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Abstract: There is a growing discussion about the possibility of arsenic mitigation measures 

in Bengal and similar areas leading to undesirable substitution of water-borne-pathogen 

attributable risks pathogens for risks attributable to arsenic, in part because of uncertainties 

in relative pathogen concentrations in supplied and end-use water. We try to resolve this 

discussion, by assessing the relative contributions of water supply and end-user practices to 
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water-borne-pathogen-attributable risks for arsenic mitigation options in a groundwater 

arsenic impacted area of West Bengal. Paired supplied arsenic-mitigated water and end-use 

drinking water samples from 102 households were collected and analyzed for arsenic and 

thermally tolerant coliforms [TTC], used as a proxy for microbiological water quality, We 

then estimated the DALYs related to key sequelae, diarrheal diseases and cancers, arising 

from water-borne pathogens and arsenic respectively. We found [TTC] in end-use drinking 

water to depend only weakly on [TTC] in source-water. End-user practices far outweighed 

the microbiological quality of supplied water in determining diarrheal disease burden. 

[TTC] in source water was calculated to contribute <1% of total diarrheal disease burden. 

No substantial demonstrable pathogen-for-arsenic risk substitution attributable to specific 

arsenic mitigation of supplied waters was observed, illustrating the benefits of arsenic 

mitigation measures in the area studied. 

Keywords: arsenic in groundwater; mitigation; water-borne pathogens; health risk 

substitution; disease burden; West Bengal  

 

1. Introduction 

Millions of tube-wells have been drilled in the Bengal Delta both in West Bengal, India and in 

Bangladesh during the past few decades with the aim of providing pathogen-free drinking water. 

However, arsenic in these groundwaters constitutes a major health risk to millions of people using 

these waters for drinking, cooking or irrigation [1–4]. Hyperpigmentation and keratosis are amongst 

the most visible and widespread of the water-borne-arsenic-attributable diseases, whilst cancers of the 

skin, lung, bladder and liver are currently amongst the most serious [5]. To combat the arsenic crisis in 

West Bengal, the provision of alternative water sources is the main arsenic mitigation strategy. A key 

issue for public-health protection is that, in so improving water-supply services, consideration must 

also be given to the degree of public-health risk substitution, notably from water-borne pathogens.  

There are, however, contrasting published views on the importance or otherwise of such risk 

substitution. Most published research on the health impacts of water and sanitation has focused on the 

incidence of diarrheal diseases [6] because these diseases quantitatively represent the most serious 

health risks arising from water-borne pathogens [7]. Esrey [8] and Clasen and Cairncross [9] both 

conclude that the prevalence of diarrheal diseases in developing countries, similar to (peri-)rural Bengal, 

is not related to improvements in water supply but rather to the status of improvements in sanitation 

and hygiene. In contrast, Howard et al. [10], using quantitative microbial risk assessment (QMRA) 

based upon measurements of pathogens in water supplies from arsenic mitigation schemes in 

Bangladesh, calculated that disease burden arising from water-borne pathogens, especially for waters 

from pond sand filters and rain water harvesting, were typically orders of magnitude more important 

than that arising from groundwater arsenic. 

Additionally, Lokuge et al. [11] concluded that the substitution of unimproved water supplies for 

arsenic-bearing groundwaters could potentially lead to an overall increase in water-supply attributable 

disease burden. Lokuge’s [11] conclusion is based, in part, on an estimate from Pruss et al. [12], 
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derived in turn from Esrey [8], that such substitution of water supplies would result in a 20% increase 

in diarrheal disease incidence. Although this 20% figure is indeed derivable from Esrey’s [8] data, it is 

also apparent from a cursory examination that it is associated with a large uncertainty which makes it 

statistically indistinguishable from 0% Esrey [8] themselves did not consider the observed difference 

to be significant, and concluded that the lack of significant difference arose because of confounding 

factors, principally related to sanitation and hygiene in end-user households. Hence Lokuge et al. [11] 

usage of this 20% datum is subject to question but, equally, the lack of power of Esrey’s [8] study, 

which covered many different countries and continents, indicates that derivation of an accurate figure 

might require a more geographically-focused study, explicitly considering the differences between the 

microbial quality of supplied water and water at the point of use.  

The aim of our work, therefore, was to obtain data to help resolve these differences and, in 

particular, to test, in a well-constrained geographically focused groundwater-arsenic-impacted area:  

(i) Can pathogen-attributable health risks arising from water at point-of-use (i.e., end-use) be 

predicted from the microbiological quality of supplied (as opposed to end-use, household) 

water? or, as Esrey [8] hypothesizes, is post-supply contamination of water (either outside 

and/or inside the household) more important to the microbiological quality of end-use water 

than the microbiological quality of the supplied water? 

(ii) Have specific arsenic-mitigation measures led to a net overall increase in water-borne 

attributable health risks, as has been suggested by Lokuge et al. [11] for water supply 

improvements in nearby Bangaldesh?  

The area selected for this study, Chakdha Block of Nadia District, West Bengal fulfils the 

requirements of being (i) geographically focused; (ii) an arsenic impacted area [1,13,14]; (iii) the site 

of several different arsenic mitigation strategies [15]; (iv) well studied with background information 

available [14–16] and (v) straightforward logistically. We calculated disability adjusted life years 

(DALYs) as a mean of comparing disease burden arising from the two water-borne hazards: arsenic 

and pathogens. These calculations require the measurement of distributions of arsenic and pathogens in 

drinking water. Whilst arsenic concentration can be used directly in these calculations, in the absence 

of a comprehensive method to estimate the specific pathogens for waterborne-pathogen-attributable 

health risks, we used thermally tolerant colliforms [TTC] as a proxy, being the indicator organisms for 

the reference pathogens used for modeling the pathogen-attributable health risks [17].  

2. Materials and Methods  

2.1. Sample Collection and Analysis  

We collected paired water samples (supplied water; household drinking water) in pre-washed (5% 

Aristar nitric acid; then 18 MΏ deionized water), sterilized (121 °C/15 psi/30 min) HDPE bottles from 

102 households in Chakdha block, West Bengal supplied by one of the three most common arsenic 

mitigation options in the area, viz.—tap water supply (TW) (n = 40), deep tubewells (DTW) (n = 29) 

and arsenic removal treatment plants (TP) (n = 33). In our study area, the tap water supply, also known 

locally as piped water supplies (PWS) are predominately sourced from groundwater, and pumped 

untreated, then stored and supplied during specific times of the day to communal taps. Arsenic removal 
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treatment plants typically use absorption or adsorption based chemical treatment methods on hand-pumped 

tubewells. No documentation of chlorination treatment for any of the water supplies was found. For the 

purposes of this study, “source water” is defined as the water supply from whence the drinking water 

was collected and “household drinking water”, abbreviated throughout to “end-use” water, is defined 

as the water, typically stored in a container inside the household, which was ultimately used for 

drinking. We noted the type of container used to store drinking water in each household and completed 

an observer-administered questionnaire as a part of a related study, from which, information on the 

type of household (mixed/mud), the level of education of the respondent and the frequency of cleaning 

of household water containers (weekly/daily) were collected. After collection, we stored the water 

samples in an ice box and transported it to the Indian Institute of Chemical Biology (IICB), Kolkata 

where they were either refrigerated for subsequent arsenic analysis or analyzed within 4–6 h of 

collection for TTC.  

We estimated the abundance of TTC using an Oxfam Del Agua® portable water testing kit by a 

membrane filtration method. In this method, water-borne bacteria from 100 mL samples were collected 

on pre-sterilized membrane filters (25.4 mm diameter; 0.45 μm pore-size), the filters were then 

incubated in a lauryl sulfate broth media at 44 °C for 18 h and the yellow colonies formed counted and 

recorded as individual thermo-tolerant coliforms. To establish the precision of the method we have 

done replicate analysis, including by different operators, while we validated the method through a 

comparison with analyses of replicate samples by the All India Institute of Hygiene and Public Health 

(AIIHPH) by a maximum probable number (MPN) technique following that of the Environment 

Agency [18]. In each incubation cycle we included a negative control consisting of sterile water, 

processed in the same way as the samples. We analyzed water samples for total arsenic by inductively 

coupled plasma mass spectrometry (ICP-MS) (Agilent 7500 Series ICP-MS) at the University of 

Manchester following the method outlined by Mondal et al. [14].  

2.2. Statistical Analysis  

We calculated the overall summary statistics for [TTC]end-use and then stratified by each of the risk 

factors: (i) whether or not [TTC]source was zero; (ii) the type of mitigation option from which the water 

was collected; (iii) the type of house; (iv) the education level of the householder; (v) the type of 

container used to store the drinking water and (vi) the frequency of cleaning of the container. We have 

used cross tabulation to estimate the mean and standard deviation of [TTC]end-use stratified by these 

factors. Due to significant over-dispersion in the data, we used Quasi Poisson regression to model the 

dependence of [TTC]end-use counts on [TTC]source. We screened the predictors for inter-relationships 

using Pearson’s Chi-squared test of association and variables found to have strong associations  

(a strong association between the education of the respondent with the type of house (p < 0.005) was 

observed as well as the type of storage container with its cleaning frequency (p < 0.05)) were dropped 

as a check against multi-co-linearity.  

The following model Equation (1) was fitted to the data: 

E ([TTC]end-use) = λ; Var ([TTC]end-use) = ϕλ (1)

where  
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logλ = β0 + β1([TTC]source =0) + β2([TTC]source − 1)([TTC]source > 0) + γ2(Mitigation = TP)  

+ γ3(Mitigation = DTW) + δ3(Type of house = Mud) + θ2(Container cleaning frequency = Weekly) 

+ (γβ)2([TTC]source > 0)(Mitigation = TP) +(γβ)3([TTC]source > 0)(Mitigation = DTW) +  

(γδ)([TTC]source > 0)(Type of house = Mud) + (γθ)2([[TTC]source > 0)(Container cleaning 

frequency = Weekly) 

(2)

where E and Var denote the estimated value and variance respectively, and where β0, β1, γ2, γ3, δ3, θ2, 

(γβ)2, (γβ)3, (γδ) and (γθ)2 are empirically determined model parameters, the latter 4 representing 

interaction parameters. 

Note that β1 measures the shift in the average values of [TTC]end-use depending upon whether or not 

TTC was present at source and β2 represents a linear effect of [TTC]source on [TTC]end-use given that 

[TTC]source is non-zero. Other potential confounders included in the model are the type of mitigation 

option employed by the family, the type of house and the frequency with which the storage container 

for water was cleaned. The model allows for an interaction between whether or not TTC is present at 

source and each of the other risk factors. We used Cook’s distance to determine influential values 

(typically outliers) and to test the robustness of the list of significant model parameters to the deletion 

of these values. We also used analysis of deviance to find the relative predictive power of each of the 

factors towards [TTC]end-use.  

To explore the presence of a possible non linear effect of [TTC]source on [TTC]end-use, we refitted the 

above model after categorising [TTC]source as 0, 0–2, 2–8 and 8–80 CFU/100 mL. We also fitted a 

Tobit model to the [TTC]end-use values with [TTC]end-use > 0 to find the significant predictors  

(Tobit analysis is a technique borrowed from econometrics where it has been used to find significant 

predictors of expenditure on a commodity given that not all consumers may have a propensity to buy 

it. The parallel here is that not all households have positive [TTC]end-use). We employed Simulation 

Extrapolation (SIMEX) to explore the consequences of measurement error in [TTC]source resulting in 

misclassification error. The effect of up to 8% misclassification error in [TTC]source = 0 being classified 

as positive was explored. Jackknife estimates of variance were also used. We used the statistical 

software package R for all statistical calculations. 

2.3. Risk Models and Input Parameters 

We estimated the pathogen-attributable health risks in terms of DALYs using the QMRA model of 

Howard [10] (Figure 1) and compared it to arsenic-attributable DALYs calculated using the risk model 

of Mondal [16] (Figure 2). In the absence of comprehensive dose-response data for sequela arising 

from exposure to water-borne pathogens and to arsenic, we have restricted our calculations to sequelae 

considered to be the dominant detrimental health outcomes arising from each agent, viz. diarrheal 

diseases for water-borne pathogens and combined skin, lung, liver and bladder cancers for arsenic.  

The input parameters for the estimation of pathogen concentrations based on the E. coli 

concentration obtained from the measured TTC for the QMRA model are summarized in Table 1. 

Following Howard [10], no distinction is made between pathogen concentrations arising from post-supply 

contamination outside the household and that arising from within the household. The dose-response 

relationships for the model reference pathogens based on the reported human-feeding-trial data are 

summarized in Table 2 along with the µDALYs per reference pathogen microbial infection applied to 
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the QMRA model based on the data by Havelaar and Melse [19] and Howard [10]. The outcome, severity, 

duration and probability of infection data are based on the values given by Havelaar and Melse [19] while 

the susceptible fraction data were obtained from Howard [10] for the population of Bangladesh. 

Figure 1. Schematic of the QMRA model [10] for pathogen-attributable health risks. 

 

Figure 2. Schematic of the model for arsenic attributable health risks [16]. 
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Table 1. Input parameters for exposure assessment for QMRA model. 

Input variable Fitteddistribution Parametervalue Reference 

[TTC]environmental origin lognormal 15% (7.5%, 30%) b Howard [10] 
[E.Coli]:[Viruses] lognormal 105 (104, 106) b Howard [10] 
[E.Coli]:[Bacteria] lognormal 105 (104, 106) b Howard [10] 
[E.Coli]:[Protozoa] lognormal 106 (105, 107) b Howard [10] 

Notes: a The remainder of the thermally tolerant coliforms are considered to be of faecal origin and assumed 

to be E.Coli for the purposes of calculating a pathogen concentration; b Mean (5th percentile, 95th percentile). 

Table 2. Microbial dose-response data based upon literature cited by Howard [10] and 

µDALYs per reference pathogen microbial infection after Havelaar and Melse [19]. 

Model reference 

pathogen 

Concentration 

estimate basis 
Ref. a Pinf1 

b Outcome S c D d Pout 
e Xsus 

f 
µDALY 

per case 

Virus Rota-viruses g 27% 

Mild diarrhoea 
0

.10 

0.

02 

0.8

56 1

.6% 

27.4 

Severe diarrhoea 0.23 0.02 0.144 10.6 

Death 1.00 30 h 0.0023 11.0 

Bacterium E. coli O157 H7 i 1% 

Watery diarrhoea 0.06 0.009 0.53 

9% 

28.8 

Bloody diarrhoea 0.39 0.015 0.47 247 

Death 1.00 13.2 j 0.0023 2730 

Protozoan Crypto-sporidium k 2.8% 
Watery diarrhoea 0.06 0.02 0.9877 

7.1% 
95.1 

Death 1.00 13.2 j 0.01 93.7 

Notes: a Basis for infectivity estimation; b Probability of infection for a dose of 1; c Severity; d Duration;  
e Probability of outcome, viz. infection or death, cf. Pinf of Howard [10]; f Susceptible fraction; g Human 

feeding trial of rotavirus model of Gerba [20] (cited by [10]); h Average death at age of 1 was assumed for 

rotavirus infected diarrhea [2] leading to loss of 30 years of healthy life based on the data of the GBD  

study [21]; i Human feeding trial of Shigella dysenteri model of Holcomb [22] (cited by [10]); 
j The mean loss of life associated with 1 fatal case of cryptosporidiosis and E.coli O157 infection was estimated 

as 13.2 years [2]; k Human feeding trial for C.parvum model of Messner [23] (cited by [10]). 

The input parameters for the arsenic risk assessment model were same as described by  

Mondal et al. [16] with incidence rates being calculated based on the NRC [24] dose-response 

function, which in turn is based on the Weibull multistage model, predicting the incidence rate of 

arsenic induced lung, bladder, skin and liver cancer as a function of age, gender and arsenic 

concentration in drinking water. 

3. Results and Discussion 

3.1. Quality Control  

Arsenic concentration in a standard water reference material (SRM 1640) was measured as  

27.8 ± 0.4 µg/L (n = 3) in agreement with the certified value of 26.6 ± 0.4 µg/L. Analyses of arsenic for 

ARS29-32 groundwater samples, undertaken as part of an Inter Laboratory Quality Evaluation [25], 

were found to be within 12% of the indicative values in the range 66–330 µg/L.  
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The mean deviations between duplicate samples analyzed by the same operator for TTC (n = 14) 

and between the replicate analyses by different operators (n = 8) was better than 6%. The mean 

deviation between the analysis done by the method outlined here and by an MPN method at AIIHPH 

(n = 37) was 37%. No non-zero TTC values were found for any negative controls (n = 18). 

3.2. Water Analysis  

Table 3 presents the arithmetic mean ± SD, median (95% CI) and percentiles (95% CI) for 

[TTC]source, [TTC]end-use and arsenic (As) in drinking water for the whole study area. We found 

[TTC]end-use to be typically greater than [TTC]source for most of the paired samples with almost no 

correlation between them (Figure 3). The mean and median [TTC]source for DTWs in this study  

(0 CFU/100mL) are very comparable to that observed by Howard et al. [10] in similar areas in 

Bangladesh. The observed median arsenic concentration, 28 µg/L is comparable to that previously 

observed by Mondal et al. [16] of 27.9 µg/L (n = 2171). We found no significant correlation between 

As and [TTC]source (Figure 4) and observed TTC and As in source water to be the highest for the 

treatment plants among the three different mitigation options. A Kruskal-Wallis test to determine the 

differences in [TTC]source between the three different mitigation options, showed DTWs to have 

significantly lower [TTC]source (p < 0.05) compared to TP and TW. 

Table 3. Summary of water analyses. 

Parameter [TTC]source [TTC]end-use [As] 

Unit CFU/100 mL CFU/100 mL µg/L 

Number of samples 102 102 102 
Mean ± S.D. 5.6 ± 16 56 ± 162 40 ± 40 

Median (95% CI) 0 (0–1) 7 (2–18) 28 (19–37) 
5th percentile 0 (0–0) 0 (0–0) 0.76 (0–2) 

25th percentile 0 (0–0) 0 (0–2) 7 (4–14) 
75th percentile 2 (1–5) 36 (24–69) 57 (46–89) 
95th percentile 41 (12–80) 256 (126–843) 112 (100–143) 

Table 4 presents [TTC]end-use stratified by the different risk factors for this study. We found 

[TTC]end-use was higher for households with positive [TTC]source than for those with [TTC]source = 0. 

[TTC]end-use was found to be highest for the water sourced from TW for the studied area. It was also 

noted that people using TW mostly use the water for drinking, cooking and washing (75%) whereas 

people using the DTW and TP used the water either only for drinking (23%) or for drinking and 

cooking (75%). We also observed that [TTC]end-use was higher for respondents living in mud houses 

having primary education and storing the water in big mouth containers such as buckets and hari.  

But it was found to be lower for households cleaning the storage container weekly rather than daily for 

the overall data, perhaps reflecting differences in the sampled populations using daily and weekly 

cleaning regimes.  
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Figure 3. Cross-plot of thermally tolerant coliforms [TTC] in supplied and end-use 

drinking water from households in Chakda Block, West Bengal, India. The correlation 

between [TTC]end-use and [TTC]source is extremely poor—thus [TTC]source is an extremely 

poor predictor of [TTC]end-use and hence of water-borne pathogen attributable health risks 

to householders. For the majority of households, [TTC]end-use >> [TTC]source suggesting that 

post-supply contamination, either during transport to the household or within the household 

is an important process. 

 

Figure 4. Cross-plot of arsenic and thermally tolerant coliforms in water supplied to 

households in the Chakdha, West Bengal, India study area through three different arsenic 

mitigation options. There is no significant correlation between [As] and [TTC]source for any 

of Tap Water Supply (●; R2 = 0.034), Arsenic Treatment Plant (■, R2 = −0.002), Deep 

Tube Wells (▲, R2 = 0.064) of for the dataset as a whole (R2 = 0.003). R2 refers to the 

correlation for the simple least squares linear regression between [As] and [TTC]source for 

the relevant dataset. 
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Table 4. [TTC]end-use classified by independent or predictor variables. 

Variable Classification criteria Mean [TTC]end-use SD [TTC]end-use 

[TTC]source 
=0 45 114 
>0 77 207 

Mitigation type 
TW (tap water) 101 239 

TP (treatment plant) 38 51 
DTW (deep tube well) 21 55 

Highest level of education 

Higher 39 123 
Middle 4.0 0.0 
Primary 89 250 

Nil 28 37 

Type of storage container 

Bottle 38 73 
Jug 2.7 4.6 

Pitcher 46 129 
Jar 17 30 

Bucket 129 301 
Hari 260 198 

Cleaning frequency 
Daily 72 192 

Weekly 34 80 

Table 5 presents the results of fitting the regression model. The model, when refitted after dropping 

outliers and influential values, produced similar results. The results indicate that the linear term for 

[TTC]source is significantly positive (p-value = 0.002), that is, among those with positive [TTC]source, 

[TTC]end-use has a significant linear relationship with [TTC]source after adjusting for other confounders. 

The estimate for the linear term is 0.05301 (95% confidence interval = (0.025, 0.0933)) indicating that 

if all other factors remaining constant, a unit increase in [TTC]source will lead to a 1.054440 

(=exp(0.05301)) fold increase in [TTC]end-use. In general, we can say that an x unit increase in 

[TTC]source will lead to an exp(0.05301x) fold increase in [TTC]end-use if the source water is 

contaminated. It was further noted that DTW users have significantly lower [TTC]end-use. Cross 

tabulations of the predictors revealed that DTW users are more likely to live in mud houses, and have 

higher education levels. None of the other interactions were statistically significant at the 5% level. 

However the direction of the estimated coefficients suggests that positive [TTC]source leads to lowest 

[TTC]end-use for those using water from treatment plants (TP) followed by tap water (TW) and then 

deep tube wells (DTW). Positive [TTC]source leads to lower [TTC]end-use for those living in mixed 

houses than for those living in mud houses. The main effect and interactions are marginally significant 

for the cleaning frequency of the storage container. If [TTC]source = 0, then weekly cleaning leads to a 

0.45 (=exp(−0.79202)) fold reduction in [TTC]end-use whereas if [TTC]source > 0, weekly cleaning leads 

to a 1.8 fold increase in [TTC]end-use. 

An analysis of variance showed that the maximum variation in [TTC]end-use was explained by the 

linear term for [TTC]source (15%) followed by the type of mitigation from where the water is sourced 

(10%) and the interaction between the type of house and whether or not [TTC]source > 0 (4%). While 

the model allowing for a nonlinear effect of [TTC]source was found to have better predictive power over 

the linear effect model (p value from Analysis of Deviance = 0.02), we observed no evidence of 
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significant contrasts after correcting for multiple comparisons. Based on the results of the Tobit 

analysis we found a highly significant effect of the linear term for [TTC]source (p-value = 0.0004). The 

analysis did not find evidence for a significant effect of any of the other risk factors. Finally the output 

from application of the SIMEX algorithm showed that the interactions were no longer marginally 

significant but the other estimates and p-values continued to be similar.  

Table 5. Regression model a of [TTC]end-use. 

Variable Estimate Standard Error t Pr (>|t|) b 

(Intercept) 1.48749 1.32 1.125 0.26 
(if [TTC]source = 0) 2.93330 1.37 2.145 0.035 * 

([TTC]source − 1) * (if [TTC]source > 0) 0.05301 0.02 3.167 0.0021 ** 
(Type of mitigation = TP) −0.61338 0.43 −1.415 0.16 

(Type of mitigation = DTW) −1.75188 0.57 −3.084 0.0027 ** 
(Type of house = Mud) −0.17066 0.53 −0.322 0.75 

(Cleaning frequency = Weekly) −0.79202 0.45 −1.751 0.084 
(if [TTC]source > 0)  

* (Type of mitigation = TP) 
−0.77046 1.10 −0.703 0.48 

(if [TTC]source > 0)  
* (Type of mitigation = DTW) 

0.87905 1.08 0.813 0.42 

(if [TTC]source > 0)  
* (Type of house = Mud) 

2.23692 1.48 1.507 0.14 

(if [TTC]source > 0)  
* (Cleaning frequency = weekly) 

1.41970 0.80 1.764 0.081 

Notes: a Dispersion parameter for quasi poisson family taken to be 51.374; b Significance codes: 0 < *** < 

0.001 < ** < 0.01 < * < 0.05 < 0.1 << 1. 

3.3. Calculated Health Risks 

Table 6 summarizes the input parameters estimated in this study for the calculation of disease 

burden. Table 7 gives a comparison of disease burdens, expressed as DALYs, arising from the 

measured arsenic and TTC, and based on the input parameters estimated in this study and rest of the 

parameters as detailed in previous sections along with the DALYs reported by previous authors  

and publications. 

Table 6. Input parameters for DALY estimation.  

Input 
variable 

Unit 
Type of fitted 
distribution 

Parameters Value Source 

[TTC]source CFU/100 mL Extreme value 
Location parameter 1.24 This study 

Scale parameter 4.76 This study 

[TTC]end-use CFU/100 mL Extreme value 
Location parameter 18.34 This study 

Scale parameter 48.46 This study 

[As] µg/L Beta General 
Shape parameters 0.64, 3.50 This study 

Minimum 0.2 This study 
Maximum 254.78 This study 

Water intake L/person/day lognormal 
Mean 2.50 Mondal [14] 

Standard deviation 1.03 Mondal [14] 
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Table 7. Comparison of disease burdens (expressed in µDALYs/person/year) from 

exposure to waterborne arsenic or pathogens or global country-wide estimates.  

Study Type Study area Secula µDALYs Reference 

[TTC]source 
Chakdha Block, 

West Bengal 
Diarrhoea 174 (11,611) a This study 

[TTC]end-use 
Chakdha Block, 

West Bengal 
Diarrhoea 1574 (260,2578) a This study 

[TTC]end-use (modeled) 
Chakdha Block, 

West Bengal 
Diarrhoea 1252 (555,2282) a This study 

Global Burden of 

Disease (GBD) study 
India Diarrhoea 14530 WHO [21] 

[TTC] from shallow 

tube wells in dry season 
Bangladesh Diarrhoea 10 (0, 5600) b Howard [10] 

[TTC] from pond sand 

filters 
Bangladesh Diarrhoea 

~ 3000  

(100, 10000) b 
Howard [10] 

Global Burden of 

Disease (GBD) study 
Bangladesh Diarrhoea 15980 WHO [21] 

[As] in mitigated waters 
Chakdha Block, 

West Bengal 

Lung, bladder, liver 

and skin cancer 
238 (127, 400) a This study 

[As] in pre-mitigation 

tube wells 

Chakdha Block, 

West Bengal 

Lung, bladder, liver 

and skin cancer 
580 (146, 1168) a 

Calculated from 

Mondal [16] 

Global Burden of 

Disease (GBD) study 
India 

Lung, bladder, liver 

and skin cancer 
2450 WHO [21] 

[As] in shallow  

tube wells 
Bangladesh 

Lung, bladder and 

skin cancer 

~ 1000  

(300, 3000) b 
Howard [10] 

[As] in tube well water Bangladesh 
Lung, bladder and 

skin cancer 
385 c Lokuge [11] 

Global Burden of 

Disease (GBD) study 
Bangladesh 

Lung, bladder, liver 

and skin cancer 
780 WHO [21] 

Notes: a Median µDALYs with 25th and 75th percentiles; b Based on the figures of Howard [10] with 90% confidence 

interval; c Considering only Bangladesh population exposed to drinking water with [As] > 50 µg/L. 

3.4. Water Quality  

Against the WHO [26] guideline of absence of any fecal pollution as the standard for microbial 

water quality, the presence of TTC in 25% of the collected source water samples and 50% of the end-use 

household water samples confirms the potential risk of water-borne diseases from drinking water 

contamination for the studied area. We also found the arsenic concentration in the collected arsenic 

mitigated drinking water to be higher than the WHO provisional guideline value of 10 µg/L for 68% of 

the samples and higher than the Indian permissible limit of 50 µg/L for 29% of the samples, indicating 

that the water from the arsenic mitigation options neither completely arsenic free nor even compliant 

with these guidelines/regulations. The significant inverse correlation between As and pathogens 

(E.coli) for shallow tube wells of Bangladesh observed by van Geen et al. [27] could be a potential 

concern for health risk substitution for arsenic mitigation options, but although we observed a very weak 

inverse relationship of As with [TTC]source (Figure 4) we found the relationship not to be significant.  
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Based on the regression analysis we observed that the contamination of end-use water largely 

depends on whether the source water is contaminated or not rather than any other predictors. Hence the 

fate of [TTC]end-use is predicted in a different way for [TTC]source = 0 and [TTC]source > 0. Once the 

source water is contaminated, [TTC]end-use increases exponentially irrespective of other factors. In a study 

in Sierra Leone, Clasen and Bastable [28] observed a 200 fold increase in [TTC]end-use with respect to 

[TTC]source when the source was contaminated compared to when the source was not contaminated. 

Significantly high [TTC]end-use compared to [TTC]source (Figure 3) supports evidences from previous 

studies that have shown the importance of fecal contamination of drinking water after collection 

associated with household storage linked to water handling and hygiene practices. Eshcol et al. [29] 

illustrated 36% households have their water being contaminated by fecal coliforms on storage within 

24–36 h of collection for a study at Andhra Pradesh, India (n = 50). We observed, the overall [TTC]end-use 

to be higher for people living in mud houses (Table 4). The type of house- mixed or mud as observed 

in this study, acts as a proxy for wealth, reflects the sense of personal hygiene, with mixed being better 

than mud suggests that contamination within the household is a likely factor in controlling the end-use 

water contamination. 

The significant difference in [TTC]source between the three different mitigation options and TP and 

TW being significantly higher than DTW suggests that much of the pathogen loading in TP and TW is 

attributable to contamination arising from storage of waters during the treatment for arsenic removal 

and/or in the distribution network of tap water supply. The overall [TTC]end-use is found to be lower for 

DTW users, in spite of the fact that DTW users more likely dwell in mud houses. 

Our study shows that wide-mouth open containers such as buckets or Hari had higher potential risk 

of contamination than narrow-mouth vessels such as bottles, jugs or pitchers (Table 4)—we speculate 

that the contamination could arise while fetching water from wide-mouth containers by dipping. 

Clasen and Bastable [28] indicated that using a tap or spigot to access water is protective of stored 

water quality compared with water accessed by dipping. 

3.5. Disease Burden—Pathogens in Source vs. End-Use Water  

DALYs arising from TTC in source water accounts for only 11% (174 µDALYs/person/year/  

1574 µDALYs/person/year) of the DALYs resulting from TTC in end-use household drinking water 

(Table 7) indicating that the microbial contamination of source water is only a small factor for 

diarrheal disease incidence arising from drinking water from arsenic mitigated sources in the study 

area. Irrespective of whether water-borne pathogens originate in supplied water or from household 

contamination, calculated risks from water-borne pathogens (1574 µDALYs/person/year; or using 

modeled [TTC]end-use, 1252 µDALYs/person/year) represent only around 10% of the total diarrheal 

disease burden (14,530 µDALYs/person/year) reported by GBD for India [30] thus drinking water 

would seem to be a minor contributor to diarrheal diseases in Chakdha relative to other causes. This is 

consistent with Esrey’s [8] large cross sectional study on 8 developing countries, which concluded that 

(i) calculated predictions of reduction in diarrheal disease incidence may be invalid where they are 

based only on the improvement of microbiological quality of (improved) supplied water; (ii) health 

benefits from improved water supply were less important than improvements in sanitation; and  

(iii) improved sanitation was the governing factor reducing diarrheal disease incidence. Pruss [12] 
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further noted that the transmission of water-borne-pathogens may be linked to a lack of water linked in 

turn to inadequate personal hygiene and use of contaminated water for cleaning [12]. In this study, we 

observed that the [TTC]/100 mL in pond water (median 3490, interquartile range 1680–7125, n = 6) 

and dugwell water (median 1440, interquartile range 1120–2442, n = 5), both extensively used for 

washing and bathing in Chakdha block, were extremely high and may represent an important source of 

exposure to water-borne pathogens unrelated to the quality of either supplied or end-use drinking water.  

The links between water and health are complex and errors may arise from: (i) for developing 

countries recall-data on diarrhoea prevalence from cross-sectional studies may be too insensitive with 

chances of misclassification [8]; (ii) the GBD estimate is for the whole of India and there could be 

possible local variation in diarrheal disease incidences; and (iii) potential flaws of the DALY approach, 

given the present availability of data [19]. Important but almost inevitable shortcomings are the 

uncertainties associated with the model input parameters which can be reduced with further research in 

the fields of country specific Pathogen: E coli ratios and country specific probabilities of infection for 

reference pathogens as well a more quantitative understanding of differences in post-supply pathogen 

contamination arising from outside and inside households. Notwithstanding this, verification of the 

microbial quality of drinking-water by testing for TTC as an indicator of faecal pollution provides 

conclusive evidence of recent faecal pollution that should not be present in drinking-water. While TTC 

is a useful indicator, it has limitations. Enteric viruses and protozoa are more resistant to disinfection; 

consequently, the absence of TTC will not necessarily indicate freedom from these organisms [26]. 

Under certain circumstances, such as high levels of viral and parasitic diseases in the community it 

may be desirable to include the estimation of more resistant microorganisms, such as bacteriophages 

and/or bacterial spores [26] as indicator organisms. In addition, it is important to note that, although 

diarrheal diseases are probably the largest contributor to the disease burden from water, sanitation and 

hygiene, it cannot entirely be attributed to these factors because it is also transmitted through food and 

through air [12].  

Lastly, we note that water quality can vary rapidly, and all systems are subject to occasional  

failures [26] which can have a disproportionate impact on disease. Rainfall can greatly increase the 

levels of microbial contamination in source waters and waterborne outbreaks often occur following 

rainfall [26] and this is apparent from the study on seasonal variation for the observed seven sources 

(Figure 5). Results of the daily, continuous monitoring of Cryptosporidium in drinking water in the 

UK showed that the Cryptosporidium concentration generally followed a continuous trend, however, in 

some cases a trend break was detected which dominated the mean health risk hence frequent monitoring 

rather than the point data as obtained for this study would be required to detect such events [30]. Thus, 

whilst we report here relative magnitudes of pathogen and arsenic attributable health risks calculated 

from our small study, the uncertainties on the calculated risks are considerable and further work, 

including stochastic treatment of the QMRA [30] is required to obtain a more reliable result. 

Notwithstanding these limitations to the model DALY calculations, because we do observe a 

statistically significant, though weak, relationship between microbiological quality of source and  

end-use water where [TTC]source is > 0, implies that whilst sanitation and hygiene are important in 

combating diarrheal diseases, degradation of source water quality because of arsenic mitigation can 

result in increased diarrheal disease incidence. In the study, this is estimated to be 5% (25th and 75th 

percentile: 2%, 20%)—this is substantially lower than the 20% figure used by Lokuge et al. [11] to 
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estimate increase in diarrheal incidences when there is a shift from existing water sources that are 

arsenic contaminated to arsenic mitigated options having potential for microbiological contamination. 

We also note that our datum is significantly higher than 0, reflecting that arsenic mitigated water 

supplies can be prone to microbiological contamination. This indicates that efforts to minimise 

microbiological contamination at source, for example chlorination of the source water for deactivating 

water-borne pathogens, done on a frequent and regular basis and accompanied by appropriate 

monitoring in order for its effectiveness, are indicated [2]. Additional treatment at household level is 

indicated for the more effectively reduction of diarrheal disease incidences. Among the various 

approaches to household-based water treatment are heat and UV radiation, sedimentation, filtration 

and chemical treatment (coagulation, flocculation, precipitation, adsorption and disinfection) [28]. 

Figure 5. Seasonal variation in [TTC]source for water supplied from arsenic removal 

treatment plants (TW), deep tube wells (DTW) and tap waters (TP) in Chakdha Block, 

West Bengal, India. The lines are a visual aid to link samples from the same well but are 

not intended to indicate a determined trend. Nevertheless, the data suggest that other than 

the occasional spike (TP1, March), [TTC]source is most commonly highest in 

October/November near the end of the monsoon season (June–October). 

 

3.6. Overall Change in Disease Burden Arising from Arsenic Mitigation  

We observe (Table 7) that DALYs calculated as arising from As in mitigated waters in this study 

(238 µDALYs/person/year) are less than half of those calculated for As in pre-mitigation wells  

(580 µDALYs/person/year) in the same area using data reported from previous studies [16]. Both these 

values are substantially less those arising (1000 µDALYs/person/year) from unmitigated shallow wells 

in similar areas in Bangladesh. The arsenic mitigations considered here therefore have clearly resulted 

in a substantial reduction in drinking water arsenic attributable health risks in the study area.  

Although DALYs arising from pathogens in end-use water (1574 µDALYs/person/year; or  

using modeled [TTC]end-use, 1252 µDALYs/person/year) are higher than any of the average  

arsenic-attributable values calculated, the regression model derived here demonstrates that only a  

small fraction of those DALYs, viz. 174 µDALYs/person/year, can be attributed to pathogens in the 

supplied water, as opposed to pathogens acquired post-supply, either outside or inside households. 
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Thus, the combined DALYs arising from both [TTC]source and As in mitigated wells in this study  

(424 µDALYs/person/year) represents, on average, a reduction in disease burden as a result of the 

arsenic mitigation methods—we thus find no evidence in this small study for significant risk 

substitution resulting in a net increase in overall water-borne disease burden for the sequelae 

considered here.  

4. Conclusions  

This small study on fecal contamination of arsenic mitigated source and end-use water for an 

arsenic impacted area of West Bengal, India demonstrates that the microbiological quality of end-use 

water in such areas can be largely independent of that of the source water. In part because of this, the 

specific arsenic mitigations studied here have not been found to substantially result in risk substitution, 

although the DALY estimates made have significant uncertainties. The results indicate that far greater 

public health benefits are to be made through improving sanitation and hygiene facilities and practice 

and through the removal or avoidance of arsenic than from only improving the microbiological quality 

of supplied water.  
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