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Abstract: In the northeastern United States (U.S.), watersheds and ecosystems are 

impacted by nonpoint source pollution (NPS) from agricultural activity. Where agricultural 

fields coincide with runoff-producing areas—so called hydrologically sensitive areas 

(HSA)—there is a potential risk of NPS contaminant transport to streams during rainfall 

events. Although improvements have been made, water management practices implemented 

to reduce NPS pollution generally do not account for the highly variable, spatiotemporal 

dynamics of HSAs and the associated dynamics in NPS pollution risks. This paper presents 

a prototype for a web-based HSA prediction tool developed for the Salmon Creek 

watershed in upstate New York to assist producers and planners in quickly identifying 

areas at high risk of generating storm runoff. These predictions can be used to prioritize 

potentially polluting activities to parts of the landscape with low risks of generating storm 

runoff. The tool uses real-time measured data and 24–48 h weather forecasts so that 

locations and the timing of storm runoff generation are accurately predicted based on 
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present-day and future moisture conditions. Analysis of HSA predictions in Salmon Creek 

show that 71% of the largest storm events between 2006 and 2009 were correctly predicted 

based on 48 h forecasted weather data. Real-time forecast of HSAs represents an important 

paradigm shift for the management of NPS in the northeastern U.S. 

Keywords: hydrologically sensitive areas; water quality management; variable source areas 

 

1. Introduction 

Nonpoint source pollution (NPS) from agricultural activity contributes substantially to surface 

water quality degradation in the United States (U.S.) [1–4]. During the last 30 years various 

environmental standards (e.g., NRCS 590 standard, Phosphorus Index) and watershed management 

practices have been implemented in an attempt to reduce NPS of surface water bodies but have been 

found in practice to be highly variable in their effectiveness [5–7]. This is partly because the 

effectiveness of watershed management practices is based on simplified watershed-scale models that 

neither consider the spatial variability of natural landscapes [8–10] nor the temporal dynamics of 

nutrient and pollutant transport processes from the landscape to the stream [11–13]. Thus, tools are 

needed that capture this spatiotemporal variability, which can help producers and watershed managers 

to better assess and plan NPS pollution-reducing management practices based on fundamental 

scientific principles. 

In agricultural landscapes of the northeastern U.S., surface runoff is a dominant pathway of NPS 

pollutant transport to streams. This is a particular problem with surface-spread animal manures, i.e., 

without incorporation (e.g., in pasture and no-till systems) [4]. Thus, one of the main issues facing 

watershed managers and planners is the manner in which catchment hydrology and agricultural 

management tie-together at field and sub-field scales to influence water quality. Hydrological research 

since the 1950s [14,15] has shown that in humid, well-vegetated, topographically-steep landscapes 

much of the storm runoff, and associated NPS nutrients, pesticides, and pathogens, is exported from 

relatively small areas that frequently saturate during rainfall events. Saturation of these areas occurs as 

a result of the prevalence of shallow (<1 m depth), high-infiltration-capacity soils, which are restricted 

by subsoil layers (hardpans or bedrock) that prevent downward drainage, thus limiting soil storage and 

promoting saturation excess runoff generation [16,17]. These variable source areas (VSAs) also 

expand and contract from storm to storm, as well as seasonally [15,18–22]. Unfortunately, the dynamic 

nature of VSAs makes it difficult to consistently predict where (or when) they will occur. The concept 

of hydrologically sensitive areas (HSAs) was proposed to refer to parts of the landscape most prone to 

being VSAs [9,22,23]. HSAs are areas that saturate or generate saturation excess more often than some 

threshold (e.g., more than 30% of the days in a month). Previous efforts to identify HSAs have largely 

used distributed hydrological models such as SWAT-VSA (Soil and Water Assessment Tool  

re-conceptualized for VSA) [18,19] and the VSA water balance model [19,24–27]. Managers could 

potentially use the HSA concept to identify areas that are more likely to saturate or that are more 

hydrologically sensitive so that these areas could be protected from potentially polluting activities, 

such as animal manure applications to agricultural land (e.g., [9,22,28,29]). 
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Where VSAs coincide with potential pollutant sources (e.g., animal manures), there is a heightened 

risk of NPS pollution [22,30,31]. Tools such as the New York State (NYS) Phosphorus (P) Runoff 

Index (P-Index) were developed, e.g., [4,18,28,32] that support planners in creating farm level nutrient 

management plans (NMPs) and the risk assessment of P export from agricultural fields to streams [33]. 

However, there still exists a gap between the scientific understanding of processes controlling NPS 

nutrient transport in watersheds dominated by VSA hydrology and the tools used by watershed 

planners to determine these high-risk areas [4,9,14,22,34]. For example, the NYS P-Index currently 

considers HSAs based on distance from a stream (i.e., areas close to streams are more likely to saturate 

and generate runoff than areas farther from streams [28,30,35]) and the local soil’s flood frequency 

class, as defined in the Soil Survey Geographic (SSURGO) data base. The spatial definition of HSAs 

used in management tools, like the NYS P-Index, is often too static to adequately capture HSA 

dynamics, which are, rather, better described by topography and hydrometeorological processes. 

Several researchers have, for instance, proposed approaches for identifying HSA-locations more 

precisely in space and time on a month-to-month [22,29,35] or even storm-size basis [28,30,36,37]. 

However, these approaches have not been widely adopted, probably because they require GIS and 

sometimes, hydrological modeling expertise, which is not widely available to nutrient managers and 

conservation planners. Thus, there is a clear need for improved water management tools that are 

capable of capturing VSA hydrological and nutrient transport processes and are easy to use without 

requiring technical expertise. 

Pollutant export from agricultural fields does not only depend on VSA location, but also the time 

between manure application and runoff-producing, high magnitude rainfall events. As research has 

shown, when increasing the time between manure application and the next rainfall-runoff event after 

application, both decreasing [38–43] and increasing [44–47] dissolved P concentrations have been 

observed in runoff. These differences in concentration trends are mainly explained by differences in 

the manure application techniques as well as adsorption processes [4,40,48]. However, Vadas et al. [48] 

found that manure P loss with runoff is not necessarily controlled by soil adsorption rates but rather by 

rainfall and runoff characteristics (i.e., the amount of rainfall that occurs and the rainfall-to-runoff ratio 

during an event). As a result, they [48] proposed to increase the time between manure application and 

the next rainfall-runoff event as a method to reduce runoff P loss. Thus, there is a need of providing 

tools that not only monitor past and current moisture conditions in a watershed (which ultimately 

control how quickly soils saturate) but also future moisture and runoff conditions that might guide 

farmers in scheduling manure applications. 

This paper presents our prototype of a web-based HSA prediction tool that predicts areas of soil 

saturation and potential surface runoff-producing areas 24–48 h into the future. The tool is designed to 

assist producers and planners in making daily decisions by quickly identifying fields or portions of 

fields at high risk of generating storm runoff (i.e., HSAs), so that those areas can be protected from 

potentially polluting activities (e.g., manure, fertilizer or pesticide applications). The HSA prediction 

tool is intended for application in watersheds characterized by saturation-excess runoff generation, as 

is common in the northeastern U.S. HSA predictions are made using real-time measured Northeastern 

Regional Climate Center (NRCC) meteorological data and 24–48 h temperature and precipitation 

projections from the National Oceanic and Atmospheric Administration Global Forecast System 

Model Output Statistic (NOAA GFS MOS) ensemble data in a water balance model developed for 
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VSA hydrology-dominated watersheds [24,25,49,50]. This ensures that locations and the timing of 

storm runoff generation are accurately predicted based on current moisture conditions rather than 

based on long-term average conditions such as the soil’s flood frequency class or drainage class as 

currently used in the NYS P-Index [9,22,35]. A prototype HSA prediction tool was developed for the 

Salmon Creek watershed in central NYS. In this paper we present the framework of the HSA 

prediction tool and its components in Section 2, including details on the VSA water balance model 

(Section 2.2), the forecast of hydrologic conditions (Section 2.3) and the user interface of the HSA 

prediction tool (Section 2.4). In Section 3 we present our prototype HSA prediction tool and results of 

testing the accuracy of VSA dynamics predicted with 24–48 h weather projections through the 

comparison with observed hydrometeorological data. In Section 4 we present our conclusions and 

management implication of using the HSA prediction tool for watershed planning. 

2. The HSA Prediction Tool 

2.1. The Framework of the HSA Prediction Tool 

The HSA prediction tool was developed using ArcIMS 9.2 software (ESRI Inc., Redlands, CA, 

USA). ArcIMS was chosen as a platform to provide a user-friendly, internet accessible interface that 

does not require the user to install software on a local computer. The HSA prediction tool integrates a  

pre-calibrated (watershed-specific) water balance model that represents the integration of several 

standard hydrologic models and four decades of VSA hydrology research [14,16,17,22,34,49]. This 

VSA water balance model is a semi-distributed model that is based on the Thornthwaite-Mather soil 

water budget model [51] and predicts the location of VSAs and the amount of runoff contributed from 

them during storm events. In the HSA prediction tool the VSA water balance model is used to make 

quantitative predictions of present day and future runoff amounts and HSA extents in space and time 

through the use of 24–48 h temperature and precipitation forecasts from the Global Forecast System 

Model Output Statistic (GFS MOS) ensemble data. The VSA model is run with a Python script that 

also handles the real-time and forecasted meteorological data input to the VSA water balance model 

and the output of predicted HSA maps on the webpage of the HSA prediction tool. Figure 1 provides 

an overview of the different components of the HSA prediction tool and their integration into the 

ArcIMS framework. One advantage of using the ArcIMS framework is that the web-based interface 

isolates all the water-balance-model-related complexity, such as the model calibration, from the user, 

thus, facilitating use by a wide audience. Currently, water managers, producers and farmers who 

retrieve information about current and predicted rainfall-runoff conditions and HSA locations from the 

web-interface of the HSA prediction tool do not have access to the HSA prediction tool components 

such as the VSA water balance model. In order to implement or calibrate the VSA water balance 

model for other watersheds in the region full access to the framework (e.g., the web server) is required, 

which could be given to state agents or extension specialists. The HSA prediction tool can be easily set 

up for other watersheds in a simple copy-and-paste process of the ArcIMS framework, requiring only 

updates of the geospatial data to be displayed and the watershed-specific calibration of the water 

balance model (see Section 2.2.3). 
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Figure 1. Integrated system components of the hydrologically sensitive area (HSA) 

prediction tool. 

 

2.2. The Semi-Distributed VSA Water Balance Model 

Hydrologically sensitive areas displayed by the HSA prediction tool are predicted with a  

pre-calibrated (i.e., watershed specific), semi-distributed water balance model that is invisible to the 

user. This VSA water balance model is based on the Thornthwaite-Mather soil water budget model [51] 

for which Steenhuis et al. [49] developed an adaptation to VSA hydrologic conditions using the Soil 

Conservation Service-Curve Number (SCS-CN). The model predicts the location of VSAs and the 

amount of runoff contributed from them during storm events. Thus, it is designed for applications in 

watersheds dominated by saturation-excess overland flow. The model has been developed and tested in 

various VSA hydrology-dominated watersheds [18,19,24–26]. The model operates on a daily time step 

and uses readily available inputs such as daily precipitation, minimum and maximum temperature, as 

well as topography (digital elevation model) and soil characteristics (soil depth and saturated hydraulic 

conductivity) to distribute and locate saturated areas in the landscape with the soil topographic  

index [10,18,25,35,52–55]. The soil topographic index provides a spatial means to determine relative 

propensities for saturation within watersheds where water distribution is strongly driven by topography 

and soils properties, such as depth-to and type-of flow restricting sub-soil layers (i.e., fragipan). The 

water balance model integrates several concepts presented in the following sub-sections. For a more 

detailed description of the model and its modifications see [19,24,25]. 

2.2.1. The VSA Hydrology Concept Based on the Soil Conservation Service (SCS)-Curve Number (CN) 

For watersheds dominated by saturation excess overland flow, Steenhuis et al. [49] showed that the 

fraction of the watershed that produces runoff (Af) can be estimated from the ratio of the change runoff 

depth (ΔQ) to change in precipitation depth (ΔP). The SCS curve number equation is often used to 

predict storm runoff from a watershed. The form typically used is the following (USDA-SCS, 1972): 

Q =
(P − Ia )2

(P − Ia ) + S
=

Pe
2

Pe + S
 (1)
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where P (mm) is the total precipitation (and snowmelt), Ia (mm) is the initial abstraction, S (mm) is the 

depth of the watershed-wide storage of water in the soil profile, Pe (mm) is the depth of effective 

precipitation after runoff begins (P – Ia). The initial abstraction is the amount of water required to 

initiate runoff or in terms of VSA hydrology, Ia (mm) is the soil water deficit to be satisfied before 

complete effective saturation of the soil profile (e.g., water table within 10 cm of surface, [14]) is 

reached, after which additional rainfall becomes surface runoff. However, in the standard SCS-CN 

procedure Ia is generally taken as 0.2S, which implies that the fraction of rainfall retained by the 

watershed prior to the beginning of runoff is storm invariant. To consider variations in the watershed’s 

soil moisture balance and their impact on storm runoff generation, a modification developed by  

Dahlke et al. [25] was implemented that allows estimation of Pe based on the actual soil water deficit 

in the watershed prior to the storm. Specifically, Pe is calculated as the amount of precipitation and 

snowmelt on the day of the event minus the sum of the actual evapotranspiration (Ea) (mm) of all days 

(t) since the last rainfall event: 

Pe = Pt − Ea,t
t =1

n

  (2)

If rainfall or snowmelt occurs on the previous day, the water deficit is calculated differently, 

because the watershed is not in equilibrium. In this case we subtract the previous day’s saturation 

excess runoff and the previous and current day’s evapotranspiration from the precipitation of the 

previous and current day. 

Pe = Pt + Pt −1 − Rt − Rt −1 − Ea,t − Ea,t −1 (3)

2.2.2. Model Discretization and Variable Source Area Prediction 

As shown by Steenhuis et al. [49], the saturated fraction (Af) of the watershed contributing runoff 

can be estimated by integrating the SCS-CN runoff equation [56] [Equation (1)] with respect to the 

effective precipitation, Pe: 

Af =1−
S2

Pe + S( )2  (4)

where S (mm) is the depth of the watershed-wide storage in the soil profile, and Pe (mm) is the amount 

of rainfall that effectively generates runoff, or the total storm precipitation minus the  

moisture-deficit-dependent initial abstraction (Ia). When Pe = 0, Af equals zero and when Pe approaches 

infinity the contributing area, Af, equals 1. 

In order to capture the spatiotemporal differences in the watershed-wide storage the water balance 

model considers spatial differences in the fractional contributing area for a storm event by estimating 

the maximum effective (local) available soil moisture storage, σe,j, for a given area based on the 

watershed-wide storage, S [26]: 

σe, j = S
1

1 − As, j

−1
 

 
  

 

 
   (5)
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where σe,j is the maximum effective available soil water storage of a defined fraction j of the 

watershed, S is the depth of the watershed-wide storage, and As,j (%) is the percent of the watershed 

area that has a local effective soil water storage less than or equal to σe,j. In accordance with [26], areas 

with a high propensity of generating runoff are characterized by a small maximum effective storage, 

(σe,j), while areas of the watershed that are dryer have a greater maximum effective storage. At any 

time, the available water content in each wetness class varies between zero (wilting point) and σe,j. 

In humid regions where water distribution in the landscape is strongly driven by topography, the 

soil topographic index, STI, derived from a digital elevation model (DEM) [53] has been shown to be a 

good predictor for locations of fractional runoff contributing areas, Af, within watersheds [25,35,54,55]. 

The STI is calculated based on the following equation: 

STI = ln
a

tan(β)DKs

 

 
 

 

 
  (6)

where a is the upslope contributing area (m2 per unit contour length), β is the local surface topographic 

slope (radians), D is the local soil depth (m), and Ks is the saturated hydraulic conductivity (m·day−1). 

The STI provides a means to locate areas with differing probabilities or risks of generating runoff 

within a watershed [22,35]. In order to translate saturated fractional area, Af, predictions from the water 

balance model into HSA risk maps the watershed is divided into 10 wetness classes of equal area using 

the STI. Wetness class 1 is associated with the largest 10% of STI values that cover the watershed area 

(Af-values of >0 to 0.1). Wetness class 1 denotes areas that are most prone to saturation and have the 

smallest maximum effective storage (σe,1). Wetness class 2 is associated with the next wettest 10% of 

the watershed (Af-values of 0.1–0.2), the second highest STI values and the second smallest maximum 

effective storage (σe,2), etc. These wetness classes reflect that different areas of the watershed begin 

contributing runoff at different times depending on the amount of rainfall the watershed receives and 

its relative storage. A spatial map of each wetness class is subsequently displayed on the web-interface 

of the HSA prediction tool, indicating potential runoff and pollutant source areas (also called HSA risk 

maps), if the water balance model predicts saturation-excess runoff generation for some parts of a 

watershed based on current and forecasted weather conditions. The spatial resolution of the wetness 

classes and HSA risk maps displayed by the HSA prediction tool is determined by the spatial 

resolution of the DEM used to calculate the STI. 

2.2.3. Model Input, Output and Calibration Parameters 

The water balance model estimates the soil water content, θj, in the topmost soil layer of each 

wetness class based on the Thornthwaite-Mather equation [51], the saturation excess runoff, Q, at the 

watershed outlet and the percentage of the watershed, Af, that is saturated and generating runoff  

during storm events using precipitation (and snowmelt), P (mm·day−1), and potential evapotranspiration, 

Ep (mm·day−1), as input parameters (Figure 2). Note, we use the term saturated areas and runoff 

generating areas interchangeably recognizing that the soil may not need to be fully saturated to 

generate storm runoff as shown by [14]. 
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Figure 2. Conceptual diagram of the water balance model, which estimates the soil water 

content θj in each wetness class j and the saturation excess runoff, Q, at the watershed 

outlet using precipitation, P, and potential evapotranspiration Ep in each time step (t). Ea is 

the actual evapotranspiration, θfc and θwp are the soil water content at field capacity and at 

wilting point respectively, σe,j is the maximum effective soil storage of wetness class j, Pe 

is the effective precipitation (Pe =P − Ep), Perc is a percolation coefficient determining the 

amount of water, p, percolating to the bedrock reservoir, Rs and a is a recession coefficient 

controlling the rate at which baseflow, BF, is contributed from the bedrock reservoir to the 

watershed’s streamflow, R. 

 

Overall, the model requires calibration of only four parameters: S, Perc, and α for the summer and 

winter period. In the water balance model the depth of the watershed-wide soil water storage, S, 

[Equation (1)] becomes a calibration parameter that can be derived directly from baseflow-separated 

streamflow data [18,19,25] and not on the basis of averaging the curve numbers of the various land 

uses in the watershed [57]. During wet periods, when rainfall exceeds evapotranspiration or the moisture 

content exceeds field capacity, θj is determined from the previous day’s moisture plus the effective 

precipitation (P − Ep). During dry periods when evapotranspiration exceeds rainfall (i.e., P < Ep), the 

moisture content of the soil decreases by the actual daily evapotranspiration, Ea (mm). Ea is assumed to 

decrease linearly from the potential evapotranspiration rate when the soil is at (or above) field 

capacity, θfc, to zero at the wilting point, θwp. Ep could be calculated by a number of approaches, e.g., 

Priestley-Taylor [58], but here we simply used a sinusoidal function calibrated to observed Ep data. 

Since watersheds in the northeast U.S. show large runoff fractions resulting from snowmelt a snow 

energy balance model by Walter et al. [59] was incorporated into the water balance model. This means 

that measured or predicted precipitation is first processed in the snow energy balance, which estimates 

melt rates based on minimum and maximum temperature only, before being evenly distributed over the 

entire watershed. Any water added that exceeds the local soil storage of each wetness class is 

partitioned between saturation excess runoff Q (mm·day−1) and recharge to a bedrock reservoir using a 

percolation coefficient, Perc (mm·day−1). Streamflow, R (mm·day−1), is computed for each time step 
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by adding the saturation excess runoff, Q, to the baseflow; the latter is calculated as a fraction of the 

bedrock reservoir using a calibrated baseflow recession coefficient, α (day−1), [19], which can have 

different values for the dry summer and wet winter period. 

The water balance model uses a time series of daily measured temperature and precipitation data to 

simulate soil moisture patterns across a watershed until the present day. In addition, the model uses 

NOAA GFS MOS weather ensemble predictions, released on the present day for the next 192 h, to 

simulate soil moisture and associated storm runoff for “today”, and the following 24 h (“tomorrow”) and 

48 h (“the day after tomorrow”). Based on the estimation of the saturated fractional watershed area for 

“today” (Af,t), “tomorrow” (Af,24 h) and the “day after tomorrow” (Af,48 h), the HSA prediction tool presents 

this information as HSA risk maps to the user in the form of red areas on top of georeferenced aerial 

photographs. To simplify the presentation, the calculated Af-values are categorized into 10 incremental 

classes (e.g., 10%, 20%, 30%, etc.) identical to the wetness classes described in Section 2.2.2. 

2.3. Hydrologic Forecasting 

For the 24 and 48 h forecasts of the saturated fractional watershed area, the water balance model is 

using forecasted temperature and precipitation estimates of the Model Output Statistics (MOS) [60] 

generated with the Global Forecast System (GFS). GFS forecasts are released through the National 

Weather Service via online providers such as NOAA. The messages contain forecasts/projections of a 

set of meteorological parameters such as maximum daytime and minimum nighttime temperature, 

wind speed, probability and quantity of precipitation, snow, and mean total sky cover that are valid 

over at least a 12 h period. The GFS MOS guidance data used in the HSA prediction tool result from 

the Medium Range Forecast (MRF) run of the NCEP’s (National Centers for Environmental 

Prediction) Global Spectral Model [61], which has been referred to as the Global Forecast System 

(GFS) model since 2002 [62]. The medium range MOS guidance provides projections of 24 to 192 h 

for most weather elements either as graphical maps or as alphanumeric messages. The alphanumeric 

message containing medium range MOS GFS projections is published twice a day at 0000 and  

1200 UTC (Universal Time Coordinate) for approximately 1693 sites, mostly airport locations, within 

the contiguous United States and Alaska [62]. 

From the alphanumeric message three parameters, the 24 h quantitative precipitation (Q24), the  

24 h probability of precipitation (P24), and the maximum daytime and minimum nighttime temperature 

(X/N) data are used in the hydrologic forecast module of the HSA prediction tool. The MOS guidance 

provides exact (i.e., unit true) projections for the minimum and maximum temperature; however, 

precipitation amounts in the 192 h projection are only given in categorical form in the alphanumerical 

message (Table 1). We decided to use the maximum value of the predicted precipitation category as 

input to the water balance model on grounds of estimating the “worst case scenario” HSA extents for a 

predicted storm event. In the HSA prediction tool the temperature and precipitation projections from 

the GFS MOS ensembles are automatically retrieved from the alphanumeric message via a direct URL 

link using a python script. This python script runs on a daily basis at 4:00 AM local time and adds the 

forecasted temperature and precipitation data to a time series data file used as input for the VSA water 

balance model. At the same time the temperature and precipitation records of the previous day, which 

exist from the GFS MOS query made on the previous day, are replaced with measured data from a 
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climate station located within the watershed, to which the VSA water balance model is calibrated. If 

the real-time climate station data has missing data points, then the GFS MOS data are used to fill 

existing gaps. 

The probability of precipitation (P24) is extracted daily from the alphanumerical message and 

disseminated to the user in a separate browser window. A summary of the expected hydrological 

conditions in the watershed and the likelihood of occurrence of a storm event within the next 24 h and 

48 h are provided in a short text message. The P24 forecast provides an estimate of the probability of 

precipitation (PoP) for a projected 24 h period. Values range from 0 to 100%. Both PoP projections for 

the next 24 h and 48 h are provided to the user in the summary of expected hydrologic conditions 

(Figure 3). 

Table 1. Categories of the quantitative precipitation forecast provided with in the Global 

Forecast System (GFS) alphanumerical message and its usage in the water balance model. 

Categories 
GFS precipitation 

scale (in.) 
Precipitation (mm) used in the  

VSA water balance model 

0 0 0.0 
1 0.01–0.09 2.3 
2 0.10–0.24 6.1 
3 0.25–0.49 12.5 
4 0.50–0.99 25.2 
5 1.00–1.99 50.6 
6 ≥2 76.2 

Figure 3. Daily updated status report showing the forecasted rainfall amounts, the 

probability of precipitation for each projected 24 h period, and the expected percent area of 

the watershed that could saturate or generate runoff. 
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2.4. User Interface of the HSA Prediction Tool 

The HSA prediction tool is a map service that is accessible through a web browser. The tool is 

designed to be used by producers and stakeholders on a daily basis. The main page for the watershed 

used in the presented prototype application [63] is shown in Figure 4, which provides standard 

interface features such as a large map of the area of interest, an overview map, a navigation tool bar, 

and features that allow information retrieval on the displayed geographical data (e.g., query, feature 

identification). Information regarding the current (“Today’s forecast”) and forecasted ( “24 h forecast” 

and “48 h forecast”) hydrologic conditions and saturated area extents are displayed in the upper part of 

the right layer frame (Figure 5). Below these three layers the tool provides a list of watershed-specific 

geographical data containing the potential HSA risk maps, infrastructure (i.e., hydrography, roads), 

administrative boundaries and soils properties. The user can query information contained in these 

geospatial data sets for a specific site using the query tool. The query results are displayed at the 

bottom of the window (Figure 5). Above the layer list the user is presented with a short summary of 

the hydrological conditions (e.g., “Expected 24 h rainfall: max. 0.0 in.”) (Figure 4) and a link 

(highlighted in yellow) that opens a separate “status report” window summarizing the expected rainfall 

amounts, rainfall probabilities and the estimated percentage of the watershed that is predicted to 

saturate or generate runoff within the next 24–48 h (Figure 3); note, English units are displayed 

because most users are less familiar with SI units. 

Figure 4. Start page and user interface of the HSA prediction tool. 
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Figure 5. User interface of the HSA prediction tool. Red areas show HSA predicted with 

the semi-distributed water balance model. A daily update of forecasted weather conditions 

and HSA dynamics in Salmon Creek watershed is given in the top, right frame. 

 

2.4.1. Graphical Output of Predicted HSA Risk Maps 

Based on the water balance model output, the top three layers listed in the right-hand-side frame 

display maps of the predicted percentage of the watershed that is currently or expected to be saturated 

within the next 24–48 h. These areas are highlighted in red and ultimately visible to the user when the 

user has zoomed into an area of interest with a scale of greater than 1:100,000 (Figure 5). If no 

saturated areas are predicted by the water balance model, the message “no saturation!” is displayed in 

the right-hand-side frame and the red HSA maps are not displayed in the main map. For more general 

risk information, the user can also view each potential 10% (see Section 2.2.2) runoff risk class (e.g., 

90%) in the watershed, which is provided by separate “General HSA” layers in the layer frame of the 

HSA prediction tool (Figure 5). 

2.4.2. Geospatial Data 

The HSA prediction tool uses a set of various geospatial data sets to inform and educate planners 

and producers about the current and forecasted risk of occurrence of runoff source areas. For the 

developed prototype of the HSA prediction tool, the geospatial database is comprised of raster and 

vector data sets (i.e., shapefiles) that help the user locate their area of interest (e.g., a specific farm) and 

retrieve property and field boundary information for orientation (e.g., via tax parcel code). The 

displayed data sets include the local stream network, lakes, roads, urban areas, county and tax parcel 

boundaries, land cover information as well as aerial photographs of the watershed and surrounding 

areas. In addition, the web-based tool displays soil classification information from the Soil Survey 

Geographic (SSURGO) database [64], in particular the flood frequency and soil drainage class. These 

geospatial data sets are provided to assist producers and planners in the calculation of the NYS P-Index 
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and the estimation of the nutrient loss risk from specific fields. The database further contains the 

watershed-specific HSA risk maps, which are derived from a 10 m USGS digital elevation model 

(DEM) using the method described in Section 2.2.2. 

3. Application of the HSA Prediction Tool: Proof of Concept 

As a proof of concept, a prototype HSA prediction tool was developed for the 230 km2 Salmon 

Creek watershed (Figure 6), located north of Ithaca in NYS. The watershed is located in the glaciated 

Allegheny Plateau physiographic region. The annual average temperature is 8 °C; average annual 

precipitation is 93 cm, with 173 cm of snowfall annually. Land use consists of 70% agricultural land, 

28% mixed forest, and the remaining 2% is residential, commercial, and urban (Figure 6). Soils are 

generally 200 cm deep, with well to somewhat poorly drained silt loams and gravelly silt loams [64]. 

Elevations range from 320 to 378 m. The watershed exhibits typical HSA type hydrology due to the 

shallow highly permeable soils overlaying a dense fragipan at a shallow depth [29]. 

Figure 6. Location and characteristics of Salmon Creek watershed. 

 

3.1. Input Data 

3.1.1. Geospatial Database 

A geospatial database was developed for the Salmon Creek watershed (76.54° W, 42.54° N) that is 

comprised of image raster and vector data required for the development of the watershed-specific HSA 

prediction tool. Table 2 provides a summary of the geospatial data sets and sources used in the Salmon 

Creek HSA prediction tool. All data displayed in the geographic area of Salmon Creek are projected in 

UTM coordinates, Zone 18 with the North American Datum 1983. 
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Table 2. Multisource geospatial and hydro-meteorological database developed for the HSA prediction tool. 

Data Resolution/Scale Source Description 

Air photographs 2 m NY State GIS Clearinghouse [65] Natural color image. Cayuga County 2007,  
Tompkins County 2006. 

DEM 10 m NYS DEC, USGS [66] Elevation, slope, flow direction, flow  
accumulation, HSAs 

Forest 30 m Multi-Resolution Land Characteristics (MRLC) 
Consortium [67] 

Land Use, Land Cover data set, 2001 

Lakes 1:2,000,000 National Atlas, New York State [66] Lakes and surface water bodies 
Roads 1:100,000 U.S. Census Bureau [66]  
Soils 1:15,840 (Cayuga County)  

1:20,000 (Tompkins County)
SSURGO (USDA-NRCS Soil Data Mart) [64] Soil depth, saturated hydraulic conductivity,  

drainage class, flood frequency 
Streams 1:100,000 U.S. Census Bureau [66] Hydrography 
Tax Parcels 1:10,000 Tompkins County and Cayuga County Clerkʼs 

Office [66] 
Municipal Tax Parcels (year 2000) 

Urban areas 1:100,000 U.S. Census Bureau [66] Urbanized areas and municipalities 
Meteorological data  Northeastern Regional Climate Center [68] Daily minimum and maximum temperature  

and total daily precipitation 
Streamflow data  U.S. Geological Survey [69] Daily streamflow data 
GFS MOS forecast data  NOAA National Weather Service [70] Extended range GFS-Based Model Output  

Statistics (MOS) 
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3.1.2. Weather Data 

Precipitation and temperature data for Salmon Creek were downloaded from two Northeast Regional 

Climate Center (NRCC) weather stations located in Locke, (42.67° N, 76.47° W, station ID 304836) 

and Freeville (42.52° N, 76.33° W, station ID 303050), NY (Figure 6). For the 24–48 h forecast of 

HSA dynamics in Salmon Creek temperature and precipitation projections from the closest GFS MOS 

site, the Ithaca airport station (station ID KITH) (42.48° N, 76.47° W) located approximately 10 km 

south of the Salmon Creek stream gage, is used. Minimum and maximum potential evaporation varied 

between 0 and 4 mm [71]. Daily streamflow data were available for the period 22 July 2006 until  

31 December 2009 measured by the U.S. Geological Survey (USGS, station ID 0423401815) at the 

outlet of Salmon Creek watershed in Ludlowville, NY (42.55° N, 76.53° W). 

3.2. VSA Water Balance Model Calibration and Validation 

The water balance model requires calibration of four parameters, the effective watershed storage, S, 

the baseflow recession coefficients for summer and winter, αs and αw, and the percolation coefficient, 

Perc. The overall effective storage of the watershed was calibrated to baseflow-separated runoff  

(S = 20 cm). Based on S the maximum effective soil moisture storage, σe,j, for each wetness class was 

determined using Equation (5). The baseflow recession coefficients for the summer (May–October) 

and winter season (November–April) were calibrated from baseflow separated streamflow [17] and 

equaled αs = 0.06 (day−1) for summer and αw = 0.09 (day−1) for winter. The percolation fraction was 

calibrated to Perc = 0.74 (mm·day−1) by maximizing the Nash-Sutcliffe efficiency over the calibration 

period using a nonlinear optimization algorithm (e.g., Microsoft Excel Solver). The model was 

calibrated using precipitation from Locke, temperature from Freeville and streamflow data measured at 

the outlet of Salmon Creek watershed for the period 22 July 2006 to 21 July 2008. Streamflow data 

observed for the period 22 July 2008 until 31 December 2009 were used to validate the  

model performance. 

The coefficient of determination, R2, for the linear regression between daily measured and modeled 

streamflow for the calibration period is R2 = 0.76 and Nash-Sutcliffe efficiency (E) [72] is E = 0.76 

and, for the validation period, R2 = 0.79 and E = 0.78. Table 3 gives summary statistics for measured 

and modeled average streamflow amounts for each year of the entire modeling period. Daily 

streamflow was generally well predicted during the entire modeling period (Figure 7). Streamflow was 

more accurately predicted during the wet winter months when the majority of total and dissolved P is 

exported from watersheds in the humid northeastern U.S. [73–76] than during the generally drier 

summer months. Major storm events were particularly well predicted during 2007 and 2009 but 

slightly under-predicted in 2008. Summer storm runoff was generally over-predicted, likely because 

catchment connectivity and runoff potential during the drier summer months is reduced and not 

sufficiently represented by the simple approach of a watershed-wide storage parameter S (Figure 7). 
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Figure 7. Precipitation (bars) and daily streamflow predicted by the water balance model 

plotted against the measured streamflow at the catchment outlet of Salmon Creek for the 

time period 22 July 2006–31 December 2009. The inset shows the linear 1:1 relationship. 

The coefficient of determination (R2) and Nash-Sutcliffe efficiency (E) are calculated 

based on the entire modeling period. Table 3 summarizes uncertainty statistics for the 

calibration and validation period. 

 

Table 3. Summary of measured and modeled, annual and seasonal streamflow statistics and 

goodness-of-fit measures for Salmon Creek watershed. The calibration and validation periods 

range from 22 July 2006–21 July 2008 and 22 July 2008–31 December 2009, respectively. 

Period 

Modeled Measured Goodness of fit

Minimum 

(mm·day−1)

Mean  

(mm·day−1) 

Maximum 

(mm·day−1)

Minimum 

(mm·day−1)

Mean  

(mm·day−1)

Maximum  

(mm·day−1) 
E a R² b 

2006 0.37 1.45 10.41 0.11 1.41 13.25 0.74 0.74 

2007 0.02 1.09 21.39 0.02 1.30 26.71 0.80 0.82 

2008 0.04 1.12 17.90 0.04 1.20 20.30 0.68 0.71 

2009 0.06 0.99 13.74 0.05 0.96 12.72 0.82 0.83 

Calibration period 0.37 1.45 10.41 0.11 1.41 13.25 0.76 0.76 

Validation period 0.04 0.87 14.85 0.04 0.88 13.78 0.78 0.79 

Entire Period c 0.02 1.11 21.39 0.02 1.19 26.71 0.77 0.77 

Notes: a Nash-Sutcliffe comparison with measured streamflow; b Coefficient of determination comparison 

with measured streamflow; c The entire modeling period ranges from 21 July 2006 until 31 December 2009. 

3.3. Accuracy of HSA Predictions for Salmon Creek Watershed 

The HSA prediction tool is only of value to watershed managers if runoff and HSA dynamics are 

correctly and reliably predicted based on the 24–48 h temperature and precipitation projections of the 

GFS MOS ensemble data. Thus, we compared the fractional saturated areas predicted for the next  

24 h and 48 h, denoted by Af,24 h and Af,48 h for the remainder of this article, to Af-values computed based 



Water 2013, 5 933 

 

 

on actual measured temperature and precipitation data from the NRCC climate stations for a given day 

(denoted by Af,t). In other words, for each day of the modeling period, for example 24 July 2007, we 

compare the Af-values (Af,t) computed by the water balance model with measured weather data from 

Locke and Freeville on that day to Af-values computed with GFS MOS weather projections released 

for 24 July 2007 on the previous day (Af,24 h) and the day before the previous day (Af,48 h). 

Figure 8 and Table 4 show the results of the statistical comparison for data pairs of Af-values 

computed with measured weather data to either the 24 h predicted (Af,t vs. Af,24 h) or 48 h predicted  

Af-values (Af,t vs. Af,48 h). The coefficient of determination, R2, calculated based on all Af-values 

estimated with the water balance model for the record period (i.e., including days where no saturation 

was predicted) was R2 = 0.59 for Af,t vs. Af,24 h and R2 = 0.36 for Af,t vs. Af,48 h. Note, we expect 

diminished agreement with more distant forecasts because weather forecast uncertainty increases with 

increased time into the future. 

Figure 8. Correlation of saturated fractional areas (Af-values) predicted using observed 

weather data (Af,t) versus Af-values predicted with 24 h (Af,24 h) forecasted (a,b) and  

48 h (Af,48 h) forecasted weather data (c,d). Plots (a) and (c) compare Af-values on a daily 

basis for the entire record period. Plots (b) and (d) show the correlations for storm events 

with observed discharges greater than 5 mm·day−1. Grey lines indicate the 1:1 relationship 

and black lines show fits of a simple linear regression.  

 



Water 2013, 5 934 

 

 

Table 4. Percentage of days where Af-values predicted based on the 24 h (Af,24 h) and  

48 h (Af,48 h) weather projections agree with Af-values computed with measured weather 

data (Af,t) over the record period of 22 July 2006–31 December 2009. 

Comparison sets 
Wetness classes 

All n.s. 1 2 3 4 5 6 7 8 9 10 

Af,t vs. Af,24 h 0.81 0.92 0.66 0.54 0.50 0.67 0.67 1 n.a. n.a. n.a. n.a.
Af,t vs. Af,48 h 0.70 0.87 0.41 0.24 0.25 0.17 0.67 1 n.a. n.a. n.a. n.a.

Af,24 h vs. Af,48 h 0.79 0.92 0.54 0.46 0.48 0.54 0.50 1 n.a. n.a. n.a. n.a.

Notes: n.s. = indicating non saturated areas, n.a. = not available; these wetness classes did not saturate during 

the study period. 

As illustrated in Figure 8a, most of the larger storm events (indicated by large Af-values) plot along 

the 1:1 line. For days where Af,t did not match Af,24 h, the difference in the computed fraction of the 

watershed that contributes runoff was on average less than 0.2 or 20% of the watershed area.  

In contrast, comparison of Af,t vs. Af,48 h (Figure 8c) shows a more scattered picture and rather an  

over-prediction of Af-values than computed with actual measured data. Nevertheless, most large  

Af-values plot again along the 1:1 line. In 81% of the days the 24 h forecasted Af-values agree with the 

Af,t-values; 70% of the 48 h forecasted Af-values matched the computed Af-values based on measured 

weather data (Table 4). 

As summarized in Table 4, the wetness class-based (e.g., wetness class 2 equals Af-values in the 

range of 0.1–0.2) comparison of Af-values predicted based on the 24 h projections with Af,t-values 

agreed in more than 50% of the days in all classes and in more than 67% of the days when large storm 

events occurred resulting in runoff contributions from 40% to 60% (wetness classes 4–6). The 

percentage of days where Af-values predicted based on the 48 h projections with Af,t-values agreed is 

lower, indicating that the 48 h precipitation forecast of the GFS MOS projections is, in general, 

quantitatively less reliable. 

When looking at the 10 largest storm events observed during the record period the coefficient of 

determination for both comparisons is R2 = 0.72 for Af,t vs. Af,24 h and R2 = 0.52 for Af,t vs. Af,48 h 

respectively (Figure 9). For these storm events the 24 h and 48 h projection-based Af-values differed 

from Af-values computed based on measured weather data, on average, by 0.08 and 0.2 (8% and 20%), 

respectively. This indicates that, based on the GFS MOS weather projections, the estimation of HSA 

extents of potentially large storm events is very accurate despite the differences between forecasted 

and observed precipitation amounts. Interestingly, regardless of systematically using the highest 

predicted rainfall depth from the forecasts, there is no bias towards over-predicted runoff generating 

areas; if anything there is a systematic under-prediction (Figure 9). 
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Figure 9. Comparison of modeled fractional saturated areas (a,b), predicted vs. observed 

precipitation (c,d), and modeled wetness classes (e,f) for the 10 largest storm events 

observed in Salmon Creek watershed between July 2006 and December 2009. Plots (a) and 

(b) compare Af,t-values computed with the VSA water balance model based on observed 

weather data versus Af,24 h, and Af,48 h values modeled using 24 h and 48 h GFS MOS 

projected meteorological data for each event. Pobs, Ppred,24 h and Ppred,48 h are the observed 

and 24 h, 48 h forecasted total daily precipitation amounts for these events. Plots (e) and (f) 

compare the wetness class predicted with the VSA water balance model using observed 

(wetness class,t) and 24 h (wetness class,24 h) and 48 h (wetness class,48 h) forecasted 

meteorological data. 
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3.4. Predicted Saturation Dynamics 

We used the calibrated water balance model to determine long-term monthly saturation dynamics in 

the Salmon Creek watershed that can be accessed by the user through a hyperlink in the bottom frame 

of the HSA prediction tool (Figure 4). Average moisture and runoff conditions in Salmon Creek  

show, in general, a high level of seasonal variability. For each month the probability of saturation can 

be estimated by taking the ratio of the number of days for which a location within the watershed 

saturates to the total number of rainfall-days [22,50]. The number of saturation days is predicted with 

the water balance model; the number of precipitation days is taken from climate stations in Locke and 

Freeville, NY, USA. 

The probability of saturation shown in Table 5 and Figure 10 shows monthly and annual averages 

estimated over the period July 2006 to December 2009. The months December–March are on average 

the wettest months of the year where more than 50% of the rainfall and snowmelt events cause the 

entire watershed to saturate. During October, November, and April 25% of the rainfall events cause the 

entire watershed area to contribute runoff. Only during the drier summer months (May–August) does 

the saturation probability decreases below 25%, with May being the driest month and July being the 

wettest summer month on average (Table 5). The annual probability of saturation statistic indicates 

that the wettest 10% of the watershed saturates and generates runoff for more than 50% of the rainfall 

events. The remaining areas of the watershed have the potential to transport nutrients and pollutants to 

streams, on average, in over 25% of the rainfall events. 

Table 5. Probability of saturation for each wetness class and month as predicted with the 

hydrologic assessment tool in Salmon Creek. Each wetness class represents 10% of the 

watershed area. Wetness class 1 indicates areas most prone to saturation; wetness class  

10 indicates areas least prone to saturation. 

Time period 
Wetness class Average number 

of rainfall days 1 2 3 4 5 6 7 8 9 10 

January 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 7.87 
Febuary 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 3.50 
March 0.82 0.82 0.82 0.82 0.82 0.82 0.76 0.76 0.76 0.76 8.50 
April 0.62 0.55 0.41 0.41 0.38 0.38 0.38 0.38 0.38 0.38 14.50 
May 0.05          10.00 
June 0.29 0.16 0.03        15.50 
July 0.36 0.31 0.26 0.24 0.24 0.19 0.19 0.17 0.12 0.10 18.08 

August 0.26 0.21 0.14 0.09 0.07 0.02 0.02 0.02 0.02 0.02 14.33 
September 0.42 0.28 0.22 0.22 0.22 0.22 0.11 0.11 0.11 0.11 12.00 

October 0.61 0.57 0.46 0.41 0.37 0.37 0.35 0.28 0.22 0.22 15.33 
Novemember 0.55 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.48 0.23 13.33 
Decemember 0.77 0.73 0.73 0.68 0.68 0.68 0.68 0.68 0.68 0.68 7.33 

Annual average 0.51 0.44 0.38 0.36 0.35 0.34 0.32 0.31 0.29 0.26 140.27 
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Figure 10. Monthly probability of saturation for Salmon Creek watershed. For each month 

the factional watershed area is shown that saturates or generates runoff in more than 50% 

(red areas), 25% (yellow areas) and 10% (green areas) of the rainfall events. 

 

4. Management Implications and Conclusions 

The HSA prediction tool presented in this paper unites the capacity of a water balance model, 

optimized for hydrologic predictions in watersheds dominated by saturation-excess overland flow, 
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with 24–48 h projections of weather conditions in a user-friendly, online-available interface. The tool 

is aimed at identifying and displaying specific parts of the landscape that show a high risk of transport 

of agricultural chemicals and nutrients to streams via storm runoff. The use of the ArcIMS framework 

provides an intuitive and user-friendly environment to learn about variable source area hydrology and 

its implications for NPS pollutant transport. It also enables users to utilize the system without an in-depth 

knowledge of the individual components and the expertise required to calibrate the water balance 

model. The prediction of wetness conditions and saturated areas is automatically updated daily based 

on weather data from nearby NRCC climate stations and GFS MOS projections of temperature and 

precipitation. The framework is designed such that watershed planners and stakeholders can easily 

access the tool via a web site that provides basic geographical data for orientation. The HSA prediction 

tool requires no expertise in VSA hydrology or best management practice (BMP) planning. Thus, it 

can be easily used by less experienced users. 

The implementation of the HSA prediction tool, as presented in this paper, identifies not only the 

locations of areas prone to saturation or surface runoff, but also determines the risk of NPS pollution 

by estimating the relative risk of saturation or storm runoff. As shown in Table 5 and Figure 10, the 

HSA prediction tool provides basic annual and monthly statistics on the probability that a certain part 

of the watershed is contributing runoff and potentially pollutants during storm events. This information 

is fundamental to characterize the watershed-specific saturation dynamics of a catchment, which are 

useful to formulate long-term nutrient management plans. In addition, the daily updated HSA risk 

maps provide scientifically based means for planners and producers to potentially increase efforts that 

focus on the day-to-day protection of areas with high transport potential. 

The extent of HSAs is modeled based on antecedent moisture conditions and daily rainfall data 

within a water balance model that allows the usage of the HSA prediction tool for the prediction of 

HSA dynamics and the scheduling of management activities in the watershed in real-time. The tool can 

be used to locate fields with low saturation potential that could, potentially receive more liberal 

manure applications without increasing the risk of NPS pollution. Implementing a tool that provides 

real-time and 24–48 h HSA predictions will be valuable to watershed managers and stakeholders to, 

for instance, schedule manure or pesticide applications more precisely in space and time. As such, the 

tool supports also the optimization of sub-field manure or pesticide applications in response to  

intra-field variations in short-term moisture conditions and long-term saturation probabilities. 

Basically, we propose that the targeting of potentially polluting activities away from HSAs constitutes 

a none-structural, dynamic Control Source BMP. The HSA prediction tool ultimately redefines the 

HSA-concept such that “areas most likely to generate runoff” no longer refers to the probability based 

on past weather but, rather, based on current and near-forecast conditions. This is an important 

paradigm shift in HSAs. 

In addition to being a potential component of precision agriculture, the HSA prediction tool has the 

potential to improve transport-factor estimates in the NYS P-Index, which is used for longer-term 

nutrient management planning. Specifically, it can provide general geospatial data sets used to 

calculate the P-Index transport factor (e.g., soil drainage, flood frequency) and, more importantly, 

provide better and more precise information about the coincidence of fields and HSAs. Recall that the 

current NYS P-Index identifies high-risk runoff areas based largely on proximity to a watercourse, 

which is not a reliable proxy of runoff risk [29,35]. Additionally, the current NYS P-Index transport 
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factor is more or less static, restricting the application of manure within a fixed-width 30 m buffer to 

the stream [33], which has been shown to not effectively abate dissolved phosphorus transport to 

streams [4,8,9,13]. Recognizing that the location where runoff occurs varies both spatially and 

temporally and depends on the amount of rainfall and antecedent moisture conditions in the  

watershed [14,34], the HSA prediction tool provides a means to support the adaptation of  

variable-width buffers (e.g., derived with the soil topographic index [35]) that capture more realistic 

runoff generating areas [25,26,35,54] and dissolved nutrient transport via shallow subsurface storm  

flow [34,77]. Furthermore, the spatial maps provided in the VSA prediction tool support the 

development of other land management decisions (e.g., riparian buffers) that can also be effective of 

keeping pollutants from being directly introduced to streams. In addition, the HSA prediction tool 

provides sub-field information about the month-to-month variability in hydrologic sensitivity for 

longer-term manure-application scheduling. Thus, using the HSA prediction tool planners and farmers 

can achieve more flexibility in planning applications of nutrients or pesticides based on the 

characteristics of the land at larger spatial and temporal scales than they currently use. In the near 

future we intend to meet with farmers and planners to evaluate the efficiency and applicability of the 

HSA prediction tool. However, the web-based approach provides unlimited opportunities to update the 

HSA prediction tool continuously with new scientific findings, which will help to improve 

management decisions and water quality in VSA-dominated watersheds. Furthermore, the application 

of the HSA prediction tool to other watersheds dominated by VSA hydrological processes can be 

easily accomplished with a simple copy-and-paste process of the current prototype, the use of free 

online-available real-time meteorological and streamflow data and the low calibration parameter 

requirements of the VSA water balance model. To further the statewide application of the VSA 

prediction tool in watershed management on-going research is focusing on how to automate calibration 

of the model to other watersheds (e.g., automatically estimate parameters for gauged and ungauged 

basins) and the setup of the tool’s framework for other watersheds. 
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