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Abstract: On-line monitoring of wastewater parameters is a major scientific and technical 

challenge because of the great variability of wastewater characteristics and the extreme 

physical-chemical conditions that endure the sensors. Wastewater treatment plant 

managers require fast and reliable information about the input sewage and the operation of 

the different treatment stages. There is a great need for the development of sensors for the 

continuous monitoring of wastewater parameters. In this sense, several optical systems 

have been evaluated. This article presents an experimental laboratory-based approach to 

quantify commonly employed urban wastewater parameters, namely biochemical oxygen 

demand in five days (BOD5), chemical oxygen demand (COD), total suspended solids 

(TSS), and the ratio BOD5:COD, with a visible and short wave near infrared (V/SW-NIR) 

spectrometer (400–1000 nm). Partial least square regression (PLSR) models were 

developed in order to quantify the wastewater parameters with the recorded spectra. PLSR 

models were developed for the full spectral range and also for the visible and near infrared 

spectral ranges separately. Good PLSR models were obtained with the visible spectral 

range for BOD5 (RER = 9.64), COD (RER = 10.88), and with the full spectral range for the 

TSS (RER = 9.67). The results of this study show that V/SW-NIR spectroscopy is a 

suitable technique for on-line monitoring of wastewater parameters. 
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1. Introduction 

In recent decades, a large number of wastewater treatment plants (WWTP) has been constructed in 

response to environmental demands by the societies and the legislation [1]. Conventional WWTP 

comprise a series of treatment stages designed to treat large volumes of wastewater to acceptable 

regulatory standards. Most of the WWTP include a succession of unitary operations, for example, 

sedimentation tanks, coagulation-flocculation chambers, biological reactors or even final disinfection 

systems. The complex succession of unitary operations needs to be sharply operated in order to 

achieve an effective reduction of pollution. In this sense, the most challenging issue is the great 

variability of wastewater volume and contamination level of the incoming sewage. 

The operation of a WWTP needs the continuous monitoring of contamination level of incoming 

wastewater and the effective pollution reduction along each stage of the treatment process. On-line 

monitoring of wastewater quality parameters through the treatment process is a major technical 

challenge because of the spatial and time dependent variability of wastewater characteristics [2]. Some 

traditional wastewater quality parameters include the Biochemical Oxygen Demand within five days 

(BOD5), Chemical Oxygen Demand (COD) and Total Suspended Solids (TSS). The quantification of 

these parameters is time consuming and implies a notable continuum cost. A fast, accurate and  

cost-effective system to continuously monitor wastewater parameters through the treatment process 

may allow operators to optimize the hydraulic retention times (and associated electrical energy cost) 

and the doses of reactants for some of the stages (e.g., coagulant-flocculent). 

The employment of optical-electronic systems for the online monitoring of wastewater treatment 

process is a relatively recent approach [3] but with a promising future [2,4]. Many studies have 

employed optical-electronic systems to quantify the relationships among several wastewater parameters 

and several UV-VNIR (ultraviolet—visible and near infrared) spectral features. Thomas et al. [5] 

employed an UV detector to estimate total organic carbon (TOC), TSS, COD and BOD. Great effort 

has been focused in the application of fluorescence spectroscopy to improve the quantification of 

BOD5 [6,7]. In this sense, the application of UV spectroscopy for monitoring wastewater parameters 

has been greatly improved and new statistical methods, such as neural networks [8], are currently 

being researched. Moreover, the application of VNIR spectroscopy for wastewater quality is an area of 

current research with great challenges ahead but with a great potential for on-line monitoring of 

wastewater parameters [9,10]. 

Spectroscopic analysis of complex media, such as wastewater, makes the task of implementing 

optical-electronic systems for the online monitoring of wastewater treatment more difficult. Thus, 

researchers are encouraged to exploit the full potential of spectral information, to analyze the 

absorbance that describes the chemistry and the scatter that is related with the particles size and 

distribution in complex dispersive media [11]. The scatter is generally considered as a “parasitic” 

phenomenon, complicating the spectroscopic analysis of complex dispersive media, but the detected 
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intensities of scattered light at different wavelengths depend on the number and sizes of colloidal 

particles, and consequently, on the respective component content [12]. Scattering in the visible and 

near infrared tends to be lower than for the UV spectral range (i.e., scattering is inversely proportional 

to the wavelength). The effect of suspended particles in wastewater samples for UV spectroscopy 

systems without an integrating sphere assembly that take into account for scattered UV light, is the 

over-prediction of absorbance [13,14] and lower predictions accuracy. Scatter-based spectroscopic 

analysis of multi-component mixtures in the visible and short wave near infrared (SW-NIR) has been 

previously studied in several industrial applications, thus providing suitable quantitative information of 

the studies [11,12,15–17]. 

This study focused on the use of visible and short wave near infrared (V/SW-NIR) spectroscopy to 

quantify wastewater quality parameters (i.e., BOD5, COD, and TSS) in samples from an urban WWTP, 

collected at different treatment stages (i.e., input sewage, after a physical-chemical treatment, and after 

a biological treatment). 

2. Materials and Methods 

Wastewater samples were collected at an urban WWTP serving Alicante in the Southeast of Spain 

during the spring season. Samples were obtained along four months and at different weekdays in order 

to obtain a larger variability of sewage inputs. Three different locations within the treatment processes 

were sampled: (1) at the entrance to the WWTP, where water continuously flowed through a set of 

sieves with a minimum aperture of around 1 cm; (2) after the primary treatment, consisting of a series 

of aeration tanks for sand-fat removal and coagulation-flocculation chamber and subsequent 

decantation; (3) after the biological treatment, consisting of a biological reactor and subsequent 

decantation. A total of 84 samples were obtained (i.e., 28 samples per treatment stage) and analyzed in 

this experiment. Water samples were collected and immediately stored under cold conditions (~4 °C) 

to minimize water degradation. 

Water analyses were conducted within hours from the sampling (less than 4 hours). Selected 

wastewater quality parameters were the biochemical oxygen demand within five days (BOD5), 

chemical oxygen demand (COD), and total suspended solids (TSS) that were analyzed with standard 

laboratory methods. BOD5 was determined after 5-days of incubation at dark constant-temperature  

(20 ± 1 °C) conditions. Water samples were placed in incubation bottles on agitation racks, and 

included a manometer to quantify oxygen consumption. Chemical oxygen demand was determined 

with a closed reflux, colorimetric method, and total suspended solids were determined by gravimetry of 

the increase of weight by the residue retained on a filter dried to a constant weight at 103–105 °C [18]. 

These parameters are the existing standard and most widely applied methods for organic load 

monitoring [2]. Also, the ratio BOD5:COD was computed as a proxy of wastewater biodegradability. 

As a reference value, an ideal biodegradability index is a BOD5:COD ratio close to 1.0 [19]. Four 

replicates per water sample were done for all wastewater parameters and the average values of the 

replicates were used for further analyses. 
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2.1. Spectral Measurements 

An ASD Field Spec Hand Held VNIR radiometer (Analytical Spectral Devices Inc., Boulder, CO, 

USA) was utilized to measure wastewater spectra. This radiometer covers the wavelength range of 

325–1075 nm, which approximates with the visible (V) and short wave near infrared (SW-NIR) 

spectral regions, an accuracy of ±1 nm and a resolution of <3 nm at 700 nm. The radiometer was 

connected through a fiber optic cable to an Ocean Optics (Leesburg, FL, USA) cuvette holder where 

water samples were placed. Another fiber optic cable was connected from the cuvette holder to an 

ASD Fiber Optic Illuminator® as light source. This systems enables the illumination of a 10 mm 

cuvette from one of its faces and the transmittance record from the opposite cuvette face.  

Radiometric measurements were also conducted within hours from the sampling in order to 

minimize the alteration of the wastewater samples. All spectra were acquired in transmittance mode 

using distilled water as blank. Five radiometric measurements (with 15 automatic replicate spectra per 

measurement) were taken for each water sample. The dark current (detector background) and reference 

spectra were taken immediately before each spectral measurement. The five radiometric measurements 

were visually inspected and then averaged to obtain a single spectrum per water sample (n = 84). 

Random noise was minimized by applying a Savitzky-Golay algorithm across a moving window of 10 nm 

with a 3rd order polynomial [20]. Spectra were acquired at room temperature (24 ± 1 °C). All samples 

were homogenized (15 s) by mechanical mixing, and then immediately placed in the cuvette. 

Homogenization is a useful sample pretreatment, because it does not remove the scatter but simplifies 

its effect on spectra, thus, facilitating the data analysis [11]. 

2.2. Spectroscopic Analyses 

Partial Least Squares Regression (PLSR) was the selected statistical technique to relate the 

wastewater quality parameters with the water spectra. PLSR has been designed to confront the 

situation that there are many, possibly correlated, predictor variables, and relatively few samples [21]. 

In this sense, PLSR provides feasible quantitative multivariate modeling methods for chemometrics [22] 

where highly detailed spectra data (i.e., high spectral resolution or number of bands) are employed to 

quantitatively predict a limited number of problem samples. In this study, PLSR models were developed 

for a sensor-noise-free spectral range. Models were developed for the wavelength range 400–1000 nm and 

also for two smaller spectral ranges of 300 nm each one. These spectral subsets were identified with the 

visible (400–700 nm) and the near infrared (700–1000 nm) spectral ranges [23]. PLSR models and further 

statistical analyses were developed with the R statistical programming language [24].  

The selection and evaluation process of the PLSR models [21] was based on the following 

methodological procedure: (1) the original 84 samples dataset was randomly divided into an initial 

60 samples dataset for model cross-validation (with 20 samples per treatment stage), and the 24 remaining 

samples for independent test; (2) a leave-one-out (LOO) cross-validation (CV) procedure was used for 

the development of PLSR models with a dataset of 60 samples [25]; and (3) selected models were 

tested with the independent validation dataset in order to assess the predictive capabilities of the 

selected PLSR models. 
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Several diagnostic statistics were employed for PLSR models assessment. Cross-validation Pearson 

correlation coefficient (R2) was employed as an illustrative diagnostic statistic. The root mean squared 

error (RMSE) was the fundamental statistical parameter used to guide the number of model 

components or latent variables (LV) selection. RMSE is calculated as: 

= 1N (Z(x ) − Z∗(x ))  
(1)

where N is the sample size, Z(xi) is the observed value at location i and Z*(xi) is the predicted value at 

location i. In addition, the bivariate RMSE is suitable for overall measurements of model performance [26]. 

The number of optimal components was determined based on the lowest RMSE values for the adjusted 

CV with the LOO procedure (i.e., RMSECV). In addition, the range error ratio (RER) was used to 

determine the practical utility of the models [27]. The RER is computed as: =  (2)

where the numerator is the range of the dataset and RMSEP in denominator is the model error of 

prediction. The RER was employed in the prediction test stage in order to compare the practical utility 

of the spectroscopic approach to predict the different wastewater parameters. 

3. Results 

Several descriptive statistical parameters of the wastewater parameters were computed (Table 1). A 

great reduction of the magnitude of wastewater parameters was observed along the wastewater 

treatment process. Average BOD5 was reduced from 461.0 mg/L of the raw sewage, to 202.1 mg/L and 

17.7 mg/L after the primary and secondary treatments respectively. Similarly, average COD was 

reduced from 946.1 mg/L of the raw sewage, to 407.4 mg/L and 57.6 mg/L after the primary and 

secondary treatments respectively. The TSS greatly reduced from the raw sewage (471.8 mg/L) to the 

primary treatment outlet (131.0 mg/L) and also after the secondary treatment (19.3 mg/L). The ratio 

BOD5:COD changed from about 0.5 for the raw sewage (0.483) and primary treatment (0.502), to 

0.307 for the secondary treatment effluent. All of these parameters provide an overview of the main 

characteristics of the wastewaters analyzed. 

The characteristic spectra for the three different wastewater treatment stages are shown (Figure 1). 

The relative transmittance spectra were highly different according to the wastewater treatment stage. 

The wastewater treatment process promoted a notable increase of the relative transmittance of the 

samples, especially for the near infrared spectral range. Raw sewage samples were dark brown with 

low relative transmittance values, ranging from 0.03 at 400 nm to 0.26 at 1000 nm. Primary treatment 

relative transmittance ranged from 0.05 at 400 nm to 0.49 at 1000 nm. Secondary treatment relative 

transmittance ranged from 0.66 at 400 nm to 0.93 at 1000 nm. Secondary treatment promoted the most 

accentuated clarification of the wastewater samples, as observed by the greater relative transmittance 

increment as compared with the primary treatment samples. No other accentuated characteristic 

spectral features were observed. 
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Table 1. Summary statistics of the calibration dataset for Biochemical Oxygen Demand 

within five days (BOD5), Chemical Oxygen Demand (COD), Total Suspended Solids 

(TSS), and BOD5:COD at selected treatment stages. 

Variables Statistics 
Treatment stage 

Raw sewage Primary Secondary 

BOD5 (mg/L) 

Mean 461.0 202.1 17.7 

St. Dev. 147.3 46.9 8.1 

Minimum 280 120 6 

Maximum 920 260 34 

COD (mg/L) 

Mean 946.1 407.4 57.6 
St. Dev. 242.6 106.2 13.6 

Minimum 615 197 35 
Maximum 1522 572 83 

TSS (mg/L) 

Mean 471.8 131 19.3 

St. Dev. 154.8 27.9 8.5 

Minimum 290 79 6 

Maximum 902 172 35 

BOD5:COD 

Mean 0.483 0.502 0.307 
St. Dev. 0.048 0.041 0.076 

Minimum 0.437 0.451 0.178 
Maximum 0.613 0.609 0.410 

PLSR Models Calibration and Validation 

The number of latent variables or model components was selected based on the minimization of the 

RMSECV. The number of components ranged from 2 to 4 for all variables (Table 2). The Pearson 

coefficient (R2) was also computed for a general overview of the models performance. Pearson 

coefficient values ranged from about 0.87 for BOD5, COD, and TSS, to about 0.6 for the BOD5:COD 

ratio. RMSECV values for BOD5 were about 78 mg/L that is about 8.5% of the range of the BOD5 

calibration values. The absolute values of the RMSECV for COD were slightly higher (~139 mg/L), 

but were very similar to the previous variable as expressed relatively to the range of the COD 

calibration values (9%). TSS calibration results were also very similar to the previous variables, with a 

RMSECV about 79 mg/L (8.8% of the range). Calibration results for the BOD5:COD ratio reported a 

RMSECV for the absolute value about 0.06, with an RMSECV value about 14%–15% relative to the 

range of the variable. The best PLSR were obtained for the visible spectral range (400–700 nm) for all 

wastewater parameters with the exception of the TSS that performed better for the full spectral range 

(400–1000 nm). 

Models selected from the cross-validation stage were employed with the independent test dataset in 

order to assess their predictive capability and generalization (Table 2). The magnitude of the RMSE 

values of the predictions (RMSEP) was similar to the RMSECV. RMSEP for the BOD5 independent 

validation dataset was 77.81 (10.37%) and RER was 9.64 for the visible spectral range (400–700 nm). 

RMSEP for the COD independent validation dataset was 128.40 (9.19%) with a RER of 10.88 for the 

visible spectral range (400–700 nm). RMSEP for the TSS independent validation dataset was 83.26 
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(10.34%) with a RER of 9.67 for the full spectral range (400–1000 nm). RMSEP for the BOD5:COD 

independent validation dataset was 0.059 (17.90%) with a RER of 5.59 for the visible spectral range 

(400–700 nm). 

Figure 1. Characteristic relative transmittance spectra for the raw sewage, primary 

treatment and secondary treatment wastewater samples. 

 

Table 2. Results of the partial least square regression (PLSR) models cross-validation 

(CV) and prediction (P) models for the BOD5; COD; TSS and the ratio BOD5:COD 

wastewater parameters. 

Parameters 
Spectral range 

(nm) 
LV 

Cross-validation Prediction test 

R2 RMSECV RMSECV (%) RMSEP RMSEP (%) RER

BOD5 
400–1000 2 0.849 78.81 8.62 - 
400–700 3 0.854 77.53 8.48 77.81 10.37 9.64 

700–1000 2 0.849 78.81 8.62 - 

COD 
400–1000 2 0.877 139.1 9.35 - 
400–700 3 0.878 138.5 9.31 128.40 9.19 10.88 

700–1000 2 0.877 139.4 9.37 - 

TSS 

400–1000 4 0.864 78.00 8.71 83.26 10.34 9.67 

400–700 3 0.857 80.09 8.94 - 

700–1000 3 0.861 79.00 8.82 - 

BOD5:COD 
400–1000 3 0.643 0.062 14.25 - 
400–700 3 0.644 0.062 14.25 0.059 17.90 5.59 

700–1000 2 0.599 0.066 15.17 - 

4. Discussion  

One major limitation of VNIR spectroscopy is the reduced or absent number of diagnostics bands 

for chemometric analysis [28]. This implies that single band regression or derivative analyses are 

really difficult to establish by the absence of accentuated characteristic spectral features. With this 
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premise in mind, this study applied wide spectral ranges to quantify the wastewater parameters based 

on the general shape or “area under the curve” of the relative transmittance spectra. The effect of the 

wastewater parameters variability on spectra can be described as spectrum offset and slope differences 

(Figure 1). This effect has been previously described in complex dispersive media in the visible and 

short wave NIR by the multiple scattering by the presence of particles with different composition, size 

and distribution [11,17]. This method is based on an indirect scatter effect and its practical applicability 

scope depends on the model robustness in the whole range of natural sample variability [12]. In this 

sense, previous studies have been able to successfully quantify the composition of wastewater sludge 

with a transflectance probe for the spectral range 900–1700 nm [29]. 

PLSR allows a feasible modeling of the different wastewater parameters with VNIR spectroscopy by 

taking into account the full spectral range of the models instead of single bands. The main advantage of 

PLSR is that it can be used with any number of explanatory variables, generally providing regression 

models with highest predictive ability with the smallest number of factors as compared with other 

regression methods such as ordinary least squares estimator or ridge regression [30]. The PLSR 

modeling approach allowed the development of a full cross-validation scheme with a moderate number 

of samples and large number of relative transmittance records (i.e., 600 records for the full spectrum). 

The number of samples in this study (60 cross-validation + 20 prediction) was in accordance to previous 

studies such as Thomas et al [5] that used 86 samples, Reynolds and Ahmad [6] analyzing up to  

54 samples from the same wastewater treatment plant, or even higher than other studies than employed 

around 40 samples [8,9]. 

PLSR models selection was based on the lowest RMSECV values (Table 2). Many authors reported 

their model performance solely based on the Pearson correlation coefficient; however, several 

computed statistics (i.e., RMSE, RER, and R2) were applied as a guide of this discussion. Additionally, 

many studies have been based on the UV spectroscopy instead of VNIR spectroscopy but could be 

valuable to compare the model performance with different optical-electronic systems. Our best BOD5 

model was determined with three latent variables for the visible spectral range (400–700 nm) and a 

RMSECV of 8.48% (R2 = 0.854). This correlation coefficient was slightly better than the reported by 

Thomas et al. [5] with an UV system (R2 = 0.73). Reynolds and Ahmad [6] also employed an UV 

system for BOD5 spectroscopy and reported a slightly better correlation coefficient (R2 ~ 0.94). They 

concluded that a linear relationship between the BOD5 of wastewater and their corresponding 

fluorescence intensities at 340nm exists using an excitation wavelength of 280 nm.  

The best COD model was also obtained with three latent variables for the visible spectral range 

(400–700 nm) and a RMSECV of 9.31% (R2 = 0.878). Although the RMSECV of the COD was 

slightly higher than for the BOD5, the correlation coefficient was better as previously reported by 

Thomas et al. [5] that obtained a R2 of 0.92 for the chemical oxygen demand instead of the previously 

noted 0.73 for the biochemical oxygen demand. Fogelman et al. [8] predicted COD of wastewater with 

an artificial neural network for the spectral range 190–350nm. They reported a correlation coefficient 

R = 0.96 (i.e., R2 = 0.92), which is slightly better than our visible spectral range PLSR model. They 

also noted that the addition of covariates, like the turbidity information, did not significantly improve 

the accuracy of the artificial neural network. Sarraguça et al. [9] monitored COD of an activated 

sludge reactor with an UV-visible spectrometer with the spectral range 230–700 nm and a NIR 

spectrometer with the spectral range 900–1700 nm. They also employed PLSR analysis and reported a 
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low correlation coefficient (0.28) with the NIR system and comparable correlation coefficient results 

(0.82) for the UV-visible system.  

The best TSS model was for the full spectral range (400–1000 nm) with four latent variables for a 

RMSECV of 8.71% (R2 = 0.864). Thomas et al. [5] reported a very similar correlation coefficient  

(R2 = 0.87) for an UV system. Sarraguça et al. [9] also quantified TSS with their dual UV-visible and 

NIR spectrometers systems. They reported a good correlation coefficient (0.82) for the UV-visible 

system and even better for the NIR system (0.92). Their results indicates that TSS was better predicted 

with greater wavelengths, thus explaining our better performance of the full spectral range for TSS 

quantification instead of only the visible spectral range reported for the other wastewater parameters. 

The best BOD5:COD ratio model was for the visible spectral range (400–700 nm) with three latent 

variables for a RMSECV of 14.25% (R2 = 0.644). Although the performance of the BOD5:COD ratio 

models is lower than for the other parameters, the novelty of this wastewater parameter quantification 

is a valuable topic for further research and for controlling operation techniques. 

RER provided information about the practical utility of the PLSR models for the different 

wastewater parameters in order to determine which parameters were better modeled. As a general 

guideline, RER values of between 3 and 10 indicate limited to good practical utility, and values above 

10 show that the model has a high utility value [27]. Range error ratio value for the COD parameter 

was higher than 10 (RER = 10.88) that indicates the capability of our visible and short wave near 

infrared spectroscopic modeling approach for monitoring chemical oxygen demand in wastewaters. 

Additionally, RER values very close to 10 were obtained for the BOD5 (RER = 9.64) and the TSS 

(RER = 9.67). The modeling results for both parameters were also very promising for the online 

monitoring. A lower RER value (RER = 5.59) was obtained for the BOD5:COD ratio. 

5. Conclusions 

This study employed visible and near infrared spectroscopy to quantify wastewater parameters, 

such as BOD5, COD, TSS and the BOD5:COD ratio. Partial least square regression modeling allowed 

the development of models suitable to quantify wastewater parameters from relative transmittance 

spectra. The better spectral ranges for wastewater parameters quantification were the visible spectral 

range (400–700 nm) for BOD5, COD, and BOD5:COD ratio, while the TSS were better predicted with 

the full spectral range (400–1000 nm). The performance of our models was similar to previous studies 

that used UV fluorescence or UV-VNIR spectrometers. This study provides some valuable information 

to promote the implementation of VNIR systems for online wastewater monitoring at wastewater 

treatment plants as a fast and feasible way.  
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