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Abstract: This paper focuses on uncertainty analysis to aid decision making in 

applications of statistically modeled flow-duration-frequency (FDF) relationships of both 

daily high and low flows. The analysis is based on 24 selected catchments in the Lake 

Victoria basin in Eastern Africa. The FDF relationships were derived for aggregation levels 

in the range 1–90 days for high flows and 1–365 days for low flows. The validity of the 

projected FDF quantiles for high return periods T was checked using growth factor curves. 

Monte Carlo simulations were used to construct confidence intervals CI on both the 

estimated Ts for given flows and the estimated FDF quantiles for given T. The average bias 

of the modeled T of high and low flows are for all catchments and Ts up to 25 years lower 

than 8%. Despite this relatively small average bias in the modeled T, the limits of the CI on 

the modeled 25-year flows go up to more than 100% for high flows and more than 150% 

for low flows. The assessed FDF relationships and accompanied uncertainties are useful 

for various types of risk based water engineering and water management applications 

related to floods and droughts. 

Keywords: floods; high flows; hydrological extremes; Lake Victoria basin; low flows; 

uncertainty analysis; flow-duration-frequency (FDF) 
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1. Introduction 

In support of water related risk analysis, there is a great need for frequency analysis for both high 

and low flow extremes for proper management applications related to floods and droughts. Examples 

of applications include reservoir operations, irrigation, hydropower scheduling, industrial planning, 

flow control for ecological purposes e.g., compensation flows and dilution flows for improving the 

quality of water for treatment plants or power generating plants. Proper management of water 

resources under global climate change and/or anthropogenic influence is an important key to 

development. It requires an accurate descriptive study of hydrological extremes and their recurrence 

rates, at the relevant scales, based on long-term time series of observations of rainfall intensities, 

discharges or water levels. One approach to obtain substantially compressed frequency information on 

such extremes from a hydrological time series is through extreme value analysis for a range of 

aggregation levels to constitute Amplitude-Duration-Frequency (ADF) relationships (FDF or IDF, for 

discharges or rainfall respectively). Aggregation levels are simply durational intervals over which the 

hydrological values are averaged. Premised on such durations, the conditional relationships are 

essentially cumulative functions of the amplitude values in the time series [1]. 

ADF relationships have been presented in a number of studies (see e.g., [2–10]). These relationships 

are very important in water engineering. According to Nhat [11], ADF relationships are among the most 

commonly used tools in water resources engineering, either for planning, designing and operating of 

water resource projects, or for various engineering projects against floods. They are used to construct 

design storms for hydrological modeling applications [1,12]. Another application is the calibration and 

validation of stochastic rainfall generators [13]. Several studies have used ADF relationships to assess 

the impact of climate change and/or variability on hydrological extremes (see e.g., [8,14–18]). 

These studies did, however, not include uncertainty analysis on the calibrations or communication of 

confidence intervals (CIs) on the ADF relationships. Although there are some studies including [19–20] 

that take into account uncertainty analysis on flow duration curves, uncertainties in the FDF 

relationships can, however, be large in data scarce regions, as is shown in this paper for the basin of 

Lake Victoria in Eastern Africa. It would in such cases be important to take these uncertainties into 

account in the water resources management or decision making. 

According to Ayyub [21], the need to model and analyze uncertainties stems from the awareness 

that data abundance does not necessarily give us certainty, and sometimes can lead to overwhelmingly 

confusing situations, and/or a sense of over-confidence leading to an improper information use. The 

former can be an outcome of the limited capacity of our human mind in some situations to deal with 

complexity and data abundance whereas the latter can be attributed to a higher order of ignorance, 

called the ignorance of self-ignorance. Predictive uncertainty, its quantification and its reduction, is a 

key issue in statistical modeling of a hydrological variable that allows judgment of the degree of 

confidence in estimated results. It then can be taken into account in decision making in water resources 

management. Several approaches exist to assess errors in statistical models, in which the Monte Carlo 

technique is commonly used. Examples of Monte Carlo simulations applied in statistical modeling can 

be found in many researches (see e.g., [8,22–26]). Other approaches are the Jackknife method [27] and 

the typical-value principle [28], which both construct CIs by employing subsample values of a general 

statistic as the building block. Bootstrapping was introduced by Efron [29] to further strengthen the 
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jackknife method of estimating bias or standard error. Other than probabilistic approaches, the 

generalized likelihood uncertainty estimation (GLUE) technique of Beven and Binley [30] and 

Bayesian methods are commonly employed. The aforementioned methods deal with a number of 

uncertainties as elaborated in [31]. However, this study considers sampling uncertainty of quantile 

estimates by applying parametric bootstrapping. Consequentially, this study is aimed at not only 

statistically modeling the FDF relationships but also carrying out an in-depth analysis of errors and 

uncertainty for communication of the research findings to water resources managers and 

environmental policy makers. The parametric bootstrapping Monte Carlo method is used to establish 

CIs on the FDF based flow quantiles. Root mean square error and average bias on these quantiles and 

on the parameters describing the FDF relationships are also estimated to understand uncertainty. 

2. Study Area and Data Series 

Lake Victoria is the world’s second largest freshwater lake but has a relatively small drainage basin 

of about 184,000 km2, being slightly less than three times the Lake’s surface in area. The Lake’s basin 

is situated at an altitude of 1134 m above mean sea level and stretches 355 km from west to east 

between 31°37' E to 34°53' E and 412 km from north to south between longitudes 00°30' N and 3°12' S. 

Low-lying parts close to Lake Victoria are characterized by episodes of floods, for instance, 

downstream of River Nzoia, around Budalang’i [32–34]. Despite the episodes of flooding, low flows 

tend to subsequently punctuate the basin’s hydrology often for long periods of time. Severe droughts in 

the Lake Victoria basin can be expected on average about every seven to eight years during the hot dry 

season from December to February [35]. According to Otieno and Awange [36], these droughts 

affected power production with resulting economic losses. According to Awange et al. [35], Lake 

Victoria and its environment is more recently under threat from declining water levels, which has had a 

number of social and economic effects.  

This study is based on 24 selected catchments in the Lake Victoria basin. Long discharge time 

series, preferably above 25 years were used. Figure 1 shows the locations of the discharge 

measurement stations used in this study and Table 1 shows for these stations the flow record length, 

coordinates, area of the catchment upstream of each station, and percentage of missing records. 

Figure 1. Locations of the discharge stations; see Table 1 for details on these stations. 
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Table 1. Overview of selected stations and some characteristics.

Note: *** Missing station ID. 

3. Methodology 

3.1. FDF Modeling 

The extreme value analysis (EVA) and FDF modeling are based on nearly independent high and 

low flow extremes extracted from the full time series. Independent high flows are selected using 

independence criteria based on threshold values for the time between two successive independent  

flow (F) peaks, the ratio of the minimum flow between the two peaks over the peak value, and the peak 

height; see Willems [37] for details on the method. Extraction of low flows was carried out by 

applying the same method but on the inverted flow (1/F) series. Prior to the extraction of the extreme 

values from the full time series for each of the selected stations, n-day moving averaging window was 

passed through the series. The aggregation levels considered for high flows were 1, 3, 5, 7, 10, 30, 60, 

90 days while for low flows 1, 10, 30, 90, 150, 180, 240 and 365 days were taken. This is the range 

covered by the relevant water engineering or management applications as agriculture, irrigation, 

hydropower, domestic water supply, pollution control, etc. The highest aggregation levels of three 

months considered for high flows and one year for low flows are based on the differences in time scale 

Station 

number 

River 

catchment 

Station 

ID 

Area 

[km2] 

Data length 

[Year] 
Location Missing 

records [%] 
From To Longitude [°] Latitude [°] 

(1) Biharamulo *** 1,981 1950 2004 31.29 2.62 13 

(2) Bukora 81270 8,392 1951 1976 31.48 −0.85 16 

(3) Grumeti 5F3 13,363 1950 2004 33.94 −2.06 19 

(4) Gurcha-migori 1KB05 6,600 1950 2004 34.20 −0.95 3 

(5) Isanga 114012 6,812 1976 2004 32.77 −3.21 12 

(6) Kagera 58370 54,260 1950 1994 31.43 −1.29 20 

(7) Katonga 100006 15,244 1950 1975 31.95 −0.09 18 

(8) Koitobos 1BE06 813 1949 1975 35.09 0.97 3 

(9) Magogo-maome 113012 5,207 1950 2004 33.15 −2.92 19 

(10) Mara 107072 13,393 1950 2003 34.56 −1.65 11 

(11) Mbalangeti 111012 3,591 1950 2004 33.86 −2.22 14 

(12) Moiben 1BA01 188 1953 1990 35.44 0.80 16 

(13) Nyakizumba 100005 359 1950 1987 30.08 −1.32 15 

(14) Nyando 1GD01 3,652 1962 2001 35.04 −0.10 2 

(15) Nyangores 1LA03 4,683 1963 1993 35.35 −0.79 10 

(16) Nzoia 1EF01 12,676 1974 1999 34.08 0.13 8 

(17) Ogilla 1GD03 2,650 1970 1996 34.96 −0.13 1 

(18) Ruizi 100004 2,070 1970 1998 30.65 −0.62 8 

(19) Sergoit 1CA02 659 1959 1990 35.06 0.63 2 

(20) Simiyu Ndagalu 5D1 1,205 1970 1996 33.56 −2.63 12 

(21) Sio 1AH01 1,450 1958 2000 34.15 0.38 6 

(22) Sondu 1JG01 3,508 1950 1990 35.01 −0.39 12 

(23) South Awach 1HE01 3,156 1950 2004 34.54 −0.47 7 

(24) Yala 1FG01 3,351 1950 2000 34.51 0.09 3 
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of the high/low flow related hydrological processes. Peak flows are sudden and result in immediate 

effects due to the excess of water, whereas low flows are due to progressive low rainfall periods with 

long term effects such as shortage in water availability. 

To come up with the FDF relationships, for the selected range of aggregation levels, EVA was 

carried out and the suitable extreme value distribution (EVD) selected. To enable an adequate selection 

of the most optimal threshold level and to avoid systematic over-/underestimation in the tail of the 

EVD, quantile plots or Q-Q plots were considered. As seen in the principle suggested by Csörgö et al. [38] 

and Beirlant et al. [39], and used by Taye and Willems [8], Onyutha [9], Willems et al. [40], Willems [41], 

and Willems [18], the extreme value index γ (or k = −γ) enables identification of the shape of the EVD. 

This extreme value index describes the tail heaviness of the EVD. It is a parameter in the Generalized 

Extreme Value (GEV) distribution of Jenkinson [42] or Generalized Pareto Distribution (GPD) of 

Pickands [43] commonly applied as EVDs. 

The class of the GEV distribution or GPD is identified as heavy tail (when γ >0 or k <0), normal tail 

(when γ = k = 0) and light tail (when γ <0 or k >0). The principle of calibrating the GPD by a weighted 

linear regression in Q-Q plots, with the primary forms of testing the tail shape of the GPD was adopted 

in this study. It has been shown in some asymptotic sense that for independent peak flow extremes as 

used in this study, the conditional distribution of these extremes follows the GPD [43]. 

Considering xt, α and k as threshold, scale and shape parameters respectively; the cumulative 

distribution function G(x) of the GPD is given by: 

( )
( ) 1 exp tx x

G x  
α

 −  = − −  
   

, for k = 0
 

(1)

( )
1

( ) 1 1
k

tx x
G x k

α

−

−  = − + 
  

, for k ≠ 0
 

(2)

This distribution is valid for values of x above the threshold xt. 

The relationship between the T-year flow FT and the return period T is given by: 

[ ] 1
  

1 ( )T

n
T years

t G F
 =   − 

 (3)

When based on the calibrated GPD, or by: 

[ ]  
n

T years
j

=  (4)

When based on the empirical data. In Equations (2) and (3), n is the data record length in years;  

t the number of observed flows above the threshold xt that is considered in the EVD; j the rank of the 

events (j = 1 for the highest). The relationships between FT and T for the GPD can be given by  

Equations (5) and (6). For the exponential distribution of Equation (1), Equation (3) transfers to a linear 

relationship between FT and log(T) as in Equation (6): 

1
1

k

F xT t k T

α      = −  +        

, for k ≠ 0 (5)



Water 2013, 5 1566 

 

 

( ) ( )( )0 0F log T log T FT Tα= − + , for k = 0 (6)

where FT0 is the flow at return periodT0, and T0 is equal or higher than the return period n/t of the 

threshold xt. The quantiles FT are hereafter called the growth factors (GfT). 

Figure 2 shows examples of such calibrated normal tailed GPDs as linear regression lines in 

exponential Q-Q plots for station 16. 

Figure 2. (a) Daily high flows; (b) Daily low flows. Symbol (○) shows observations in 

exponential Q-Q plots; (□) denotes the selected optimal threshold. The regression lines are 

the calibrated EVDs. 

 

The slopes of the linear calibrated EVD were quantified by the weighting factors proposed by  

Hill [44]. The slope is computed as the difference between two ordered flows divided by the difference 

between their corresponding ranks. By considering j to be the rank of events, the MSE of the weighted 

linear regression in the exponential Q-Q plot is: 

1 2
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and the slope estimate provided by: 
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Because of high fluctuations which occur in the slope of the Q-Q plots for high thresholds (see 

Figure 3) stemming from randomness of the available dataset, the slope estimates for these high 

thresholds have high statistical uncertainty. Instead for very low thresholds the slope estimates might 

result in pronounced bias because according to Pickands [43] the slope asymptotically converges to a 

constant one (in the exponential Q-Q plot for normal tails) for higher thresholds. The selection of 

optimal threshold values xt above which the EVD is calibrated was ensured to be at a point above 

which the mean squared error (MSE) of the linear regression is minimal, i.e., within nearly horizontal 

sections in the plot of the slope versus the number of observations above the threshold. In cases where 

it is possible for MSE to reach local minima at different threshold orders within the range where the 
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optimal threshold is situated, the thresholds at the different local minima are calibrated to the EVD 

separately for visual aid of selecting the most suitable one. The examples in Figure 2 are for the daily 

flows at station 16. The optimal thresholds are determined as the flow values with threshold ranks 

t = 100 and 69 [the 100th and 69th highest flow values for high and low (1/F) flow values respectively] 

as shown in Figure 3. A linear tail behavior in the exponential Q-Q plot can be observed towards the 

higher F or (1/F) values. 

Figure 3. (a) Daily high flows; (b) Daily low flows. The symbol (♦) shows Hill-type 

estimation of the slope in the exponential Q-Q plot; (◊) is for mean squared error (MSE) of 

the Hill-type regression in the exponential Q-Q plot; and (□) represents selected  

optimal threshold. 

  

What followed next after carefully selecting, in a consistent way, the optimal thresholds for the 

different aggregation levels, was the calibration of the parameters of the EVD and analysis of the 

relationship between the model parameters and the aggregation levels using the formula presented by 

Willems [45] and used by Taye and Willems [8], and Onyutha [9] as expressed below: 

( ) /
1/

a
H a

z

A
D cD 1 w q

D

β

θ
−

−
  = + +  

   
 (9)

In this formula, A is the area of the catchment upstream of the discharge measuring station 

considered. The formula is based on scaling properties for the rainfall intensities and consequently of 

the river discharges. The scaling property indicates that the same EVD is valid for different 

aggregation levels after application of a scaling factor to the rainfall or discharges values. The scaling 

factor is different for different aggregation levels. The formula has five parameters: c, w, H, z and a. 

The last three parameters are called “scaling exponents” in the scaling theory and a specific 

interpretation can be given to these parameters. The parameter H is called “Hurst-exponent”; while z 

represents the dynamic scaling exponent; and a, the scaling exponent applied for the aggregation level.  
For parameters α and t, threshold discharge q (mean discharge value calculated based on the 

complete time series) equals 0. After calibrating of parameters of the GPD using Equation (9), FDF 

relationships are derived using Equations (10) and (11):  
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The parameter-aggregation level relationships, together with the analytical description of the EVD, 

finally constituted the FDF relationships that are used to estimate high or low flow quantiles as a 

simultaneous function of different Ts and aggregation levels. 

3.2. Uncertainty and Error Analysis 

The difference between the observed (Qf) and the FDF-based (Qd) flow quantiles were used as a 

measure of bias. Considering i to be the rank of POT events (i = 1 for the highest); and R the number 

of POT events above optimal threshold event; the mean of values obtained from expression (Qf,I − Qd,i) 

as percentage of Qd,i  for i = 1 to R is considered the average percentage bias as in Equation (12). The 

overall differences between Qf,i and Qd,i values for each of the selected catchments were also evaluated 

in terms of the root mean squared error [RMSE; Equation (13)]. 
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i

RMSE Q  Q
R =

 
=   
 


 

(13)

Since there are no empirical values for T higher than the length of the available flow series, the 

validity of the flow quantiles higher than that T obtained from the FDF relationships was checked 

using the at-site EVD based quantiles. 

To check for the bias in the theoretical T in comparison with the empirical T, the distribution of the 

residuals of FDF based versus empirical or GfT based T values, and the CIs of these residuals were 

assessed. On assumptions that a small sample size of observed flow extremes was obtained and that the 

residuals on the modeled T are random and follow a normal distribution, a t-mean test was conducted 

on the null hypothesis of an unbiased model hence on the bias (mean residual) in FDF based T or flow 

quantile estimates of each selected catchment. 

Probability distributions and/or CIs on the FDF based T or flow quantile can be applied to provide 

the FDF based estimates with uncertainty measures. The biases in fitting of theoretical T to empirical 

quantiles, and that of calibrating parameter-aggregation level relationships were considered. The CIs 

were computed applying the parametric bootstrapping method, based on samples of river flows 

randomly generated from the EVD using the Monte Carlo method. Random samples of equal size as 

the dataset of observed flow extremes were randomly generated. This was repeated 1000 times. The 

CIs were computed by the percentile method after ranking the flow quantiles in the generated samples 

and picking the 25th and 975th quantiles as the upper and lower limits of the 95% CI respectively. 
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4. Results and Discussion 

4.1. FDF Relationships 

Figure 4 shows examples of the FDF relationships obtained after compiling the exponential EVD 

calibration results for river flows at various aggregation levels for station 14. Up to Ts equal to the 

length of the available time series, empirical quantiles were derived as well. Because the lengths of the 

available river flow series were all longer than 25 years but less than 100 years, empirical T-year flow 

quantiles are only shown for curves up to 25 years in Figure 4. For higher T values, due to the 

randomness involved in the empirical data, the empirical quantiles can be far more inaccurate in 

comparison with the theoretical quantiles. Differences between the empirical and theoretical quantiles 

can, for the higher T values, also be explained by the influence of river flooding and the higher 

observation errors for higher flows. One of the reasons of the latter increase in observation errors for 

higher flows are due to bias in rating curve extrapolation or the difference between the river discharge 

and the catchment rainfall-runoff discharge. Another reason is the increasing statistical model 

uncertainty with increasing T as seen later in this paper. 

Figure 4. (a) FDF of high flows; (b) FDF of low flows. The horizontal axis of (a) is logarithmic. 

 

4.2. Evaluation of the FDF Relationships 

Figure 5 shows the graphical goodness-of-fit of the flow quantiles after calibration of the EVDs for 

the daily aggregation level and for T of 5, 10 and 25 years. Considering the full range of aggregation 

levels, it can be visualized that the theoretical quantiles fit well the empirical ones. This shows that the 

FDF calibrations are highly acceptable. 

Figure 6 shows a representative example of comparison between the at-site EVD (or GfT) based 

curves and the corresponding curve derived from the FDF relationships of station 1. The figure shows 

increasing deviations between flow quantiles derived from the two types of curves. Given that no bias 

could be observed in Figure 5, the systematic deviation between the two curves must be attributed to 

the EVD versus FDF extrapolations for larger T. Results also show that there is increasing uncertainty 

in flow quantiles and T estimates for T higher than the length of the observed data series. Extrapolation 
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of data measured over relatively short record length introduces large uncertainties [46]. This clearly 

indicates that caution must be exercised in using data of short record length in estimating very high T. 

It has been recommended that T should be extrapolated only for values higher than about two or three 

times the series length due to the uncertainties introduced by the finite sample size [47]. 

Figure 5. (a) High flows of aggregation level 3 days; (b) Low flows of aggregation level 

10 days. The symbol (ж) is for T = 5 years; (□) for T = 10 years; and (●) for T = 25 years.  

 

Figure 6. (a) Daily high flow quantiles; (b) Daily low flow quantiles. Solid lines are for 

GfT curves and dashed lines are for FDF relationships.  

 

4.3. Uncertainty Analysis 

4.3.1. Uncertainty in Return Periods 

Figure 7 shows comparison between the theoretical (FDF modeled) and empirical T values. The 

figure shows increasing statistical modeling uncertainty with increasing T. This again can be explained 

by the higher uncertainty in EVA for higher T. The alignment of the data points along straight lines 

parallel to the bisector shows that the deviations between the empirical and theoretical T values are 

related to the parameter α. The shifts of the data points from the bisector are proportional to the 
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parameter α. The bias as shown in Figure 7 can be explained by the uncertainty in EVD parameter α, 

which controls the vertical differences between two successive T-year curves on the FDF relationships. 

Figure 7. (a) Daily high flow quantiles; (b) Daily low flow quantiles. The labels of the 

stations from 1 to 24 are in the order arranged in Table 1.  

 

Figure 8 shows the Monte Carlo simulation results on the FDF modeled T for daily high and low 

hydrological extremes. It can be seen that the CIs increase in width with increase in T, which obviously 

is the result of the high uncertainty associated with EVA for very high T. The widths of the CIs were 

also noted to vary significantly from one catchment to the next. This reflects the difference in the 

degree of temporal variability in river flows for the different catchments of the study area. 

Figure 9 shows the bias and RMSE of the deviation between FDF modeled and empirical T 

averaged over the entire EVD fitted to daily flows. It can be seen in Figure 9 that for both high and low 

flows, the average biases for all the selected catchments of the study area are less than 8%. This 

explains the acceptability of the quantiles from the statistically modeled FDF relationships of the 

hydrological extremes in the study area. However, as seen from Figure 9, catchments 2, 6 and 7 border 

each other in the North Western quadrant of the study area (see Figure 1). This indicates the reduced 

variability of the river flows in this portion of the study area compared to other areas, e.g., the western 

or eastern quadrant (see stations 5, 15, and 24 in Figure 1). 

The differences in the bias and uncertainty in the FDF modeled flow and T values indicate spatial 

differences across the study area. The catchments with wider CIs in general present higher temporal 

variability in the flows due to higher differences between low and high flows or stronger differences 

between short-duration values and longer duration values. This could be explained by the strong 

variation in the rainfall extreme intensities in the Nile basin as seen from the regional extreme value 

analysis by Nyeko-Ogiramoi et al. [48]. 

As can be seen from the probability distributions of the residuals on the FDF modeled T for daily 

flows in Figure 10, the residuals on the T estimates (FDF based versus empirical) are wider for high 

flows than for low flows. This was also seen in Figures 8 and 9. It is noted that the zero value is within 

the CIs on the T residuals for all the catchments indicating that the FDF modeled Ts are unbiased.  
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Figure 8. (a) and (c) are for daily high flows; (b) and (d) are for daily low flows. (a) and (b) 

are for station 7; (c) and (d) are for station 6. Round dotted line is the upper limit of the 

simulated 95% CI. Thin solid line is the lower limit of the CI. Thick solid line is the modeled 

T. Vertical axis of each graph is logarithmic. 

 

Figure 9. (a) Bias [%]; (b) RMSE [years]. The labels of the catchments from 1 to 24 are in 

the order arranged in Table 1.  
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Figure 9. Cont. 

 

Figure 10. (a) and (c) are for daily high flows; (b) and (d) are for daily low flows. (a) and 

(b) are for station 20; (c) and (d) are for station 22. The blue line (bell-shaped) is the 

assumed Gaussian probability density function (pdf). The dark line (sigmoid) is the 

cumulative probability distribution (cdf). (a), (b) and (d) all have the same legend as (c).  
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4.3.2. Uncertainty in Flow Quantiles 

Figure 11 shows the validity of the projected FDF quantiles for very high T checked using GfT 

curves. It can be seen that the bias increases for higher T of both high and low flows. Whereas general 

underestimations are obtained for high flows, the statistical FDF models for low flows are 

characterized by overestimations. The overall variation of the biases across the catchments (min, max) 

for high flows are (−24.49%, 10.29%), (−29.98%, 13.03%), and (−35.14%, 22.02%) for T = 25, 100 

and 500 years respectively; while the corresponding figures for low flows are (−32.14%, 67.41%),  

(−47.05%, 81.23%), and (−59.95%, 110.71%) for T = 25, 100 and 500 years respectively. On average, 

higher biases (for T = 25, 100 and 500) were obtained in FDF models of low flows (11.61%, 19.01%, 

and 28.08%) than high flows (5.37%, 11.28%, and 16.85%). This suggests that the FDF models for 

low flows are less capable of capturing the flow variability than those of high flows; this is somewhat 

contradictory to the conclusion in previous section that the FDF based T estimates are less biased for 

low flows than high flows. The reason for this is the lower low flow values, which leads to higher 

relative errors for the same absolute errors. 

Figure 11. (a) High flows; (b) Low flows. The labels of the catchments from 1 to 24 are in 

the order arranged in Table 1. 
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The average difference between CI (lower, upper) limits and empirical quantiles (EQ) as 

percentages of EQ on daily flows of FDF relationships of high flows are (−51.9%, 60.5%),  

(−61.0%, 82.5%) and (−70.7%, 116.7%) for T of 5, 10 and 25 years respectively. Correspondingly, for 

low flows, CIs of (−56.1%, 91.6%), (−65.5%, 116.3%) and (−77.7%, 151.2%) are obtained. The 

highest differences are found at stations 20 and 16 with 155.41% and 179.08% for high and low flows 

respectively; and the minimum % are respectively 37.74% and 91.47% at stations 23 and 11 for high 

and low flows respectively. These differences are expected to be due to the variation in the influence 

of local climate bringing about uneven wet and dry periods across the study area. 

The differences are noted to become narrower and wider with increase in aggregation levels of high 

flows and low flows respectively (see Figure 12). This explains that the CIs on the FDF based extreme 

flow quantiles depend on the magnitude of the aggregated river flows. With increase in the aggregation 

level, the magnitudes of the river flows reduce (for high flows) and increase (for low flows). This can 

be seen in Figure 12, which shows CIs constructed using Monte Carlo simulations on the FDF curve of 

T = 5 years. Importantly, as shown in Figure 12, the CI for any selected T-year quantile on FDF 

relationship can be estimated.  

Figure 12. (a) and (c) are high flow quantiles; (b) and (d) are low flow quantiles. (a) and 

(b) are for station 16; (c) and (d) are for station 24. (b), (c) and (d) all have the same 

legend as (a). “T5 Emp.” stands for empirical FDF quantiles for T = 5 years. 
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5. Conclusions 

This paper has developed statistically modeled FDF relationships for high and low flow extremes 

and Monte Carlo based uncertainty estimates on both T-year flow quantiles and return period 

estimates. It was possible to adequately fit the exponential case of the GPD as the EVD for all the 

selected study catchments. This was based on the analysis of the tail’s shape of the EVD in Q-Q plots, 

and calibration of the EVD by weighted regression in the exponential Q-Q plot. These results suggest 

that the GPD family of distributions represented in this case by the exponential distribution is most 

suited for hydrological extremes in most of the catchments of the Lake Victoria basin. However, no 

definite generalization can be made for the entire Lake Victoria basin. More studies need to be carried 

out in other catchments of the region with longer and up-to-date time series. It can also be recommended 

that instead of MSE in Q-Q plots, other goodness-of-fit measures e.g., Anderson-Darling test, 

Kolmogorov-Smirnov test, Z-statistics, L-Moment ratio diagrams, etc., be applied.  

The average bias on the modeled return periods of high flows and low flows are all less than 8% 

(averaged over the entire EVD fitted to daily flows). This confirmed the acceptability of the 

established FDF relationships. Despite this relatively small value for the average bias in the modeled 

return period, the bias for individual locations and the limits of the 95% CIs on the modeled T-year 

flows can differ much more from the observed values. These limits go up to 117% for high flows and 

return periods up to 25 years, and up to 152% for low flows up to the same return period. The 95% CI 

of the average bias in the T-year flow ranges from −24.49% to +10.29% for high flows and return 

period of 25 years, and from −32.14% to 67.41% for low flows. 

In addition, the validity of the projected FDF quantiles for return periods higher than the length of 

the available flow series was checked. When the GfT curves were taken as the reference, the 95% CI of 

the average bias widens to (−29.98%, 13.03%) and (−35.14%, 22.02%) for high flows and return periods 

of 100 and 500 years respectively. They widen to (−47.05%, 81.23%) and (−59.95%, 110.71%) for low 

flows. For individual stations, the CIs become even wider. This result shows that if FDF relationships 

calibrated for data scarce regions are used for estimating projected T-year flows for high return periods 

the uncertainty is large, hence should not be ignored. Quantification of this uncertainty then  

becomes important. 

The assessed uncertainty will be useful for decision making to use the constructed FDFs for various 

applications to estimate cumulative volumes of water during drought or flood periods at various 

aggregation levels or return periods, as clarified before in the introduction section. 
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