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Abstract: Chlorophyll-a (Chl-a) concentration is considered as a key indicator of the 

eutrophic status of inland water bodies. Various algorithms have been developed for 

estimating Chl-a in order to improve the accuracy of predictive models. The objective of this 

study is to assess the potential of hyperspectral multi-band indices to estimate the Chl-a 

concentration in Dianshan Lake, which is the largest lake in Shanghai, an international 

metropolis of China. Based on field spectral measurements and in-situ Chl-a concentration 

collected on 7–8 September 2010, hyperspectral multi-band indices were calibrated to 

estimate the Chl-a concentration with optimal wavelengths selected by model tuning. A 

three-band index accounts for 87.36% (R2 = 0.8736) of the Chl-a variation. A four-band 
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index, which adds a wavelength in the near infrared (NIR) region, results in a higher R2 

(0.8997) by removing the absorption and backscattering effects of suspended solids. To test 

the applicability of the proposed indices for routinely monitoring of Chl-a in inland lakes, 

simulated Hyperion and real HJ-1A satellite data were selected to estimate the Chl-a 

concentration. The results show that the explanatory powers of these satellite hyperspectral 

multi-band indices are relatively high with R2 = 0.8559, 0.8945, 0.7969, and 0.8241 for 

simulated Hyperion and real HJ-1A satellite data, respectively. All of the results provide 

strong evidence that hyperspectral multi-band indices are promising and applicable to 

estimate Chl-a in eutrophic inland lakes. 

Keywords: hyperspectral; multi-band index; field spectral; Chl-a; Dianshan Lake 

 

1. Introduction 

Lake water quality is important for the development of aquaculture, sightseeing, and transportation, 

etc. With the rapid development of economy, industrialization and human activities in China, pollution 

and eutrophication problems of lake water resources are becoming increasingly severe. Since the end of 

the last century, cyanobacteria algal blooms have occurred in many lakes of China, which has been 

worsening in recent years [1]. The cyanobacteria blooms have caused the death of a large number of 

aquatic animals and led to stench in lake water. Chlorophyll-a (Chl-a) concentration is considered as a 

key indicator of the eutrophic status of inland water bodies [2]. As Chl-a exists in all algae groups in 

marine and freshwater systems, Chl-a concentration is always deemed as a proxy of cyanobacteria algal 

biomass in waters [3]. Therefore, it is practicable to map the amount of cyanobacteria and to predict 

cyanobacteria algae blooms through the index of Chl-a [4]. Chl-a concentration is also an important 

index for detecting the degree of pollution in inland water bodies. 

Compared to traditional Chl-a monitoring methods through extensive field sampling, which are 

time-consuming and difficult to perform for large-scope regional and global studies, remote sensing 

provides near real-time, large-scale and spatially continuous information [5]. However, accurate 

estimates of Chl-a concentration with remote sensing data is challenging in inland Case II waters [6–8]. 

In order to overcome the optical complexities of Case II waters, the red and near-infra-red (NIR) spectral 

regions have been used as the effects of suspended particulate matter (SPM) and colored dissolved 

organic matter (CDOM) decrease at longer wavelengths [9]. 

Various algorithms have been developed for estimating Chl-a concentration in eutrophic and turbid 

Case II waters based on the spectral characteristics in the red and NIR regions [9–11]. Thiemann and 

Kaufman used the 705 nm to 678 nm reflectance ratio to assess Chl-a concentration in Mecklenburg 

Lake [12]. Jiao et al. [13] extended the method by using the 719 nm to 667 nm reflectance ratio 

according to the inherent spectral properties of Taihu Lake. To account for the variability in scattering 

among samples, Zimba et al. [14] proved that a three-band index originally developed for estimating 

chlorophyll content in terrestrial vegetation [15,16] could be applied to the estimation of Chl-a in waters 

with high accuracy. 
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However, the assumptions for the three-band semi-analytical algorithm may be complicated in highly 

turbid waters. For example, Tzortziou et al. [17] showed that the absorption by particulate matter in the 

700–730 nm regions could not be neglected in Chesapeake Bay. Tassan and Ferrari [18] found that the 

aquatic particle absorption significantly varied with the type of suspended particles. Recently, an 

enhanced three-band index, i.e., a four-band index [19], which adds a reflectance band in the NIR, was 

proposed to estimate Chl-a concentration in turbid waters. With the additional fourth band, the 

four-band index can remove the absorption and backscattering by suspended solids over the NIR region, 

and minimize the absorption by pure water. 

In order to apply multi-band indices routinely, Gons et al. [20] and Moses et al. [2,21] went further to 

implement the three-band index using MERIS and MODIS images, to successfully estimate Chl-a 

concentrations in inland lakes and coastal waters. However, the advent of hyperspectral sensor 

technology has allowed improving the models with subtle reflection features. Instead of the broadband 

of multispectral data, hyperspectral satellite data with a spectral resolution of 5–10 nm can capture 

various physical and biological characteristics of inland waters [22,23]. Therefore, the  

physically-based abilities of hyperspectral remote sensing are highly suitable for Chl-a estimation and 

have the possibility to assess all optical water parameters in Case II waters [24]. 

For the hyperspectral satellite data that can be applied to multi-band indices, Hyperion and HJ-1A are 

two potential choices for Chl-a estimation in Case II waters [4,25]. In particular, the HJ-1A satellite, 

which was launched in September 2008, is equipped with a hyper-spectral imager (HSI) that can capture 

images of the Earth surface with 115 bands over the spectral range from 450 to 950 nm. The superiority 

also includes a high spectral resolution of 5 nm and a spatial resolution of 100 m. In addition, the revisit 

time is only four days, which is more appropriate for timely Chl-a concentration monitoring. 

The objectives of the study include: (1) to identify the characteristics of field spectral reflectance and 

to establish hyperspectral multi-band indices for Chl-a estimation in Dianshan Lake;  

(2) to evaluate the accuracy and sensitivity of the proposed three-band and four-band indices;  

(3) to assess the potential of hyperspectral satellite data to estimate Chl-a concentration in eutrophic 

inland lakes. 

2. Study Area and Datasets 

2.1. Study Area 

In this paper, a typical inland freshwater lake—Dianshan Lake—was selected as the study area. 

Dianshan Lake is the largest lake in Shanghai, an international metropolis in Eastern China, located 

between 30°12' N and 31°04' N, and 120°54' E and 121°01' E (Figure 1). The lake has an average surface 

area of 62 km2, and a mean water depth of 2.11 m. The water flow rate is very slow, typically only  

0.03 m/s, and the water exchange period is nearly 24 days in the low-water season. An annual average 

water surface temperature is about 18.8 °C. The lake is of considerable interest because it provides more 

than 60% of the water supply for local residents [1] and is mainly used for drinking water, navigation, 

irrigation, and flood control. As a result, the water yield and quality of the lake are important to people’s 

daily life and to the social and economic development of Shanghai city. 
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2.2. Field Spectral Measurements Data 

Field spectral measurements and in-situ Chl-a data were acquired on 7–8 September 2010. The 

spectral measurements were taken from a boat using an Analytical Spectral Devices (ASD) FieldSpec 

Spectroradiometer, which measures reflected radiance between 350 nm and 1075 nm at an increment of 

1.5 nm in 512 bands. The raw data were transformed by the instrument software, so the output 

measurements had a sampling interval of 1 nm. During the measurements, the instrument was hand-held 

with a field view of 25° and positioned approximately 1 m above the water surface. Intercalibration of 

the radiometers was completed by measuring the upwelling radiance of a white spectralon panel. The 

“above water method” was used to measure the water surface spectra [26,27], and the reflectance 

measurements followed the Ocean Optical protocols (Revision 3) by NASA (2002). The water surface 

reflectance spectra were measured at least ten times at each sample station. A mean value after median 

filtering was taken as the final result. Considering the synchronization between the in-situ data and the 

satellite overpass, water samples and reflectance measurements were collected between 10:00 am and 

12:00 pm at local time. Due to the low water transparency (the average transparency < 0.5 m) in the lake, 

the reflectance from the bottom of the lake was negligible. 

Figure 1. Location of Dianshan Lake and the distribution of sample sites. 

 

2.3. In-situ Chl-a Data 

Water samples were collected from a shallow water depth (50 cm below surface) at 30 sample sites in 

different regions of Lake Dianshan. In the laboratory, the water samples were filtered through  

0.45 μm filters, left overnight at 4 °C in the dark, and then extracted with 95% acetone. Subsequently, 

the clarified liquid was quantified using the UV-2501 spectrophotometer [28], and the Chl-a 

concentrations were calculated according to Scientific Committee on Oceanic Research-United Nations 

Educational, Scientific and Cultural Organization equations [29,30]. Water filters were dried at 105 °C 

for 4 h and then weighed to obtain total suspended solids (TSS). For all the 30 water samples, the Chl-a 

concentrations ranged from 5.53 mg/m3 to 100.3 mg/m3, with an average of 27.74 mg/m3. The 
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concentrations of TSS were between 20.1 mg/m3 and 72 mg/m3, with an average of 37.27 mg/m3. The 

water sampling was performed during the summer when the wind speed was relatively low. Therefore, 

the disturbance effect due to the presence of wind could be neglected. 

3. Analyses 

3.1. Spectral Reflectance Properties 

Specific spectral analysis is needed in order to choose the sensitive wavelengths and to optimize the 

multi-band combination. Figure 2 shows the spectral reflectance of Dianshan Lake. The reflectance was 

highly variable in the visible and NIR spectral regions. Yet, the shape and magnitude of the reflectance 

spectra were similar to those of typical productive inland water bodies [31]. Reflectance was relatively 

low in the blue range (400–495 nm) due to the total absorption of water constituents, but was much 

higher in the green range (495–570 nm). The varied presence of cyanobacteria caused a correspondingly 

slight reflectance trough around 620 nm and a unique reflectance peak around 650 nm as the water was 

dominated by cyanobacteria algae [18,32]. The significant spectral characteristic was the reflectance 

peak around 700 nm, of which the peak shifted from 690 to 715 nm with the increase of Chl-a 

concentration [24,33]. In the NIR region, the reflectance trough around 730 nm was formed by the 

strong absorption of pure water. 

Figure 2. Field spectral reflectance in Dianshan Lake. 

 

3.2. Multi-Band Indices Tuning 

3.2.1. Three-Band Index 

The three-band index, as a conceptual model developed for Chl-a estimation, has been proven robust 

in turbid waters [33]. The three-band index can be shown as Equation (1). Chl-ܽ ∝ [ܴ୰ୱିଵሺλଵ) − ܴ୰ୱିଵሺλଶ)]ܴ୰ୱሺλଷ) (1)
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λ1 is a wavelength where the Chl-a absorption has the greatest effect on remote sensing reflectance, and 

the absorption by CDOM and non-pigmented particles has less effect on the total backscattering, thus, λ1 

should be within the red band range; λ2 is a wavelength with little absorption by Chl-a, so the 

fluorescence peak around 700 nm meets this requirement; the selection criteria for λ3 are that the total 

absorption is much larger than the backscattering, and the reflectance is mainly affected by the 

absorption of pure water [7,13]. As a result, the spectral ranges of the three bands should be restricted to 

650–690 nm, 690–720 nm, and 720–800 nm for λ1, λ2, and λ3, respectively. 

The optimal wavelengths were selected based on the minimum root mean square root (RMSE) error 

for Chl-a, when two wavelengths were held constant, the third wavelength was allowed to vary until the 

minimum RMSE error was reached. To find the optimal λ1, initial λ2 and λ3 were fixed at 700 nm and 

750 nm. As λ1 was tuned from 650 nm to 690 nm, the RMSE of [Rrs
−1 (λ1) −Rrs

−1 (700)] × Rrs (750) versus 

Chl-a was calculated. As a result, the optimum wavelength for λ1 occurred at 651 nm  

(Figure 3a). To determine the optimal position for λ2, λ1 and λ3 were fixed at 651 nm and 750 nm, while 

λ2 was tuned from 680 nm to 720 nm, the RMSE of index [Rrs
−1 (651) −Rrs

−1 (λ2)] × Rrs (750) versus 

Chl-a was computed for each λ2. The result shows that the minimum RMSE existed at 691 nm  

(Figure 3b). Similarly, the optimal value of λ3 was determined by setting λ1 = 651 nm and λ2 = 691 nm, 

and the minimum RMSE occurred at 754 nm (Figure 3c). We carried out the tuning process repeatedly to 

assess whether the optimal locations shifted to other wavelengths. Finally, the three wavelengths were 

selected at 651 nm, 691 nm, and 754 nm, respectively. 

Figure 3. RMSE of Chl-a estimation from three-band indices versus measured  

Chl-a at different wavelengths. (a) [ܴ୰ୱିଵሺλଵ) − ܴ୰ୱିଵሺλ଻଴଴)]ܴ୰ୱሺλ଻ହ଴)  letting vary λ1,  

(b) 	[ܴ୰ୱିଵሺλ଺ହଵ) − ܴ୰ୱିଵሺλଶ)]ܴ୰ୱሺλ଻ହ଴)  letting vary λ2 varying, (c) [ܴ୰ୱିଵሺλ଺ହଵ) −ܴ୰ୱିଵሺλ଺ଽଵ)]ܴ୰ୱሺλଷ) letting vary λ3. 

 

3.2.2. Four-Band Index 

The four-band index was developed to improve the three-band index by replacing ܴ୰ୱሺλଷ) with [ܴ୰ୱିଵሺλସ) − ܴ୰ୱିଵሺλଷ)]ିଵ , which could subtract the effect of suspended solids and minimize the 

absorption by pure water as well as backscattering in NIR region [18]. The four-band index is shown as  

Equation (2). Chl-ܽ ∝ [ܴ୰ୱିଵሺߣଵ) − ܴ୰ୱିଵሺߣଶ)][ܴ୰ୱିଵሺߣସ) − ܴ୰ୱିଵሺߣଷ)]ିଵ (2)

The optimal positions of the four wavelengths were also determined by band tuning using the same 

method as in previous section. To find the optimal wavelengths for the four-band index, λ1, λ2, λ3, and λ4 
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were all tuned in the range of 650–760 nm. We initially fixed λ2, λ3, and λ4 at 700 nm, 720 nm, and  

750 nm, respectively. The minimum RMSE occurred at 652 nm by tuning λ1 from 650 nm to 760 nm, 

(Figure 4a). Thus, 652 nm was selected for λ1. To determine the optimal position of λ2, λ1, λ3, and λ4 

were fixed at 652 nm, 720 nm, and 750 nm, respectively. The tuning result shows that the optimal 

position of λ2 was located at 692 nm (Figure 4b). When λ1 = 652 nm, λ2 = 692 nm and λ3 = 720 nm, 

RMSE became minimal at 751 nm for λ4 (Figure 4c). Similarly, when λ1 = 652 nm, λ3 = 720 nm, and  

λ4 = 750 nm, the optimum location of λ3 occurred at 726 nm (Figure 6d). After tuning again to examine 

the selected wavelengths, the final selections for λ1, λ2, λ4, and λ3 were 652 nm, 692 nm, 751 nm, and  

726 nm, respectively. 

Figure 4. RMSE of Chl-a estimation from four-band indices versus measured Chl-a for 

optimal wavelength selection. (a) 	[ܴ୰ୱିଵሺλଵ) − ܴ୰ୱିଵሺλ଻଴଴)][ܴ୰ୱିଵሺλ଻ହ଴) − ܴ୰ୱିଵሺλ଻ଶ଴)]ିଵ ;  

(b) [ܴ୰ୱିଵሺλ଺ହଶ) − ܴ୰ୱିଵሺλଶ)][ܴ୰ୱିଵሺλ଻ହ଴) − ܴ୰ୱିଵሺλ଻ଶ଴)]ିଵ ; (c) [ܴ୰ୱିଵሺλ଺ହଶ) − ܴ୰ୱିଵሺλ଺ଽଶ)]	[ܴ୰ୱିଵሺλସ) − ܴ୰ୱିଵሺλ଻ଶ଴)]ିଵ; (d) [ܴ୰ୱିଵሺλ଺ହଶ) − ܴ୰ୱିଵሺλ଺ଽଶ)][ܴ୰ୱିଵሺλ଻ହଵ) − ܴ୰ୱିଵሺλଷ)]ିଵ. 

 

4. Results 

4.1. Estimation of Chl-a Concentration with Field Spectral Multi-Band Indices 

The relationships between the index values and Chl-a concentrations were determined using linear 

regression. Although in most cases a non-linear model produced a better fit than a linear model, the 
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latter can maintain a stable performance across different water bodies, and thus can better describe the 

practicability and universality of the relationships. Based on the wavelengths determined above, the 

linear relationships between the multi-band indices and Chl-a concentration were calculated as follows 

[Equation (3) for three-band index and Equation (4) for four-band index]. 		Chl-ܽ = 624.61 × [ܴ୰ୱିଵሺλ଺ହଵ) − ܴ୰ୱିଵሺλ଺ଽଵ)]ܴ୰ୱሺλ଻ହସ) + 37.367 (3)Chl-ܽ = 130 × [ܴ୰ୱିଵሺλ଺ହଶ) − ܴ୰ୱିଵሺλ଺ଽଶ)][ܴ୰ୱିଵሺλ଻ହଵ) − ܴ୰ୱିଵሺλ଻ଶ଺)]ିଵ + 30.024 (4)

Both the three-band and the four-band indices had close relationships with the Chl-a concentration. 

The three-band index was positively related to the Chl-a concentration with R2 = 0.8736 (Figure 5a). 

The four-band index, which minimized the backscattering by suspended solids and absorption by pure 

water, showed a stronger relationship with the Chl-a concentration with R2 = 0.8997 (Figure 5c). The 

RMSE also decreased from 7.228 mg/m3 for the three-band index regression model to 6.439 mg/m3 for the 

four-band index regression model, which was far below the average Chl-a concentration of 27.74 mg/m3. 

All the above indicates that the four-band index has a superior performance to the three-band index. 

Figure 5. Linear regression of field spectral multi-band indices versus in-situ Chl-a 

concentrations. (a) Linear regression for three-band index; (b) relative error (RE) of the 

linear regression for three-band index; (c) Linear regression for four-band index; (d) RE of 

the linear regression for four-band index. 
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The relationship between relative error (RE) and in-situ Chl-a concentration was also evaluated to 

compare the ability of the two indices in estimating Chl-a. Both Figure 6b,d illustrate that RE 

decreases with the increase of the Chl-a concentration. The mean relative error (MRE) of the 

four-band index was lower than that of the three-band index, decreasing from 25.9 mg/m3 for the 

three-band index (Figure 5b) and to 23.98 mg/m3 for the four-band index (Figure 5d). It is noted that 

the RE decrease is more evident in the sample sites with higher Chl-a concentration. That is, the 

four-band index in particular was appropriate for the estimation of higher Chl-a concentration. 

4.2. Estimation of Chl-a Concentration with Satellite Hyperspectral Multi-Band Indices 

Hyperion is a popular hyperspectral satellite data, which can meet the band requirements of 

multi-band indices [30,34], and HJ-1A is a new hyperspectral satellite launched by China [25]. 

Therefore, the performance and robustness of the three-band and four-band indices were evaluated 

using simulated Hyperion data and real HJ-1A hyperspectral satellite data. 

To be consistent, the simulated Hyperion bands used in the indices were obtained from equivalent 

wavelengths in the field spectral measurements. Since the bandwidth of Hyperion data is about  

10 nm [35], the measured reflectances were averaged to the corresponding spectral bands of Hyperion 

to simulate the reflectance of Hyperion satellite hyperspectral bands. The optimal bands for the 

three-band index were B30 (647–656 nm), B34 (687–696 nm) and B40 (748–757 nm), and the optimal 

bands for the four-band index were B30 (647–656 nm), B34 (687–696 nm), B37 (718–727 nm) and 

B40 (748–757 nm), respectively. 

In the simulated Hyperion band reflectance, the indices accounted for 85.59% and 89.45% of the 

total variance in Chl-a concentration for three-band index and four-band index, respectively (Figure 6). 

The RMSEs were 7.718 mg/m3 in the three-band regression model and 6.603 mg/m3 in the four-band 

regression model, which were both far below the average Chl-a concentration. Like the results in 

Section 4.1, the model accuracy of the four-band index was also higher than that of the three-band 

index. The relatively high accuracies demonstrated the potential of Hyperion multi-band indices in 

estimating Chl-a concentration. 

Figure 6. Accuracy assessment of the two indices with simulated bands of Hyperion.  

(a) Three-band index; (b) Four-band index. 
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In order to overcome the deficiency of simulated data in real application, a HJ-1A HSI image 

acquired on 23 August 2010 and in situ Chl-a concentration data synchronously obtained were used to 

further test the applicability of the multi-band indices. Preprocessing is required on the raw satellite 

hyperspectral data to obtain the remote sensing reflectance. We used the method of by-band 

6S-atmospheric-correction [36]. In this procedure, the atmospheric model was Mid-Latitude summer 

and the aerosol model was the continental aerosol type. Together with the altitude value and 

wavelengths setting of the image sensor, remote sensing reflectance at all wavelengths was retrieved and 

used for Chl-a estimation. The band setting of the HSI sensor is shown in Table 1. 

Table 1. Bands setting of HJ-1A HSI. 

Band number 
Spectral range  

 Center wavelength (ܕܖ)

 Band number (ܕܖ)
Spectral range  

 Center wavelength (ܕܖ)

 (ܕܖ)
66 650–654.18 652.09 79 709–713.99 711.495 

67 654.18–658.43 656.305 80 713.99–719.04 716.515 

68 658.43–662.72 660.575 81 719.04–724.17 721.605 

69 662.72–667.08 664.9 82 724.17–729.37 726.77 

70 667.08–671.49 669.285 83 729.37–734.65 732.01 

71 671.49–675.96 673.725 84 734.65–740.01 737.33 

72 675.96–680.49 678.225 85 740.01–745.44 742.725 

73 680.49–685.08 682.785 86 745.44–750.95 748.195 

74 685.08–689.74 687.41 87 750.95–756.55 753.75 

75 689.74–694.45 692.095 88 756.55–762.23 759.39 

76 694.45–699.24 696.845 89 762.23–767.99 765.11 

77 699.24–704.08 701.66 90 767.99–773.85 770.92 

78 704.08–709 706.54 91 773.85–779.79 776.82 

For the satellite HJ-1A hyperspectral multi-band indices, the optimal bands were selected for the 

HJ-1A HSI data using the same approach as described in Section 3.2.1. The tuning results show that the 

optimal bands for the three-band index are B75 (689.74–694.45 nm), B78 (704.08–709.00 nm), and  

B88 (756.55–762.23 nm), and the optimal bands for the four-band index are B75 (689.74–694.45 nm), 

B78 (704.08–709.00 nm), B81 (719.04–724.17 nm), and B86 (745.44–750.95 nm), respectively. The 

calibrated HJ-1A multi-band index regression models are shown in the following equations [Equation (5) 

for three-band index, and Equation (6) for four-band index] as well as in Figure 8. Chl-ܽ = 38.655 × [B଻ହିଵ − B଻଼ିଵ] × B଼଼ + 6.1469 (5)Chl-ܽ = 15.66 × [B଻ହିଵ − B଻଼ିଵ][B଼ଵିଵ − B଼଺ିଵ]ିଵ + 6.0123 (6)

The three-band index, based on the bands of B75, B78, and B88, explained 79.69% of the total 

Chl-a variance and could be used to estimate Chl-a concentration with RMSE less than 2.82 mg/m3 

(Figure 7a). The four-band index based on the bands of B75, B78, B81, and B86 accounted for 82.41% 

of the total Chl-a variance and was able to estimate the Chl-a concentration with a RMSE of less than 

2.623 mg/m3 (Figure 7b). Although the R2 for the HJ-1A data models were a little lower than those for 

the simulated Hyperion data models, they were still high enough for practical Chl-a concentration 

estimation. The lower accuracies may have resulted from the process of atmosphere correction or the 

settings of the sensor’s channel. 
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Figure 7. Linear regression and accuracy assessment of the two indices with hyperspectral 

reflectance of HJ-1A. (a) Three-band index regression; (b) Four-band index regression. 

 

Figure 8 shows the relationships between the in-situ Chl-a concentration and the REs for the two 

types of satellite data. For the simulated Hyperion bands, the MRE of the four-band index model was 

lower than that of the three-band index model, especially in the sample sites with higher Chl-a 

concentration (Figure 8a). For the estimation of Chl-a with HSI data, the MRE of the four-band index 

regression model was also lower than that of the three-band index model (Figure 8b), which echoed the 

higher R2 discussed above (0.8241 for four-band index regression vs. 0.7969 for three-band index 

regression). The largest RE occurred at the sample site with low Chl-a concentration, which was 

probably caused by the effects of clouds and can be considered as an abnormal value. 

Figure 8. The relationships between RE and Chl-a concentration. (a) Hyperion data;  

(b) HJ-1A data. 

 

5. Discussion and Conclusions 

With the development of remote sensing technology, timely monitoring of Chl-a concentration for 

inland lake waters using hyperspectral satellite data can be achieved with a relatively high accuracy 
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and will be a trend for future research [30]. The narrow and contiguous bands of hyperspectral data can 

reflect the important characteristics of every kind of water quality parameters. Therefore, we can use 

hyperspectral data to find the optimal bands for multi-band indices and can improve the model accuracy. 

The selected wavelengths for the multi-band indices in this paper differed slightly from previous 

studies [2,37]. Most other studies focused on the first wavelength selection at around 670 nm, but due 

to the higher Chl-a concentration in this study, we determined λ1 at around 650 nm, which is a critical 

location to the first band in multi-band indices for high Chl-a concentration [38,39]. The second 

wavelength we selected was just beyond 690 nm, different from the selection of reflectance peak at 

700 nm in other studies [40,41]. The reason may be that after the first wavelength was determined, the 

small distance between the first two bands could minimize the effects of CDOM and Tripton. 

Comparing the selected bands of the two indices, we found that the optimum wavelengths of the 

three-band index were 651 nm, 691 nm, and 754 nm, while those of the four-band index were 652 nm, 

692 nm, 726 nm, and 751 nm. In the four-band index, except for the 726 nm, the other three selected 

bands were almost the same as those in the three-band index. The wavelength selection results illustrated 

that the four-band index was indeed an improvement of the three-band index [19], and in most cases, there 

was no need to tune the model again to find the already-determined three bands for the four-band index. 

For the multi-band indices based on the field spectral measurements, the MRE of Chl-a concentrations 

estimated were only 25.90% for the three-band index and 23.98% for the four-band index, respectively. 

The RMSE was 7.228 mg/m3 in the three-band index model and decreased to 6.439 mg/m3 in the 

four-band index regression, both far below the average Chl-a concentration. The results proved that the 

two indices were appropriate for the estimation of Chl-a concentration in Dianshan Lake. For turbid 

water bodies with high Chl-a concentration, the four-band index generated a more accurate result than 

the three-band index. 

The semi-analytical approach used in the manuscript is also a theoretically based model and provides 

a practical choice for future estimation of Chl-a concentration. When applying the multi-band indices to 

real satellite data, due to the absence of spectral response characteristics of the low Chl-a concentration, 

the estimate accuracy in some sample sites may not be high enough, but the estimation results are still 

within the allowable error interval (with a confidence level of 95%). Moreover, the estimate accuracy of 

satellite hyperspectral multi-band indices in this paper was not lower than in physical-based bio-optical 

models [17,24]. 

The field spectral-based indices were the premise and foundation of the multi-band indices calculated 

with the satellite data. Using the simulated Hyperion data and HJ-1A hyperspectral satellite data, we also 

estimated the Chl-a concentration with relatively high accuracies. The two selected types of 

hyperspectral satellite data, both with high spatial resolution (≤100 m) and high spectral resolution  

(5–10 nm), were appropriate for the estimation of Chl-a concentration, particularly for biologically 

complex water bodies such as eutrophic inland lakes. All the results demonstrated that the two 

multi-band indices built on satellite data could be used to effectively and efficiently estimate Chl-a 

concentration on a regular basis. 
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