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Abstract: We show here that a remote sensing (RS) approach is a cost-efficient and 
accurate method to study water resource dynamics in semi-arid areas. We use a MODIS 
surface reflectance dataset and a Modified Normalized Difference Water Index (MNDWI) 
to map the variability of Lake Manyara’s water surface area using a histogram segmentation 
technique. The results indicate that Lake Manyara’s water surface coverage has been 
decreasing from 520.25 km2 to 30.5 km2 in 2000 and 2011 respectively. We observe that 
the lake water surface and the lake water balance displayed a similar pattern from 2006 to 
2009, probably initiated by heavy rainfall and low temperature in 2006. Lake water surface 
area appears to have an inverse relationship with MODIS evapotranspiration (ET) and 
MODIS land surface temperature (LST). We imply that recent fluctuations of Lake 
Manyara’s surface water area are a direct consequence of global and regional climate 
fluctuations. We therefore conclude that, by means of RS it is possible to provide timely 
and up-to-date water resource information to managers and hence enable optimized and 
operational decisions for sustainable management and conservation. We suggest that the 
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method employed in this research should be applied to monitor water resource dynamics 
provided that remotely sensed datasets are available. 

Keywords: water resource management; lake dynamics; climate variability; lake 
extraction; water index; remote sensing 

 

1. Background  

Water resources are crucial to human health and the natural environment [1]. Water resources 
include surface water, groundwater, inland water, rivers, lakes, transitional waters, coastal waters and 
aquifers [2]. Over time, water resources have been degraded and exhausted. In this study we look at 
lake water resources. Lakes are key tools for the management of water resources [3]. They are 
essential component of the hydrological cycle [4]. Monitoring lake dynamics is necessary to allow 
sustainable management of water resources. In addition, lake surface areas, especially closed lakes, are 
known for their sensitivity to natural changes and thus may serve as important proxies for regional 
environmental and global climate fluctuations [4,5]. Changes in the areal extent of lake surface water 
may occur due to various factors including progressive infilling of the lake basin by sediments, climate 
change, tectonic activity causing uplift and subsidence, or the development of drainage faults [6,7]. 
Goerner et al. [7] pointed out that surface pressure, wind-driven events such as seiches and tides, 
alternating water temperature or composition, and modifications of water circulation processes can all 
influence lacustrine water depth. 

Detecting and characterizing changes over time is the natural first step toward identifying the driver 
of the change and understanding the change mechanism [8]. Changes in lake level or relative water 
depth are both functions of lake surface and volume. It is important to understand lake water surface 
and storage changes to be able to assess the influence of climate variation or human activities on water 
resources [9]. Although a number of studies have been conducted on East African rift lakes, Lake 
Manyara’s surface fluctuations have not yet been thoroughly studied. It was heretofore unknown if 
lake fluctuations were seasonal or inter-annual or related to climate. Precise and up to date information 
on the status and trends of lake surface dynamics is needed to enable the development of effective 
strategies for sustainable management of lakes and the assessment of environment change. Water 
managers cannot manage what they do not know. Therefore, a necessity for accurate spatial and 
temporal information on water resources continuously is evident for enhanced management.  

Accurate water surface quantification and mapping demands correct delineation and estimation of 
the spatial and temporal dissemination of the water resource. Traditional in situ data measurement 
methods that produce representative spatial and temporal information on water resources are costly. 
Remote sensing is the most economical technique for the monitoring of lake dynamics. Remote 
sensing has been used in various studies to monitor and analyze lacustrine water dynamics [4,7,10]. 
We use remote sensing to quantify the variation in Lake Manyara’s surface water areal extent from 
2000 to 2011. Water extraction from remote sensing images can be divided into single band and  
multi-band techniques [11]. Normally, for the single band method a threshold for the band is applied to 
differentiate water information from land information. This technique has the disadvantage that water 
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surface may be over or under estimated, and/or may be mixed with shadow noise due to the intuitive 
selection of threshold. The multiband technique has the advantage of using distinctive reflective 
capabilities of water surfaces in various bands. A number of multiband water indices have been 
developed and employed recently in the field. These make use of either the water indices threshold 
segmentation approach [4,11–14] or the step-wise iterative transformation mechanism [15].  

Over the past two decade, satellite remote sensing has shown promising result in estimation of 
water resource storage in large reservoirs and lakes [3]. However, the purpose of this study is to show 
the potential of remote sensing techniques in assessment of water resources surface dynamics (the case 
of smaller lakes and reservoirs). To support sustainable management and conservation of the water 
resources in semi-arid environment and areas in needy like Africa where a large number of people 
depend on smaller lakes or reservoirs for water resources. The objective of this work is two-fold;  
(1) assess the efficacy of remote sensing-based lake monitoring and (2) infer the probable causes for 
lake change and consequent vegetation adaptation in order to contribute toward sustainable 
environment management. We map, analyze and quantify the historical lake surface variation, 
identifying annual variations. We evaluate the lake water cycle from 2002 to 2009 as compared to the 
lake water level/surface variation. We show the potential of the water index approach in water resource 
surface delineation and mapping. We also assess the capabilities of different remote sensing indices in 
detecting and differentiating water resources from non-water features, suggesting the optimal water 
index for water resource assessment and monitoring. 

2. Study Area and Data 

2.1. Study Area 

Lake Manyara is the southernmost lake within the eastern arm of the East African rift system [16,17]. 
The lake is shallow and saline and located 126 km west of Arusha in northern Tanzania (3°25′–3°48′ S, 
35°44′–35°53′ E, 960 m above sea level (a.s.l) (Figure 1). The maximum lake area is 520.5 km2, based 
on a Landsat Multispectral Scanner (MSS) satellite image acquired on 22 September 1973. The lake 
has on several occasions dried-up completely. In 2010, the average water depth was as low as 1.18 m. 
The Lake Manyara catchment area covers about 18,740 km2 and lies between 885 m and 3618 m a.s.l. 
It is a closed basin with no outlet. A deep escarpment flanks the western side of the lake and in the east 
an undulating plain with isolated volcanic cones gives way to a peneplain. Several springs and streams, 
both perennial and seasonal, drain into the lake [17].  

The climate of the Lake Manyara catchment is principally influenced by a seasonal shift of the 
Inter-tropical Convergence Zone (ITCZ) that has a strong effect in East Africa [18,19]. Highly 
seasonal and annually variable rainfalls total approximately 600 mm/yr (Figure 2). The rainy season 
lasts from November to May with a short and a long rainy season. The dry season ranges from June to 
October and extends when the short rainy season fails [20,21]. Annual mean air temperature at the lake 
ranges between 15 °C and 25 °C (Figure 2).  
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Figure 1. Lake Manyara catchment–Study area: (i) Map of Tanzania displaying the 
location of Lake Manyara catchment in northern Tanzania; (ii) Lake Manyara and its 
catchment; (iii) Some land cover classes with regarding to Moderate resolution Imaging 
Spectro-radiometer (MODIS) surface reflectance image (False color composite band 742 
acquired on 16 August 2010; (a) Water; (b) Shrubs/grasslands; (c) Sand/Bare soils;  
(d) Dense forest; (e) Moderate forest. 
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Figure 2. Annual rainfall pattern and temperature variation within Lake Manyara 
catchment during study period. 

 

2.2. Data  

2.2.1. Satellite Data 

(a) MODIS Land Surface Reflectance  

We use multi-temporal satellite images to study Lake Manyara surface dynamics. A Landsat MSS 
scene acquired on 22 September 1973 was used to map the lake coastline. We use atmospherically 
corrected Moderate resolution Imaging Spectro-radiometer (MODIS) Terra surface reflectance product 
(MOD09GA, Version 4 [22] to map and monitor Lake Manyara water surface spatial and temporal 
variations from 2000 to 2011. We selected data acquired in the dry season (June–October) to avoid 
obstruction from clouds and we apply a scale factor of 0.0001 to every scene. Surface reflectance 
typically ranges from 0 to 1. MOD09GA surface reflectance product values are scaled by 10,000 and 
then cast to 16-bit integers, therefore surface reflectance values in MOD09GA image files vary 
between 0 and 10,000 [22]. So we use the scale factor of 0.0001 to convert the values to float such that 
they range from 0 to 1. All selected data were cloud free or nearly cloud free (less than 10%). Despite 
its medium spatial resolution (500 m) the MODIS surface reflectance dataset is appropriate for 
monitoring surface water dynamics and differentiating between land cover types due to its high spectral 
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resolution and the frequency of observations. MOD09GA is a seven-band surface reflectance daily 
product computed from the MODIS Level 1B land surface data bands 1 (620–670 nm), 2 (841–876 nm),  
3 (459–479 nm), 4 (545–565 nm), 5 (1230–1250 nm), 6 (1628–1652 nm), and 7 (2105–2155 nm) [22]. 

Apart from the MOD09GA surface reflectance product, we use MCD43A4 [22] to assess the lake 
surface variability during the wet and dry seasons on a monthly basis. This is a 16-day MODIS Terra 
and Aqua combined product that provides global adjusted surface reflectance data at nadir using a  
bi-directional reflectance distribution function (BRDF). Since the data are corrected anisotropically 
they can serve as important inputs for studies using vegetation indices and for land cover  
classification [23]. The dataset has a spatial resolution of 500 m. 

(b) MODIS Land Surface Temperature 

We used MODIS/Terra (Earth Observing System (EOS) AM- 1 platform) daily daytime MOD11C1 
V5 land surface temperature (LST) product at a spatial resolution of 0.05° (~5600 m) [24]. MOD11C1 
V5 product generation executive code (PGE16) has been refined to account for surface elevation as 
well as exclusion of temporal averaging and cloud-contaminated LSTs in level-3 LST products, and 
the modifications of the day/night LST algorithm [24]. The dataset is available from March 2000 to 
date. MOD11C1 V5 LSTs product has been compared in 47 clear-sky cases with in situ measurement 
and its accuracy is better than 1K in the range from −10° to 58 °C in about 39 cases [24]. 

(c) MODIS Evapotranspiration  

Evapotranspiration (ET) is an important factor for understanding hydrological processes and 
climate dynamics [25]. ET depends on soil moisture, vegetation types and on meteorological 
parameters such as wind speed, air temperature, solar radiation and humidity. We use MODIS global 
ET (MOD16A2) product with a spatial resolution of 1 km and a temporal resolution of 8 days [26,27]. 
The dataset is available from 1 January 2000 to 27 December 2009 and can be accessed using the 
MODIS global land product subset tool provided by Oak Ridge National Laboratory Distributed 
Active Archive Center (ORNL DAAC) [28]. MODIS provides evapotranspiration data for the regional 
and global hydrological cycle [26]. Bookhagen and Burbank, [29] demonstrated that MODIS-derived 
evapotranspiration amounts has the potential to allows accurate prediction of discharge amounts. 
MOD16 ET products have been validated using flux tower observations from 17 sites in Asia, the 
stations have different geological and meteorological backgrounds [30]. The agreement between 
MODIS-based ET and ET observed at the flux towers ranged from a correlation of 0.50 to 0.76 with a 
RMSE of 1.99 to 8.96 mm in forest land [30]. Tang et al. [31] validated MODIS ET in semiarid 
environments, and found that they reasonably fit with in situ based ET with bias and RMSE of less 
than 0.07 and 0.13 mm. We evaluate the suitability of MOD1S ET in the study area by making a 
comparison with observed pan evaporation dataset. We observe that monthly MODIS ET relate with 
observed evaporation with a Pearson correlation coefficient, R of 0.6 and a coefficient of 
determination, r2 of 0.36 (Figure 3). MODIS annual ET is related to observed annual evaporation sums 
with the coefficient of determination, r2 of 0.54. In this analysis we compare the trend of the lake 
surface variation with the evapotranspiration pattern to show the potential applicability of the dataset 
in water resource management.  
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Figure 3. Comparison of observed monthly evaporation in the study area overlaid  
with MODIS ET (MOD16A2 product) (a); Scatter relating of observed evaporation and 
MODIS ET (b).  

 

(d) Rainfall  

We use the Tropical Rainfall Measuring Mission (TRMM) rainfall product from June 1999–May 2011. 
The TRMM combined precipitation product (3B43-V7) has a spatial resolution of 0.25° × 0.25° [32]. 
The TRMM 3B43 product is created by combining TRMM data with Special Sensor Microwave 
Imager (SSM/I), Visible/Infrared (VIS/IR) and rain gauge data [33]. We acquired the TRMM 3B43 V7 
monthly rainfall estimate using the GES-DISC interactive online visualization and analysis infrastructure 
(Giovanni) as part of NASA’s Goddard Earth Sciences (GES) Data and Information Services  
Center (DISC). 

2.2.2. Meteorological in situ Datasets 

We use meteorological datasets to examine the relationships between climate variation and Lake 
Manyara surface dynamics, and the lake hydrological cycle. The dataset includes in situ minimum and 
maximum temperature, humidity, pan evaporation, duration of sunshine and wind speed. The in situ 
datasets used in this research were observed at Arusha meteorological station, northern Tanzania from 
2000 to 2011.  

3. Methods 

3.1. Indices 

Several indices are used for delineating water bodies from multi-temporal satellite imagery to date. 
These include Normalized Difference Vegetation Index (NDVI) [34], Normalized Difference Water 
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Index (NDWI) [14], and Modified Normalized Difference Water Index (MNDWI) [11]. MNDWI is 
based on the NDWI. The modified index has become the commonly used water surface extraction 
technique from remote sensing images [13,35]. We use MNDWI to delineate temporal variation of the 
lake surface area, and NDVI to characterize different land cover types in the Manyara catchment. 
Water shows strong reflectance in the visible wavelength range and absorbs almost all of incident 
radiations in the near and mid infrared wavelength channel. NDWI is a band ratio index between the 
green and near infrared (NIR) spectral bands that enhances water features [11]. NDWI is defined in 
Equation (1):  

                       (1) 

Where G is the surface reflectance of the green band and NIR is the near infrared band. For the 
MODIS land surface reflectance dataset, G and NIR correspond to band 4 and 2 respectively. NDWI 
makes use of the green band to maximize water surface reflectance and minimize the low reflectance 
of the NIR band by water surfaces, and takes advantage of the high reflectance of NIR by vegetation 
and soil features. It enhances water bodies such that they have positive values and suppresses 
vegetation and other features (i.e., non-water features) in such a way that they have zero and negative 
values [14]. NDWI enhances water features as not efficiently as MNDWI. To compute MNDWI [11], 
the NIR band is replaced by the middle infrared (MIR)/shortwave infrared (SWIR) band in  
Equation (2), thus band 4 is replaced by band 6 for MODIS surface reflectance. MNDWI absorbs more 
SWIR light than NIR light such that water surfaces have higher positive values compared to NDWI 
and non-water features have negative values [36]. 

                          (2) 

McFeeters [14] and Xu [11] set the threshold for NDWI and MNDWI to zero. NDWI/MNDWI 
values >0 represent water bodies and <0 non-water land cover types. The normalized difference 
vegetation index (NDVI) is one of the oldest vegetation indices (VIs) generally used for land cover 
classification and it is also used as an ecological indicator to successfully monitor temporal and spatial 
variation in vegetation density as well as the health and viability of plant cover [34]. The NDVI is 
known for its capability to discriminate different land cover types. The index is based on surface 
reflectance in the red and near-infrared (NIR) regions of the electromagnetic spectrum where 
absorption and scattering respectively depend on the plant species and the strength of the vegetation as 
defined by Equation (3): 

                       (3) 

The value of this index ranges from −1 to 1 and is different for water and non-water features, 
especially for the NIR and SWIR bands. NDVI values between −1 to 0 indicate the presence of water. 
Values between 0.0 and 0.2 correspond to bare soil, and between 0.2 and 0.3 shrub and grassland. 
Values greater than 0.5 demonstrate fully vegetated areas [37]. The range for green vegetation is 0.2 to 
0.9. Dense forest and agricultural crops generate values from 0.6 to 0.9 during their peak growth 
period. Figure 4 presents the spectral reflectance patterns of five land cover classes identified in the 
study area; dense vegetation, moderate vegetation, shrubs and grasslands, sand/bare soils, and water. 
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Figure 5 presents the overall approach employed in delineation and extraction of water bodies as well 
as land cover mapping. 

Figure 4. Spectral reflectance pattern of different land cover types as extracted from 
MODIS surface reflectance image. Band 1 (469 nm), 2 (555 nm), 3 (640 nm), 4 (858.5 nm), 
5 (1240 nm), 6 (1640 nm) and 7 (2130 nm) corresponds to MODIS surface reflectance 
band 3, 4, 1, 2, 5, 6 and 7 respectively. 
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Figure 5. Workflow for water body extraction and land cover mapping processes.  

 

3.2. Lake Water Surface and Land Cover Mapping 

All MODIS images were re-projected into UTM projection zone 37 and the World Geodetic System 
1984 (WGS84) global reference datum. The data had previously been corrected for radiometric errors 
and hence is free from atmospheric effects [22]. We applied a scale factor of 0.0001 to all bands in 
every scene and then stacked them.  

We mapped lake water surface dynamics using the index threshold segmentation technique. 
Threshold segmentation is a fundamental step in extracting water bodies from background [13].  
There are several methods which can be applied for image threshold segmentation–histogram  
shape-based [12,38], clustering-based [39–42], and entropy-based approaches [43]. We use the 
histogram-based algorithm to extract water bodies from non-water features. A histogram was 
generated based on all pixels within the reference lake coastline (Figure 6a). A threshold (T) of the 
MNDWI was determined from the respective histogram (Figure 6b). For bimodal and multimodal 
histograms the segmentation threshold was determined by means of Equation (4) [12]: 

(MOD09GA)
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where μWater is the mean value of the water body feature peak, μNon-Water is the mean value of the  
non-water features peak, and σWater and σNon-Water are their corresponding standard deviations. To map 
the land cover we used field data and NDVI to identify different classes covering the Lake Manyara 
catchment. Using NDVI, values between 0 and 0.2 were assigned to a sand/bare soil class, values 
between 0.2 and 0.3 were categorized as shrubs and grasslands including savannah. Values ranging 
from 0.3 to 0.6 were assigned to a moderate forest land cover type. This includes savannah, savannah 
woodland, cropland, natural forest/vegetation and deciduous broad leaf forests. Values between 0.6 
and 1 were categorized as dense forest representing mainly evergreen broad leaf forests.  

We used a maximum likelihood classification algorithm to map distinguished land cover types in 
the Manyara catchment. The method is based on both the distances towards class means and the 
variance-covariance matrix of each class. It groups together features in specified classes based on the 
likelihood of each feature in the sample set representing a specified class. The technique assumes 
normality of the training data statistics and assigns pixels to the class with the highest probability  
value [36]. In this study we performed accuracy assessments in terms of individual error matrices for 
classified MODIS surface reflectance images generated from maximum likelihood post-classification. 
We use two main terms to describe the classification accuracy (i.e., overall accuracy and kappa 
coefficient) [44]. 

Training sites information for the Maximum likelihood classification was based on field 
information and on the inspection of spectral profiles (Figure 4). Additionally, the NDVI [34] was 
employed in order to obtain optimal land cover classes [45]. Since most of the land part of the world is 
covered by vegetation, using NDVI when performing land cover classification produces more accurate 
maps [45]. We also use the un-supervised classification k-means algorithm to get impression of the 
land cover classes. A set of GPS position of polygons were captured for purposes of ground truthing in 
October/November 2011, a period which is compatible with Lake Manyara’s dry season (June to 
October/November) within which the MODIS land surface reflectance data were acquired. Data 
obtained from this fieldwork include GPS position of points and knowledge based information of the 
study area. 

We prepared training and validation sites based on land cover type information, location, size and 
number of points to be trained for sampling. About 29 sites were selected within the study area and 
serve as training and testing sites for the Maximum likelihood classification method. The identification 
of the position of the sampling sites on the images was done based on the field data acquired and 
NDVI values range. Yet, pixels were inspected for the spectral signatures in order to assure 
consistency (Figure 4). The trained sites were then divided into two sets; one for classification 
(training/60% of the sample) and the second was for accuracy assessment (validation/40% of  
the sample).  

3.3. Water Balance Modeling 

We used remote sensing data to model Lake Manyara’s water balance from April 2001 to 
December 2009 using J2000 g hydrological model [46,47]. The model needed two types of input data: 
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temporally varying and constant. The first input is climate data time series and this comprises absolute 
and relative humidity, sunshine duration, maximum, mean and minimum temperature, wind speed, 
precipitation and observed runoff. The second input is a set of parameters. These are Hydrological 
Response Units (HRU) grid-based parameters linked to; (1) land use/land cover such as albedo, 
stomata conductance (Rsco), maximum plant height (Hmax), leaf area index (LAI), maximum root depth 
(RDmax) and minimum surface resistance for water-saturated soil; (2) soil thickness and useable field 
capacity per decimeter of profile depth; (3) the maximum possible percolation rate (ground water 
recharge rate) per time interval in mm per time unit; (4) mean elevation, slope and aspect. The model 
was manually calibrated and validated using a novel approach [47]. To calibrate the model, we used 
initial parameters obtained from a model based on a two month discharge data series. We applied this 
record to adapt the model parameters as initial calibration parameters for the model that covers the 
whole study period. After transferring the parameters to the monthly model we adjusted our parameters 
based on trial and error approach. The model was then validated using two independent datasets; pan 
evaporation and GRACE based equivalent water thickness data. The validation using observed pan 
evaporation and simulated evapotranspiration gives a Pearson correlation coefficient, R = 0.83 and the 
coefficient of determination, r2 = 0.67 [47].  

3.4. Possible Sources of Errors 

Different sources of errors may affect the accuracy of the extracted water surface and other land 
cover classes. We computed the class coverage area for different land cover types by multiplying the 
number of pixels above the defined MNDWI and NDVI thresholds by spatial resolution of MODIS 
surface reflectance. The area approximations produced by this technique for different dates can vary 
widely if the images were not corrected radiometrically. Since the surface reflectance value of different 
land cover classes might be affected by different atmospheric conditions based on their acquisition 
dates. We omit or reduce all random error caused by these effects due to the fact that the MOD09 land 
surface reflectance product has been corrected for the effects of atmospheric gases, aerosols, and thin 
cirrus clouds. 

The basic element in a remote sensing satellite data is a pixel. Every pixel consists of spectral 
reflectance of all objects within a sensors instantaneous field of view. MODIS images have a coarse 
spatial resolution and are dominated by mixed pixels; particularly pixels covering boundaries between 
two different land cover classes. In this work we assign each pixel to one single land cover type. For 
instance we categorized all pixels with NDVI values between 0.2 and 0.3 as grasslands or shrubs. We 
therefore suspect that the existence of mixed pixels may be another source of random error. 

Some of the data used was affected by cloud cover (<10%). To avoid this effect, we assign all cloud 
cover a single class and exclude it from the analysis by merging all clouds from scenes into a single 
class and then use this layer as a mask for each image classification process prior to analysis. 

MODIS’s medium spatial resolution data are suitable for delineating large vegetation areas and 
water bodies. However when the lake water level is very shallow, some parts of the water bodies could 
not be categorized as water and instead they are classified as bare soil or other land cover types. 
MNDWI classify the water information well [11]. We use the MNDWI to avoid errors caused by  
miss-identification of shallow water pixels. 
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Moreover, the hydrologic modeling results obtained in this research contains a certain amount of 
inherent uncertainties and drawbacks. First, it should be noted that Lake Manyara’s catchment is 
almost un-gauged. We use in situ climate data measured at the Arusha meteorological station, located 
near the catchment, in the northeast. The regionalization of the climate data, especially temperature, 
relative humidity, wind speed and sunshine duration is based on data from one station. Various GIS 
and remote sensing datasets utilized here have different spatial and temporal resolution. Harmonization 
of these datasets to the same spatial and temporal resolution requires interpolation and thus introduces 
errors. The model calibration and validation approach used is adapted due to the lack of in situ data. 
The trial and error approach for calibration and validation, while common, is not perfect. On the other 
hand, the use of calibrated data; the robust model chosen and the redundancy of validation data [pan 
evaporation, gravimetry recovery and climate experiment (GRACE)] indicate that the uncertainties are 
tolerable for the purpose of this study [47]. 

4. Results 

4.1. Lake Manyara Surface Dynamic Mapping 

Figure 6 presents the Lake Manyara water surface variation from 2000 to 2011. A subset of MODIS 
surface reflectance is applied to assess the lake water surface mapping results as (Figure 7) [4].  
Table 1 depicts estimated lake water surface dynamic changes, a year-to-year variation (2000–2011) 
and changes between reference year (i.e., 2000) and respective year. Based on Landsat MSS satellite 
data the Lake Manyara surface area was 520.50 km2 in September 1973. MODIS surface reflectance 
data document a lake surface area of 520.25 km2 and 30.5 km2 in July 2000 and July 2011 respectively 
(Figure 8). High variability of the water surface can be observed for the same month from year to year 
(Figure 6). The lake water surface area coverage in 2000 was nearly the same as the lake surface area 
in 1973. The lake water surface area varied significantly during the last decade. The most dramatic 
lake surface decline was in 2005 and 2011 where the water surface size was 13.25 km2 and 30.5 km2 
respectively (Figure 6 and 8). 

Figure 8 presents the lake surface area pattern over the last decade in relation to rainfall and air 
temperature variations. We observe that to some extent the lake surface area depends on rainfall. In 
2005 the lake surface dropped considerably, losing about 97.45% of its water surface area. The lake 
surface increased from 13.25 km2 in 2005 to 383.25 km2 in 2006 following a huge amount of rainfall 
in 2006. 

We assessed monthly variations of the Lake Manyara water surface area in both dry and wet 
seasons (Figure 9). We compare the lake surface dynamics with mean MNDWI values over the lake 
and rainfall distribution. The lake water surface area changes with respect to rainfall availability and 
almost drying out completely during the dry season. The MNDWI depicts a similar trend with the lake 
water surface coverage. 
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Figure 6. Lake Manyara surface variation 2000–2011: (a) Lake Manyara MODIS surface Reflectance image subset (RGB band:432) 
overlayed with lake boundary; (b) Corresponding histogram of the lake pixels (with a peak on the right) within the lake boundary generated 
using Modified Normalized Difference Water Index (MNDWI); (c) Extracted lake surface using a threshold of 0. 
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Figure 7. Water delineation accuracy assessment (a) Selected MODIS surface reflectance 
band 432, the image was acquired on 16 August 2010; and (b) The lake demarcation and 
extraction result of water bodies coastlines as overlaid on the MNDWI map. 

 

Table 1. Variation in Lake surface area as extracted from MODIS surface reflectance over 
the last decade. 

Year Area (km2) Duration Change (km2) (%) Duration Change (km2) (%) 
2000 520.25 – – – – 
2001 497 2000–2001 −23.25(4.46) 2000–2001 −23.25(4.46) 
2002 451.25 2001–2002 −45.75(9.21) 2000–2002 −69(13.26) 
2003 373 2002–2003 −78.25(17.34) 2000–2003 −147.25(28.30) 
2004 279 2003–2004 −94(25.20) 2000–2004 −241.25(46.37) 
2005 13.25 2004–2005 −265.75(95.25) 2000–2005 −507(97.45) 
2006 383.25 2005–2006 370(2792.45) 2000–2006 −137(26.33) 
2007 449.5 2006–2007 66.25(17.29) 2000–2007 −70.75(13.60) 
2008 398.25 2007–2008 −51.25(11.40) 2000–2008 −122(23.45) 
2009 200.25 2008–2009 −198(49.72) 2000–2009 −320(61.51) 
2010 433 2009–2010 232.75(38.05) 2000–2010 −87.25(16.77) 
2011 30.5 2010–2011 −402.5(92.96) 2000–2011 −489.75(94.14) 
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Figure 8. Lake Manyara surface area variation versus annual accumulated rainfall and 
mean in situ temperature over the catchment.  

 

Figure 9. Monthly lake surface area variability as superimposed with monthly average 
rainfall and temperature patterns, and MNDWI monthly mean series over the lake. 
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4.2. Water Surface Variations and Water Balance  

Figure 10 presents lake Manyara basin monthly distribution of water balance components; 
precipitation, actual evapotranspiration, runoff and ground water recharge. Figure 11 show simulated 
lake Manyara’s water balance pattern as compared to lake surface area variation. We also compare the 
lake water surface variation with MODIS ET and LST time series (Figure 12). 

Figure 10. Water balance parameter distribution pattern in Lake Manyara basin from April 
2001 to December 2009. GWS stands for ground water storage while GWR is ground 
water recharge. 

 

The water level of Lake Manyara has fluctuated considerably within the last decade. Figure 11 
presents Lake Manyara surface water area variations and the annual water balance parameters from 
2002 to 2009. We modeled the water balance of the Lake Manyara catchment to study the water cycle 
using a J2000g semi-distributed hydrological model [46] and remote sensing datasets. We selected the 
finest calibration parameters for the model based on the Nash-Sutcliffe model efficiency coefficient [48] of 
0.60, and a coefficient of determination (r2) of 0.67. The model was validated using pan evaporation 
and GRACE based equivalent water thickness data. Observed and simulated parameters yielded a 
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Pearson correlation coefficient, R of 0.82 and a coefficient of determination (r2) of 0.7. We estimate 
the annual mean rainfall over the lake to be 0.22 km3/yr and inflow to the lake as 0.23 km3/yr. Inflow 
consists of a contribution from streams and underground springs. For the 2002 to 2009 period, rainfall 
provided approximately 47% of lake water and inflow approximately 53%. 

Figure 11. Lake Manyara annual water balance parameters patterns versus lake  
surface variation.  

 

The lake water balance depicts a decreasing trend from 2002 to 2006 and raised considerably in 
2007 following an increase of both rainfall and inflow between 2006 and 2007 (Figure 11). We 
estimate evaporation over the lake to be 0.42 km3/yr between 2002 and 2009 and this accounts for 
nearly all water loss. We observe a strong relationship between the lake surface variation and lake 
water balance. In 2007 the lake surface area increased from 383 km2 to 450 km2 while the lake water 
balance increased from −0.1 km3 to 0.5 km3. The lake surface variation and the water balance display a 
similar trend from 2006 to 2009. 
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Figure 12. MODIS evapotranspiration and land surface temperature as displayed with the 
lake water surface variation from 2002 to 2009.  

 

4.3. Assessment of the Optimal Index for Water Extraction  

We assessed the performance of MNDWI, NDWI and NDVI in shallow water surface mapping (the 
case of Lake Manyara) using frequency histograms of the lake pixels within the reference lake 
coastline (Figures 13 and 14). Some of the histograms present a non-symmetric (most of them 
skewed), bimodal and multi-modal distribution especially for scenes with land/bare soil within the lake 
body as defined by the reference coastline (Figures 6 and 14). For MNDWI and NDWI, water bodies 
are defined by index values between 0 and 1 [11,14]. The peaks for water bodies are on the right of the 
plot and those for bare soil are on the left (Figure 14).  

The inter-group variances between the lake water area and bare soils are very significant.  
Intra-group variances are relatively small, particularly for the MNDWI. In Figure 14 the histograms 
suggest that by means of the MNDWI it is possible to segment the lake water surface accurately using 
a threshold of 0for all scenes. In most of the images the inter-group variances are not significant for 
both NDWI and NDVI such that it was not possible to delineate the lake surface using a threshold of 0 
(Figure 13).  
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Figure 13. Index capability comparison. Water bodies extraction in the area of interest 
using different remote sensing indexes, (i) Lake Manyara and (ii) Lake Burungi;  
(a) MODIS surface reflectance image subset false color composite band 742 overlaid with 
lake Manyara coastline as by July 2000; (b)–(d) present water surfaces as delineated using 
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index 
(NDWI) and MNDWI respectively overlaid with the extracted coastline using MNDWI.  

  

(i) 

(ii) 

(a) (c) (d) (b) 

07-07-2008 

(i) 

(ii) 

(a) (c) (d) (b) 

13-07-2001 
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Figure 14. Evaluation of MNDWI, NDWI and NDVI performance. Histogram of Lake 
Manyara pixels [pixels within the reference lake coastline in brown (Figure 13a)] index 
values by frequency. Lake body peak is on the right side for MNDWI and NDWI, and for 
NDVI the peak is on the left. 

 

Surprisingly, NDVI performed quite well on the scene acquired in July 13, 2001.We suspected that 
the water level in the lake was high. In May 2010 the Lake Manyara water level was only 1.8 m. 
Neither NDWI nor NDVI worked well for the image acquired on 16 August 2010 (Figure 13). To 
evaluate the accuracy of the extracted lake water surface it is necessary to compare the extracted water 
body coastline with water surface extracted from a ground truth map [49]. Due to the lack of a reliable 
ground truth map that has been created at least during one acquisition date of the utilized images, we 
evaluated the lake water surface mapping accuracy by overlaying the MNDWI map with a vector layer 
of the extracted lake coastlines [4]. We found that they match very well with a mapping accuracy of 
less than 1 pixel (Figure 14), suggesting that MNDWI is suitable for the extraction of shallow water 
features [11]. This is also depicted in our monthly lake surface variation analysis (Figure 9) whereby 
the index depicts a similar trend with the lake water surface dynamics. 
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4.4. Land Cover and Lake Surface Area Variation 

We chose five MODIS surface reflectance scenes to depict land cover variation within the last 
decade. Figure 15 presents the spatial distribution of land cover classes within the Lake Manyara basin 
for 2000, 2003, 2006, 2009 and 2011. We identified five representative land cover classes that were 
successfully mapped from the satellite imagery. The overall classification accuracy and kappa 
coefficient for every land cover map is 96% (0.95), 94% (0.92), 88% (0.85), 90% (0.88) and 87% 
(0.84) respectively. Figure 16 depicts the overall land cover variation pattern in the Manyara basin and 
accumulated annual rainfall.  

Figure 15. Lake Manyara catchment land cover maps 2000–2011. 
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Figure 16. Temporal land cover pattern as overlaid to the catchment annual  
rainfall distribution. 

 

5. Discussion 

Our study reveals that the areal extent of the Lake Manyara water surface varied significantly 
between 2000 and 2011. The water level dropped noticeably in 2005 and rose in 2006 with rainfall 
being the main contributor (Figure 11). However, alongside rainfall, inflow contributed to the water 
balance in 2007. The increase of inflow in 2007 was likely a result of high rainfall in 2006. This 
increased the lake water surface area and the lake water cycle as depicted in Figure 11. We detect that 
the lake water surface and the lake water balance present a similar trend from 2007 to 2009  
(Figure 11). In 2011 the lake water surface dropped markedly (Figures 6 and 8). In 2005 and 2011 the 
lake dried to about 97.45% and 94.14% of the total water surface coverage in 2000 (Table 1). The lake 
has the potential to completely dry during periods of low rainfall and can then fully recharge following 
high rainfall events.  

We analyzed the relationship between the lake surface area variation and rainfall as the main source 
of water, temperature and evaporation. The meteorological parameters recorded over the last decade 
(2000–2011), especially temperature, indicate a generally constant climate with the highest rainfall 
occurring in 2006 (Figure 8). We observe a correlation between lake surface area fluctuations and 
rainfall, in situ temperature, actual evaporation, MODIS LST, and MODIS ET (Figures 11 and 12). In  
Figure 12, it can also be perceived clearly that lake Manyara’s storage volume is directly proportional 
to rainfall, thus lake storage shrinks as the amount of rainfall decreases during dry seasons and expands 
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over rain seasons. This indicates the impact of climate on the lake water cycle. As indicated in  
Figures 8, 11 and 12 in 2005 rainfall was low and the temperature was high, resulting in a large 
amount of water loss by evaporation. As a result the lake experienced particularly extreme water loss. 
Heavy rainfall in October 2006 to January 2007 combined with low evaporation due to reduced 
temperatures resulted in a lake surface water area increase from 13.25 km2 to 383.25 km2 (Table 1, 
Figures 8 and 11). This implies that variation of the lake water surface area is mainly influenced by 
global and regional climate fluctuations, especially inter annual rainfall variability. We also observe 
that in 2007, lake surface area increased dramatically (Figures 8 and 11) following the occurrences of 
much rainfall between October 2006 and January 2007. The expansion of lake water surface area as a 
result of increased rainfall is attributed to the strong positive and negative episodes of Pacific and 
Indian Ocean sea-surface temperatures (SST) such as El Niño-Southern Oscillation (ENSO) and the 
Indian Ocean Dipole (IOD) in 2006–2007 [50,51]. Positive IOD and ENSO incidents tend to increase 
rainfall over east Africa especially in the early segments of the rain season (October–January) [52,53]. 

We detect the same trend when comparing the lake water surface pattern with MODIS ET and LST 
time series (Figure 12). We notice that MODIS ET and LST are directly related to each other such that, 
as LST over the lake increase the ET also increases. Figure 12 shows how the lake water surface area 
shrank in 2005 as a result of the increase of LST, which was at its highest peak (about 27.8 °C) over 
the study period. This result in a rise of ET to about 1200 mm/yr. Our evidence suggests that climate 
fluctuation exerts a dominant control on the fluctuation of the areal extent of Lake Manyara.  

However, other factors may affect lake surface dynamics. This includes anthropogenic activities 
such as irrigation along rivers that feed the lake and natural phenomena like lake water flow to the 
underground water table. Intensive irrigation activities take place along rivers that drain to Lake 
Manyara. This releases sediments in the lake basin, which may be one of the reasons for the decline of 
the water surface. Therefore, in this arid environment, the lake surface variation is to some extent 
caused by agricultural water consumption [4]. There is a significant withdrawal of water from the 
streams for irrigation that would otherwise flow into the lake. Nevertheless, estimation of the annual 
water use for irrigation and livestock in the catchment is not possible currently; it would need an 
independent study that is out of scope of this work. Figure 17 depicts an irrigation trough along Mto 
wa Mbu, one of the rivers that flow into Lake Manyara.  

However, in our analysis we show that the variation of the lake water surface is primarily a result of 
the effect of climate variability. We argue that, if the dramatic lake water surface shrinkage were caused 
mainly by human activities, the lake would have been shrinking at the same rate yearly without following 
the trends of rainfall and other climatological parameters as indicated in Figures 8, 11 and 12. Also 
taking into account that all utilized images has been acquired in dry season, the period when human 
activities such as irrigation are supposed to be intensive. It would have been impossible to observe lake 
surface expansion in some of the years. Therefore, based on our results, we strongly imply that global 
and regional climate variability is the key cause of lake Manyara water surface fluctuations. 

We compared the capabilities of NDVI, NDWI and MNDWI in delineating Lake Manyara’s 
shallow water surface. NDVI and MNDWI performed quite well in the 2001 image while the NDWI 
failed to delineate the lake in that particular scene (Figure 13). For the 2008 and 2010 image NDVI and 
NDWI performed poorly while the MNDWI delineated perfectly the lake water surface area in both 
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scenes (Figure 13). This indicates that MNDWI is suitable for the extraction of water features as 
suggested by Xu [11]. We successfully used MNDWI to map lake surface dynamics (Figure 6).  

Figure 17. (a) An irrigation trough at Mto wa Mbu believed to preclude water from 
flowing into Lake Manyara; (b) A rice farm irrigated using water from Mto wa Mbu as 
captured in October 2011. 

 

We observe that the distribution of land cover classes is related in all scenes with a moderate forest 
cover type occupying a large part of the basin over the selected years (Figure 15). The increase of 
moderated cover vegetation in 2001 is surprising and probably linked to the increase of annual rainfall 
in 2000 (Figure 16). Moderate forest cover decreased in 2003 following an increase of grassland/shrub 
cover (Figure 16). Shrub/grasslands increased in 2009 and 2010 while moderate forest cover decreased 
during this time (Figure 16). The trend of lake water surface area, dense and moderate forest cover 
degradation and regrowth is directly related to fluctuations in annual rainfall (Figure 16). Dense and 
moderate forest cover increases as shrubs/grasslands decrease (Figure 16). We did not observe any 
relationship between land cover variation in the catchment and the lake surface area variations from 
2000 to 2011 (Figure 16). Therefore, we conclude that lake surface variation is not directly related to 
the type of land cover classes in the catchment (Figure 16).  

Implication to Water Resource Management 

Water resources data are prerequisite for resource planning, design, operation and conservation [54]. 
Optimized monitoring of water resources status patterns for example, is a key factor for effective and 
sustainable water resource management. In African semi-arid areas, water resources data, despite being 
fundamentally important has not been given the attention it deserves, such that implementation of 
water resource management programs and policies is constrained due lack of timely and up to date 
information. Our ability to manage water resources efficiently for sustainable utilization is hampered 
by a lack of understanding of the state of the water resource and trends.  

Over the past two decades, remote sensing has shown promising results in estimation of water 
storage in large reservoirs and lakes [3]. However, in this study we show a simplest way to assess and 
obtain water resource surface state dynamics for smaller and shallow lakes. Smaller and shallow lakes 
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are main sources of water in Africa and semi-arid environments, such that they must be managed and 
conserved sustainably. 

Assessments of water resources are becoming increasingly important especially in the time of 
rapidly human induced climatic fluctuation that results in higher variability of water resources over the 
globe. Water resource dynamics maps provide visual impression of the fluctuations of water resources 
on both spatial and temporal coverage to decision and policy makers and to water resource managers. 
Water resource assessment and monitoring therefore, provides the means to understand the state of the 
water resource, hence could facilitate timely decision on the magnitude of the effort required for 
protection thereafter, improved water resource management. 

6. Conclusions 

In this study we show the potential of remote sensing in water resource status dynamics assessment 
and monitoring. Our study shows that Lake Manyara has experienced a significant surface area 
variation from 2000 to 2011, and almost dried completely in 2005 and 2011. We detect that the lake 
surface area has been decreasing since 2000. The lake surface variation and the lake hydrological cycle 
water balance pattern displayed a similar trend from 2006 and 2007. The trend of decreasing lake 
surface area portrays a strong relationship with the distribution of meteorological parameters indicating 
a strong impact of climate on the lake. We conclude that the lake water surface is dominantly 
influenced by inter annual variability in rainfall, as influenced by global and regional climate 
fluctuations. Anthropogenic activities adjacent to rivers that feed the lake are likely an additional factor 
that requires further investigation.  

We demonstrate that MNDWI is most suitable and easiest technique for the delineation and 
mapping of water resources even shallow and smaller water bodies. Generally, our results show that 
remote sensing is an efficient method for assessing water resources in semi-arid environments. 
Specifically, we conclude that TRMM, MODIS surface reflectance, ET, and LST remote sensing based 
datasets provide great potential for the mapping and monitoring of water resources. We suggest that, 
the method employed in this research should be applied to assess and monitor water resource status 
dynamics in semi-arid environments provided the availability of satellite datasets. Thereafter, required 
water resource information by policy/decision makers and water resource managers will be acquired 
and hence optimized sustainable management and conservation. 
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