.339  

  2 GRASSLAND + 0.388 <0.001 

 Enterococci 

  1 URBAN + 0.294  

  2 GRASSLANDa + 0.301 <0.001 



Water 2011, 3                            

 

 

692 

Table 5. Cont. 

  Step Variable Sign of b Adjusted r
2
 Sig level (p) 

High-flow models (n = 134) 

 Faecal coliforms 

  1 GRASSLAND + 0.316  

  2 URBAN + 0.540 <0.001 

 Enterococci 

  1 URBAN + 0.331  

  2 GRASSLAND + 0.571 <0.001 
a Only URBAN is entered with PIN = 0.05. In order to include GRASSLAND (the key agricultural  

FIO-source variable), PIN was relaxed to 0.12. 

3.3. Population- (Human/Livestock-) Based Models 

In this case the composite LSTOCKEC and TOTEC variables were excluded in order to remove the 

inevitable overlap with the individual population variables. The results, shown in Table 6, highlight the 

importance of HUMAN and DAIRY, which are entered at Steps 1 and 2 in all four models. 

Table 6. Summary of results of stepwise multiple regression models of relationship 

between log10 geometric mean faecal coliform and enterococci concentrations at base and 

high flow and the population variables—i.e., human, dairy, other cattle, all cattle, sheep 

(Table 3). 

  Step Variable Sign of b Adjusted r
2
 Sig level (p) 

Base-flow models (n = 153) 

 Faecal coliforms 

  1 HUMAN + 0.363  

  2 DAIRY + 0.418 <0.001 

 Enterococci a 

  1 HUMAN + 0.290  

  2 DAIRY + 0.311  

  3 SHEEP −?a 0.326 <0.001 

High-flow models (n = 134) 

 Faecal coliforms 

  1 DAIRY + 0.439  

  2 HUMAN + 0.595  

  3 SHEEP + 0.622 <0.001 

 Enterococci 

  1 DAIRY + 0.388  

  2 HUMAN + 0.598  

  3 SHEEP + 0.624 <0.001 

a
 ? indicates that the sign does not conform with prior expectation. 

HUMAN is entered first in the base-flow models, whereas DAIRY is the key variable at high flow. 

SHEEP is also entered at Step 3 in three of the models: with a +ve b value in the two high-flow models, 
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though with a counter-intuitive –ve value (for EN) at base flow. The levels of explained variance are 

notably higher in the high-flow models (maximum r
2
, 0.624 for EN). 

3.4. Inter-Study Transfer Errors 

Transfer errors were investigated for the high-flow, population-based EN model, since this had the 

highest level of explained variance of the more parsimonious land cover- and population-based models.  

Table 7. Inter-study transfer errors
a
 in high-flow, population-based enterococci model. 

Study catchment tested
b
 Mean error

c
 

(log10 cfu 100 mL
−1

) 

Mean absolute error
d
 

(log10 cfu 100 mL
−1

) 

1 Holland Brook 0.4975 0.4975 

2 River Ribble −0.1883 0.2985 

5 River Leven/Crake −0.0513 0.2215 

9 River Irvine/Garnock 0.6227 0.6227 

11 River Nairn  −0.2126 0.3059 

12 Afon Ogwr 0.0417 0.2116 

14 Afon Rheidol/Ystwyth 0.4609 0.4912 

 Mean 0.1672 0.3784 
a Determined by deriving a model with data for the tested study catchment omitted and using the resulting 

model to predict the geometric mean concentration for subcatchments in the omitted study; 
b Only study catchments with ≥ 5 subcatchments with valid high-flow data were included, see Table 1; 
c Mean of predicted–actual log10 EN concentrations for each of the subcatchments in the study catchment 

being tested; 
d Mean of absolute difference between predicted and actual log10 EN concentrations for each of the 

subcatchments in the study catchment being tested. 

The results in Table 7 reveal considerable inter-study variability that is not accounted for by the 

model. In fact, only the Leven/Crake and Ogwr studies have mean errors close to zero. In the case of 

Holland Brook, Irvine/Garnock and Rheidol/Ystwyth studies the models based on the other study 

catchments tend to overestimate the actual EN concentrations that were recorded (mean errors: 0.4975, 

0.6227 and 0.4609 log10 cfu 100 mL
−1

, respectively); whereas for the Ribble and Nairn studies the 

models tend to underestimate the actual concentrations (mean errors: −0.1883 and −0.2126 log10 cfu 

100 mL
−1

, respectively). The mean absolute error recorded is 0.3784 log10 cfu 100 mL
−1

, with values 

ranging from 0.2116 (Ogwr) to 0.6227 (Irvine/Garnock) log10 cfu 100 mL
−1

. The pattern in these 

results is closely reflected in the plot of predicted against actual high-flow EN concentrations based on 

the overall model, shown in Figure 2. Application of the model to the three sites in the Haverigg 

catchment produced a mean error of −0.1810 log10 cfu 100 mL
−1

 (range, −0.0513 to −0.2467 log10 cfu 

100 mL
−1

). It should be noted that inter-study transfer errors will tend to be greater where levels of 

explained variance in the models are lower, notably in the base-flow models. 
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Figure 2. Plot of actual high-flow log10 geometric mean enterococci concentration against 

predicted values using population-based model reported in Table 6, with values from those 

studies showing clear +ve or –ve anomalies from transferability testing (Table 7) identified. 

 

4. Discussion 

4.1. Dominant Faecal Indicator Organism Sources within Catchments 

The regression models clearly identify both humans and livestock as key FIO sources within 

catchments. It should be noted that some FIOs from both sources, especially particle-attached FIOs, 

may be deposited on the stream bed under base-flow conditions and re-suspended at times of  

high-flow. The FIO concentrations reported are therefore derived from both newly entrained and 

newly added organisms into the water column. Indeed, a significant proportion of the elevated 

concentration at high flow may well be from the stream bed.  

Under base-flow conditions human sources (as reflected in the HUMAN and URBAN variables) are 

more important than livestock sources in accounting for the observed variance in FC and EN 

concentrations. Indeed, the DAIRY or GRASSLAND variables that are entered at Step 2 in the  

base-flow regression models provide only very limited additional explanation. This suggests that 

sewage-related sources are dominant at base flow, with relatively little FIO input from agricultural 

sources. The former will be largely treated effluents from WwTWs, which generally have much lower 

FIO concentrations under base-flow conditions than high flow [12]. The relatively low levels of 

explained variance in the base-flow models probably reflects the fact that in this ‗black box‘ modelling, 

no account is taken of the nature of the effluent quality of individual WwTWs, which varies with the 

type of treatment [12]; and also that the URBAN and HUMAN data for individual subcatchments will 

poorly reflect the magnitude of sewage effluent inputs to the subcatchment watercourses in cases 

where WwTWs serving a significant proportion of the built-up area are located downstream of the 

monitoring point (i.e., sewage is exported out of the subcatchment for treatment). It is also interesting 

to note that the HUMAN and URBAN variables provide very similar levels of explained variance—
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suggesting that, for the purpose of catchment-scale modelling, built-up land is a good proxy for  

human population. 

At high flow both human and livestock sources assume importance, with the latter generally being 

the more dominant. Under such conditions some untreated sewage from CSOs or overflows from 

WwTW storage tanks is likely to be discharged to watercourses, and the quality of treated effluents 

from many WwTWs will be reduced as a consequence of more rapid transmission through the  

plant [12]. The importance of human sources is evidenced by the inclusion of URBAN and HUMAN 

as key variables in the various high-flow models. 

The general importance of livestock sources at high flow is reflected in the land cover-based models 

by the prominence of GRASSLAND, which is entered first for FC and makes a major contribution to 

the explained variance achieved for EN (Table 5). It should be noted that the GRASSLAND land use 

category comprises all temporary/permanent grassland, other than that which is mapped as rough 

grazing. As such it encompasses quite a wide range in terms of quality and productivity, extending 

from very fertile lowland pastures, which tend to be dominated by dairy farming, up to quite high 

altitudes in some subcatchments, where beef and sheep production systems tend to dominate. Because 

of this, GRASSLAND is simply a proxy variable for the more intensive areas of livestock production. 

Consequently, land cover data, as are traditionally used in FIO modelling, inevitably have limited 

explanatory power and potential for scenario modelling. By incorporating livestock density data, the 

present study provides insight into the relative significance of different production systems. Of the 

various livestock variables used in the modelling (Table 3), DAIRY emerges consistently as the key 

variable, with levels of explained variance that are consistently higher than GRASSLAND. In the case 

of the high-flow FC models, for example, the DAIRY has an r
2
 value of 0.439, compared with 0.316 

for GRASSLAND, which clearly highlights the importance dairy farming systems (cf. beef cattle and 

sheep) as a FIO source. This presumably reflects the high intensity of most dairy farming operations, 

which tend to be largely confined to the better land in the lowlands; the concentration of animals close 

to farm buildings for milking; and the storage and disposal to land of large quantities of waste (mostly 

in form of slurry) from yard areas and indoor winter housing–all of which pose potential pollution 

risks in terms of both diffuse sources (e.g., faeces voided directly in fields and slurry/manure 

applications to land) and point-source pollution (e.g., runoff from farmyards and milking parlours, 

slurry stores and manure heaps). By contrast, beef and sheep systems are not so confined to the better 

land, are often less intensive, and generate smaller amounts of waste for disposal. Sheep may, however, 

be present in quite large numbers in some catchments, both in areas of temporary/permanent grassland 

and rough grazing. They therefore represent a potentially significant FIO source, and this is reflected in 

SHEEP being entered at Step 3 with a +ve b value in both high-flow population-based models (Table 

6). On the basis of these results, the design and implementation of measures to address FIO pollution 

from agricultural sources should be targeted initially on areas of dairy production. 

4.2. Other Potential Factors Affecting Faecal Indicator Concentrations 

Several ―other‖ (i.e., non-source) variables (Table 3) were included in the all-variable modelling. 

These relate to three catchment characteristics that may affect source strength and the mobilisation, 



Water 2011, 3                            

 

 

696 

transport, die-off and sedimentation of FIOs within catchments, namely: runoff volume, soil hydrology 

and catchment size. 

Volume of runoff during the study period may be an important factor since, during prolonged 

periods of wet weather, certain FIO sources (especially those associated with diffuse sources, such as 

animal faeces in fields and stream source contributory areas) will tend to become depleted. It might be 

anticipated, therefore, that a period of high flow will tend to be associated with higher FIO 

concentrations if preceded by a long spell of dry weather than if it followed a relatively wet period. 

Due to differences in weather conditions between the 6–8 weeks of each of the 14 catchment studies, 

there is very marked inter-subcatchment variability in runoff volumes (e.g., ―TOTRUNOFF‖: range, 

3.94–211.88 m
3
 km

−2
 h

−1
). In the case of soil hydrology, in subcatchments with more poorly drained 

soils (i.e., with a higher mean SPR) there will likely be more surface runoff per unit rainfall and hence 

increased mobilisation and transport of FIOs from land to adjacent watercourses, which may well lead 

to increases in FIO concentrations. In the present study the SPR for both the subcatchments as a whole 

(―TOTSPR‖: range, 22.47–59.41%) and for the areas of permanent/temporary grassland (―GRSPR‖: 

range, 18.38–58.44%) were used as predictor variables. Catchment size may also be an important 

factor, since the opportunity for die-off of FIOs along watercourses as a result of exposure to UV light 

is increased within larger catchments as a result of the greater length of channel flow. This is 

particularly likely under base-flow conditions when flow velocities, water depth and turbidity are all at 

a minimum, thereby maximising UV exposure. The 153 subcatchments used in the modelling range in 

size (―AREA‖) from 5.01–1,013.18 km
2
. 

Despite the marked inter-subcatchment variability of runoff volume, soil hydrology and catchment 

area, only AREA was entered in any of the models, and that with a (counter-intuitive) +ve b value in 

the base-flow FC model (Table 4). Clearly, controlled experimental studies are needed to assess more 

fully the effects of these factors. On present evidence, however, it would seem that their role in 

affecting FIO concentrations in watercourses at the regional and national scales is minor compared 

with differences in human population density, stocking levels and associated land use types (URBAN 

and GRASSLAND)–i.e., the factors that relate directly or indirectly to the key FIO sources. 

4.3. Inter-Catchment Transferability of the Models 

The out-of-sample testing reveals some degree of inter-study variability in the model evaluated, and 

this will inevitably tend to be greater in models with lower levels of explained variance, notably the 

base-flow models. This is not unexpected [29]; and is likely to be attributable to a combination of both 

inter-catchment and temporal factors. The former reflect systematic differences between the 

catchments affecting the sources, survival and mobility of FIOs that are not accounted for by the 

variables in the final regression models (i.e., the unexplained variance). For example, there may be 

inter-catchment variations in livestock farming facilities and management practices that limit the 

extent to which key predictor variables such as GRASSLAND and DAIRY provide a measure of FIO 

sources. Also, soil hydrology (as outlined above) seems likely to account for some degree of  

inter-catchment variability, but its influence is not sufficiently strong to be included in the all-variable 

models; and other factors that were not included as potential predictor variables (e.g., temperature and 

topography) are likely to have a similar effect. The temporal factors, on the other hand, reflect the fact 
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that the individual studies were undertaken over 6–8 week monitoring periods with markedly 

contrasting weather conditions, both before and during the studies; and at different times during the 

bathing season, which could, for example, affect FIO source strength in grazed fields as a result of the 

progressive accumulation over the summer months of faeces from dairy cattle (which are housed over 

winter). Volume of runoff during the individual study periods, which was considered most likely to be 

the key temporal factor, was included in the predictor variable set, but (cf. hydrology) was not 

sufficiently significant to be entered in the all-variable models. 

The strength of the present models lies in the fact that they are based on a FIO database that has 

such extensive geographical coverage (land use, climate, topography, soils, etc.) and encompasses a 

wide range of weather conditions during the individual monitoring periods. Some of the inter-study 

transfer errors are inevitably quite high, and these are partly attributable to temporal factors. Clearly, 

by combining the data from all 14 catchment studies the effects of the temporal factors are minimised 

and the inter-catchment errors reduced. The resulting land cover- and population-based models 

developed in the present study can therefore be applied with some confidence for predicting base- and 

high-flow GM FC and EN concentrations during the summer bathing season in UK watercourses with 

catchments areas between 5 and approximately 1,000 km
2
. While the lower size threshold is 

determined by the level of resolution of the available agricultural census data, the upper limit simply 

reflects the size of the larger catchments used in the present modelling. Further investigations are 

needed to establish the validity of applying these models to much larger catchments. By combining 

these GM FIO concentrations with discharge data, then the contribution that the individual 

rivers/streams make to overall FIO loadings to coastal waters can be estimated. 

The models can also be used to evaluate the likely impact of different land use/stocking level and 

human population change scenarios, as might result from the implementation of measures designed to 

reduce FIO loadings, or reforms in agricultural policy/funding, as reported in Hampson et al. [11]. 

5. Conclusions 

In order to meet European WFD requirements there is an urgent need for generic (i.e., transferable) 

models that can accurately predict base- and high-flow GM FIO concentrations in UK watercourses. 

Previous studies of individual catchments have successfully developed regression models based on 

relationships between GM FIO concentrations recorded at monitored sites and land use within their 

subcatchments. The present study extended this approach by augmenting the predictor variables to 

include direct measures of key FIO sources (i.e., human population and livestock density data) and 

various factors (catchment size, runoff and soil hydrology) that may affect source strength and the 

mobilisation, transport and die-off of FIOs; and exploring the development of generic models by 

combining data from 14 different catchment studies across the UK. 

Statistically significant base- and high-flow regression models have been developed for both FC and 

EN, with levels of explained variance consistently higher in latter models. Population variables 

(notably HUMAN and DAIRY) generally provide higher levels of explained variance than the land 

cover variables. Under base-flow conditions human, sewage-related, sources are dominant, whereas 

livestock sources tend to assume greater significance at high flow, with dairy farming systems (cf. beef 

cattle and sheep) being particularly important sources. Neither runoff, soil hydrology or catchment size 
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were significant predictor variables. In more parsimonious land cover- and population-based models, 

developed for ease of transferability to other UK catchments, relatively high levels of explained 

variance were achieved for all the high-flow models, with adjusted r
2
 values ranging from 0.540  

(land use model for FC) to 0.624 (population model for EN). 

A programme of out-of-sampling testing on the high-flow EN model indicated some degree of 

inter-study variability, which is likely attributable to a combination of: (i) inter-catchment factors, 

which reflect systematic differences between the catchments that affect the sources, survival and 

mobility of FIOs that are not accounted for by the variables in the models; and (ii) temporal factors, 

which reflect the fact that the FIO monitoring was undertaken under different weather conditions and 

at different times during the summer bathing season. However, it is argued that by combining data 

from all 14 studies, which have a wide geographical distribution across UK and encompass a wide 

range of weather conditions, the effects of the temporal factors are minimised and the inter-catchment 

errors reduced. 

Our research contributes to the emerging international debate on the use of farm best management 

practices and policy instruments to reduce FIOs and agricultural diffuse pollution (e.g., Bateman et al. [10], 

Chadwick et al. [30], Monaghan et al. [31], Helming and Reinhard [32], Hutchins et al. [33], 

Maringanti et al. [34] and Oliver et al. [35]) and the resulting land cover- and population-based models 

can be employed, with some confidence, in UK catchments both to predict base- and high-flow FC and 

EN concentrations in unmonitored watercourses and to evaluate the likely impact of different land 

use/stocking level and human population change scenarios. 
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