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Abstract: Downscaled climate scenarios can be used to inform management decisions on 

investment in infrastructure or alternative water sources within water supply systems. 

Appropriate models of the system components, such as catchments, rivers, lakes and 

reservoirs, are required. The climatic sensitivity of the coupled hydrodynamic water quality 

model ELCOM-CAEDYM was investigated, by incrementally altering boundary 

conditions, to determine its suitability for evaluating climate change impacts. A series of 

simulations were run with altered boundary condition inputs for the reservoir. Air and 

inflowing water temperature (TEMP), wind speed (WIND) and reservoir inflow and 

outflow volumes (FLOW) were altered to investigate the sensitivity of these key drivers 

over relevant domains. The simulated water quality variables responded in broadly 

plausible ways to the altered boundary conditions; sensitivity of the simulated 

cyanobacteria population to increases in temperature was similar to published values. 

However the negative response of total chlorophyll-a suggested by the model was not 

supported by an empirical analysis of climatic sensitivity. This study demonstrated that 

ELCOM-CAEDYM is sensitive to climate drivers and may be suitable for use in climate 

impact studies. It is recommended that the influence of structural and parameter derived 

uncertainty on the results be evaluated. Important factors in determining phytoplankton 

growth were identified and the importance of inflowing water quality was emphasized. 
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1. Introduction 

The Goyder Water Research Institute project C.1.1 was initiated to fill a gap in the current 

understanding of the potential impacts of climate change on South Australia. The project seeks to 

understand climate drivers, downscale global circulation (GCM) model projections of future climate 

and develop a suite of model applications for the evaluation of climate change impacts on society. 

Current global circulation model (GCM) projections suggest Australian average temperatures will 

increase by 1.0 to 5.0 degrees by 2070 (compared to 1980–1999), there will be a decrease in average 

annual rainfall over southern Australia and there will be an increase in the number of hot days and 

warm nights [1]. Decreases in winter and autumn wind speed and increases in spring and winter 

downward solar radiation are also projected, but these projections are subject to large uncertainties [2]. 

Recent efforts to downscale GCM outputs to the catchment scale have identified the potential for 

reduced catchment yields as the result of reduced precipitation, changes in rainfall seasonality and 

increased temperatures [3–5]. Besides issues of water quantity, there are potential impacts of climate 

change on water quality [6,7]. Reservoirs play a major role in determining the water quality within a 

given water supply system, as they act as both barriers to (e.g., pathogens) and producers of  

(e.g., cyanobacteria (toxins, tastes and odors), iron and manganese) water quality hazards [8]. 

Reservoirs integrate the prevailing hydrology, meteorology, biology and biogeochemistry and the 

resulting quantity and quality of water is a valuable resource that requires sound management to ensure 

the utility and sustainability of the source water; water quality models are tools to this end. 

The potential impacts of climate change on water quality has been evaluated using integrated 

modeling schemes which include water quality models [9–13]. Such schemes use a combination of 

catchment and lake/reservoir models that use meteorological boundary conditions as inputs. The 

meteorological conditions are altered to represent projected future climate and the resulting 

simulations are taken to represent the potential impacts of those changed climatic conditions. Too few 

of these studies have been performed to make generalizations about the potential impacts; both 

positive and negative influences have been identified. Additionally, the differences in model structure 

and method make it difficult to compare the different studies directly. There are many sources of 

uncertainty within such a modeling scheme, including the choice of GCM, emissions scenario, 

downscaling methodology, and the selection of and rigor of application of the hydrological, constituent and 

lake/reservoir water quality models, including model structure selection and identification of parameters. 

Each step in the modeling scheme needs to be thoroughly evaluated to ensure the results can be useful. 

It is therefore appropriate to adequately test the response of the proposed reservoir water quality 

model to changes in the environmental variables expected to change in the future. Formalizing our 

understanding of the way that water quality variables respond to climate related model inputs is 

fundamentally important to understanding the outputs we generate from models [13]. As these models 

will be used to project the impacts of downscaled climate scenarios, it is important that the response of 

the water quality models to the boundary conditions is understood. Water quality models vary in their 
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data input requirements and often contain options for the sub-model structures they contain, making it 

difficult to assume that they will be equally sensitive in any given application. Responses of chemical 

and biological processes to the changes in physical state generated by changes in meteorological inputs 

are dynamic and interactive and therefore difficult to resolve without resolving individual sensitivities 

in an explicit analysis. 

The outputs from any model are dependent on the inputs. It follows that uncertainty in the inputs, 

either the boundary conditions or the model parameters, contributes to the uncertainty of the model 

results. Quantification of the influence of the inputs on the model outputs is known as sensitivity 

analysis and has been extensively described in the literature. Complex models with many parameters, 

boundary conditions and long runtimes have particular challenges associated with the analysis of their 

sensitivity and uncertainty. Consequently a great deal of effort has gone towards developing screening 

methods to identify sensitive parameters and evaluate their influence on model output [14–17]. Less 

often the influence of boundary conditions or input data is evaluated. Generally, the error associated 

with these inputs is considered to be less than the uncertainty associated with model parameters as they 

are quantities that are generally measured at, or proximal to, the lake or reservoir being modeled, using 

accurate instrumentation. However the range of meteorological boundary conditions are expected to 

change in the future [18] and given the non-linear and non-monotonic nature of ecosystem models, 

their behavior in these conditions is uncertain. As suitable observed validation data cannot exist for 

unobserved future conditions, model behavior under altered boundary conditions can only be validated 

against qualitative projected responses of ecosystems. These qualitative responses may be derived 

from space-for-time approaches, robust ecophysiological conceptual models and response data [19] 

and ensemble model predictions [20]. 

Therefore, the goal of this work is to answer the question: Does ELCOM-CAEDYM demonstrate 

appropriate climatic sensitivity to be used as part of a robust integrated modeling scheme? The 

responsiveness of the ELCOM-CAEDYM model [21,22] to changes in meteorological boundary 

conditions was analyzed. A previous application of the model to Happy Valley Reservoir (HVR) was 

used in conjunction with scenarios with altered environmental forcing of incremental changes in flow, 

air and water temperature, and wind speed. Responses in water quality variables of primary focus were 

cyanobacteria and soluble metals; further consideration was given to water temperature and water 

column stratification due to their important role in determining mixing and the rates of biogeochemical 

reactions. This work does not constitute a model sensitivity analysis, sensu stricto, but evaluates the 

climatic sensitivity or responsiveness of ELCOM-CAEDYM and compares it to other studies and an 

empirical climate sensitivity analysis of chlorophyll-a in Happy Valley Reservoir. 

2. Materials and Methods 

2.1. Happy Valley Reservoir 

Happy Valley Reservoir (35°04'12" S, 138°34'12" E) is situated to the south of Adelaide, the capital 

of South Australia (Figure 1). It was created by the construction of an earth wall dam between 1892 

and 1897. Following a rehabilitation project from 2002 to 2004, it has a capacity of 11,600 ML, a 

surface area of 178 hectares and average and maximum depths of 6.5 and 18 m, respectively. It is an 
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off stream reservoir and supplies raw water to South Australia’s largest water treatment plant, which 

produces up to 400 ML of filtered water per day, resulting in a hydraulic retention time of 15–30 days. 

As HVR is isolated from its natural catchment, it is supplied with water from the Onkaparinga River 

system via an aqueduct from Clarendon Weir, which is in turn supplied from the much larger Mount 

Bold Reservoir (35°07'12" S, 138°42'00" E). Mount Bold Reservoir collects water from the Mount 

Lofty Ranges and is supplemented with water pumped from the River Murray, as are most of South 

Australia’s reservoirs. Happy Valley Reservoir has experienced a range of water quality challenges in 

the past, with blue-green algae (cyanobacteria) causing taste and odor problems in recent decades. The 

use of artificial destratification (mixing) and algaecides are used for management in the reservoir, 

while granular activated carbon used in the water treatment process to reduce taste and odor compound 

concentrations to acceptable levels in the product water. As HVR is supplied with water from an 

unprotected catchment (i.e., containing various farming activities and human habitation), vigilance 

against pathogens is required and loads of nutrients are greater than is generally desirable. During the 

study period, nutrient concentrations were, total phosphorus, 0.05–0.1 mgL−1; total Kjeldahl nitrogen, 

0.5–1.0 mgL−1; filterable reactive phosphorus, 0.005–0.03 mgL−1; ammonia, 0.005–0.05 mgL−1 and 

oxidized nitrogen, 0.05–0.5 mgL−1. The seasonal temperature range is generally between 8–10 °C and 

25–27 °C, strong persistent stratification is prevented from occurring by the operation of a bubble 

plume aerator. Due to the importance of Happy Valley Reservoir to Adelaide’s water supply, the South 

Australian Water Corporation has invested heavily in monitoring and research into the processes 

influencing water quality. 

 

Figure 1. Location of Happy Valley Reservoir. Inset shows 10 m contours of depth and 

inflow from the aqueduct and the location of the offtake to the water treatment plant (WTP). 

2.2. Model Description 

The Estuary and Lake Computer Model (ELCOM) is a hydrodynamic model that simulates the 

temporal behavior of stratified water bodies with environmental forcing. The model solves the 
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unsteady, viscous Navier-Stokes equations for incompressible flow using the hydrostatic assumption 

for pressure. The simulated processes include baroclinic and barotropic responses, rotational effects, 

tidal forcing, wind stresses, surface thermal forcing, inflows, outflows, and transport of salt, heat and 

passive scalars [21]. When coupled with the Computational Aquatic Ecosystem DYnamics Model [22] 

water quality model, ELCOM can be used to simulate three-dimensional transport and interactions of 

flow physics, biology and chemistry. ELCOM uses the Euler-Lagrange method for advection of 

momentum with a conjugate-gradient solution for the free-surface height. Passive and active scalars 

(i.e., tracers, salinity and temperature) are advected using a conservative ULTIMATE QUICKEST 

discretization, see [21] and references within for further details. 

The Centre for Water Research was previously engaged to apply ELCOM-CAEDYM to Happy 

Valley Reservoir [23]. Upon delivery, the model was considered appropriate for the simulation of 

water movement, contaminant transport, algal growth and biogeochemical cycling [23]. ELCOM was 

applied at three resolutions (25, 50 and 100 m grid sizes); the finest grid to be used for examining 

short-circuiting and inflow dilution, and the coarser grids for quicker runtimes and running scenarios 

relating to stratification, algal growth and soluble metal release from sediments (the 100 m grid was 

used in this study). The hydrodynamic model was validated against temperature sensor data over two 

periods, 29 June–6 October 2005 and 23 October 2005–8 February 2006. The parameter set for 

CAEDYM was derived from applications to other Australian reservoirs and some minor calibration of 

parameters to suit Happy Valley Reservoir. The manual calibration focused on parameters that could 

not be derived from literature values and included, the density of particulate organic matter, the 

maximum rate for microbial decomposition of particulate organic phosphorus (nitrogen), the maximum 

rate of mineralization of dissolved organic phosphorus (nitrogen), the dissolved oxygen ½ saturation 

constant for nitrification, the rate of denitrification and the phosphorus ½ saturation constant for algal 

uptake. Some deficiencies in the calibration of the algal growth components of the model remained.  

Two algal groups were included in the model structure, representing chlorophytes (green algae) and 

cyanophytes (blue-green algae). The phytoplankton growth model was parameterized according to 

literature values, with only a single parameter being manually calibrated for Happy Valley Reservoir 

(Table 1). Parameters relating to light, temperature, phosphorus uptake and respiratory losses were 

different between the two phytoplankton groups. All other parameters were shared and derived from 

literature values. Notably, buoyancy regulation by cyanobacteria was not invoked in the model structure. 

Table 1. Phytoplankton group parameters that differentiate the response to ecophysiological 

drivers in the ELCOM-CAEDYM model set up. 

Parameter 
Cyanophyte 

Value 
Chlorophyte 

Value 
Description Reference

µGTH 0.8 1.2 Maximum growth rate (d−1) [24] 
ϑAg 1.09 1.07 Temperature multiplier for growth (-) [25,26] 
µRES 0.09 0.10 Respiration, mortality and excretion (d−1) [27] 
KP 0.009 0.008 P ½ saturation constant (mg L−1) Calibrated 
IK 130 100 Light ½ saturation constant (µE m−2 s−1) [28] 

TSTD 24 20 Standard temperature for algal growth (°C) [29] 
TOPT 30 22 Optimum temperature for algal growth (°C) [29,30] 
TMAX 39 35 Maximum temperature for algal growth (°C) [29] 



Water 2015, 7 353 

 

 

For this work, the model was not further calibrated or modified beyond the work of Romero et al. [23] 

and therefore no performance metrics are presented. The lack of extensive calibration to HVR water 

quality dynamics means the results of the study can be considered to be a general test of the response 

sensitivity of ELCOM-CAEDYM to climate drivers and not an investigation of the likely effects of 

climate change on water quality in Happy Valley Reservoir. 

2.3. Scenarios for Analysis of ELCOM-CAEDYM Climatic Sensitivity 

A series of twenty four (24) scenarios were defined, synthetic input data files were generated and 

ELCOM-CAEDYM simulations were run. As stratification, algal growth and soluble metal 

concentrations were of key interest, the summer period simulation was used. The 100 m grid version of 

ELCOM was used to minimize the runtime required, as short-circuiting was not a primary concern of 

the water quality problems being investigated. The input boundary conditions analyzed were selected 

to represent the “climate drivers” of precipitation, air temperature and wind speed and are represented 

by the input files as changes in flow, air and water temperature, and wind speed, respectively (these 

will be referred to as INFLOW, WIND and TEMP in text). The synthetic input files were generated by 

applying a linear multiplier, for INFLOW and WIND, and an increment in the case of TEMP (Table 2). 

Temperature was modified in this fashion to facilitate comparison to potential temperature change 

magnitudes. For comparison, −5 and +5 degrees correspond to multipliers of 0.8 and 1.25, respectively, 

at 20 degrees Celsius, similar to the average temperature in the reservoir during the simulations. As 

ELCOM-CAEDYM will fail if changes to the water budget result in violations in the boundary 

conditions, changes in the inflow and outflow must be balanced, therefore the outflow (consumption at 

the offtake) was increased by a corresponding amount. The FLOW scenarios could therefore be 

considered to represent a change in the consumption of water by the water treatment plant (WTP), rather 

than changes in precipitation, strictly. This may initially seem artificial; however, as HVR is an offline 

storage and the inflow to the reservoir is fully regulated by a flume at Clarendon Weir, it can be 

interpreted as representing changes in demand, especially as a summer period was considered. 

Table 2. Boundary condition modifications applied in the sensitivity analysis. A scenario 

was generated for each change in meteorological variable, resulting in 24 scenarios 

differing from the base scenario. 

Temperature (TEMP) 
[Increment] 

Precipitation (FLOW) 
[Multiplier] 

Wind Speed (WIND) 
[Multiplier] 

−5.0 0.50 0.50 
−2.0 0.75 0.75 
−1.0 0.90 0.90 
−0.5 0.95 0.95 
0.5 1.05 1.05 
1.0 1.10 1.10 
2.0 1.25 1.25 
5.0 1.50 1.50 
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The scenarios were run using the same initial conditions; a “spin-up” period of 1 week was 

excluded from all summary calculations. As potable water production is the focus of the study, water 

quality (temperature, suspended solids, chlorophyll, iron and manganese) at the reservoir offtake was 

analyzed, along with “whole of reservoir” characteristics, such as water temperature and g' (the reduced 

gravity due to stratification, [21]). Changes in water quality were evaluated as changes in the mean 

concentration, the maximum concentration and the period of the simulation that the concentration was 

above a threshold value (green algal and cyanobacterial chlorophyll only, 1 and 10 µg/L, respectively). 

In order to facilitate the interpretation of the phytoplankton dynamics, summaries of the state variables 

governing the growth of the two species modeled were calculated as means of the time series values. 

2.4. An Empirical Analysis of the Climatic Sensitivity of Chlorophyll-a to Temperature 

Historical records of chlorophyll-a and water temperature were collated from the primary reservoir 

surface monitoring location for the period 1998 to 2013. Monthly medians and anomalies were 

calculated for water temperature and chlorophyll-a concentration. The monthly anomalies were 

normalized to unity, so as to be able to compare directly to modeling results summarized with a similar 

method. Linear regressions were fitted to the raw anomalies and normalized values, both for the entire 

year and for the summer months only.  

3. Results and Discussion 

3.1. Lake Physical Characteristics 

The (modeled) physical properties of the lake were altered by the changes in boundary conditions. 

The degree of stratification, as indicated by average g', was altered in all scenarios; changes in wind 

speed had a strong negative effect on lake stratification (Table 3). Increasing air and inflowing water 

temperature resulted in increased reservoir stratification, as did increased flow. Water temperature in 

the reservoir was not strongly influenced by the INFLOW scenarios, however the WIND and TEMP 

scenarios had strong effects on the mean of the average, minimum and maximum water temperatures 

observed over the simulations (Table 3). Only small impacts on reservoir volume and level were 

observed (not shown). 

3.2. Water Quality  

An increase in average modeled cyanobacterial chlorophyll was observed with elevated temperature 

(Figure 2a). The average concentration of reduced soluble iron (FeII) also increased with temperature 

while soluble manganese was less responsive (Figure 2). Sensitivity responses were close to linear near 

the origin (±10%), but some became non-linear at the extremes of the scenarios investigated. 

Exceedance of the threshold selected for cyanobacterial chlorophyll increased approximately linearly 

with increasing temperature above that of the original scenario, but had little effect below that level 

(data not shown). The FLOW scenarios had a consistently linear influence on reservoir water quality; 

increasing average concentrations of chlorophyte and cyanobacterial chlorophyll, MnII and FeII were 

observed in simulations with reduced flow; only the average concentration of suspended solids 
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(SSOL1) decreased with decreasing flow (Figure 2b). Changes in maximum modeled values behaved 

similarly as did duration of exceedance for the chlorophyll variables (not shown). 

Table 3. Summary of average physical properties for climatic sensitivity analysis of 

ELCOM-CAEDYM simulations of Happy Valley Reservoir. 

Factor 
Increment/  
Multiplier 

g' (/s2) 
Temperature 

Mean (°C) 
Temperature 

Max (°C) 
Temperature 

Min (°C) 

Original - 0.0502 20.5 21.8 16.5 
INFLOW 0.50 0.0481 20.9 22.2 16.6 
INFLOW 0.75 0.0490 20.8 22.0 16.6 
INFLOW 0.90 0.0496 20.6 21.9 16.5 
INFLOW 0.95 0.0498 20.6 21.9 16.5 
INFLOW 1.05 0.0503 20.5 21.8 16.5 
INFLOW 1.10 0.0505 20.5 21.8 16.6 
INFLOW 1.25 0.0510 20.3 21.7 16.6 
INFLOW 1.50 0.0513 20.2 21.5 16.6 

TEMP −5.0 0.0454 17.0 18.3 13.4 
TEMP −2.0 0.0481 19.1 20.4 15.9 
TEMP −1.0 0.0490 19.8 21.1 16.2 
TEMP −0.5 0.0495 20.2 21.5 16.4 
TEMP +0.5 0.0505 20.9 22.2 16.7 
TEMP +1.0 0.0511 21.3 22.5 17.0 
TEMP +2.0 0.0524 22.0 23.2 17.3 
TEMP +5.0 0.0571 24.1 25.4 17.5 
WIND 0.50 0.0984 22.7 25.9 17.0 
WIND 0.75 0.0681 21.5 23.4 17.0 
WIND 0.90 0.0560 20.9 22.4 16.7 
WIND 0.95 0.0528 20.7 22.1 16.6 
WIND 1.05 0.0474 20.4 21.6 16.6 
WIND 1.10 0.0452 20.2 21.4 17.2 
WIND 1.25 0.0397 19.8 20.8 17.4 
WIND 1.50 0.0334 19.3 20.1 17.3 

The relationship between WIND and algal growth was obviously non-linear with large increases in 

the average concentrations of both algal groups with decreasing wind speed (Figure 2c). Cyanobacteria 

were especially favored by low wind speeds. Reduction of wind speed from 90% to 75% of today's 

averages resulted in a large increase in the duration of exceedance by cyanobacteria (not shown). The 

simulated phytoplankton production rates were low (~0.1 day−1) compared to what they can potentially 

be (~0.3–0.5 day−1) and probably are in HVR. This was also noted by Romero et al. [23]. The 

simulated whole lake averages of respiration exceeded that of production in cyanobacteria, indicating 

that they were limited to growing in a limited volume of the lake where sufficient light was available. 

Elevated temperatures increased cyanobacterial production rates but these increased production rates 

were kept in check by elevated respiration. There was very little change in the nutrient (N&P) limitation 

of phytoplankton, even under the INFLOW scenarios; simulated phytoplankton growth was more 

limited by light availability (Table 4). 
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Figure 2. Change in mean modeled water quality values over the summer period in the 

different sensitivity analysis scenarios where temperature (a); rate of inflow and outflow  

(b) or wind speed (c) were incrementally changed. 
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Table 4. Mean cyanobacterial growth characteristics in ELCOM-CAEDYM simulations. 

The “Limitation by” values indicate the degree of growth limitation by light, phosphorus 

and nitrogen. It takes a value from 0 to 1; where 1 is unlimited and 0 is completely limited 

(no growth). 

Scenario 
Production Respiration Limitation by 

(day−1) (day−1) Light Phosphorus Nitrogen 

Original 0.080 0.093 0.099 0.915 0.890 
INFLOW by 0.5 0.079 0.096 0.095 0.916 0.883 
INFLOW by 1.5 0.081 0.091 0.102 0.916 0.890 

TEMP by −5 0.061 0.076 0.101 0.917 0.890 
TEMP by +5 0.108 0.115 0.106 0.909 0.884 
WIND by 0.5 0.083 0.106 0.086 0.923 0.899 
WIND by 1.5 0.075 0.087 0.103 0.917 0.889 

3.3. Implied Model Climatic Sensitivity 

These scenarios demonstrate that ELCOM-CAEDYM is responsive to changes in environmental 

drivers that are expected to change under future climate. The model tested was not heavily calibrated 

and therefore the results are able to be generalized. The observed sensitivities are consistent with 

qualitative expectations on the basis of contemporary understanding of reservoir processes; for example, 

that increased temperature and stratification may; increase the prevalence of cyanobacteria; and result in 

longer periods of decreased dissolved oxygen concentration and higher dissolved metal concentration. 

Other authors have observed model climatic sensitivities that resulted in increases in the proportion of 

cyanobacteria by 1%–7.8% per 1 °C increase in temperature (using the model PROTECH [31]). From a 

review of the literature of the potential impact of climate on phytoplankton communities, Elliott [13] 

concluded that projected future climate would result in increased relative abundance of cyanobacteria 

and changes in the phenology of phytoplankton dynamics but not necessarily an increase in the 

seasonal amount of phytoplankton biomass. These conclusions are consistent with the responses 

observed in this study. 

Important interactions with nutrient availability exist [32] but this was not investigated here. As an 

independent factor, nutrient addition (sensu INFLOW scenarios) did not have a large effect on the 

phytoplankton dynamics, presumably because of the lack of nutrient limitation (Table 4). The model 

tested in this study employed a relatively simple representation of phytoplankton community 

dynamics; only two main functional groups were represented. Furthermore some physiological 

mechanisms that facilitate cyanobacterial dominance, despite being available in CAEDYM, were not 

used in the model application of Romero et al. [23]. Greater sensitivity and/or more non-linearity may 

be expected if these mechanisms (e.g., buoyancy regulation) were implemented. 

The environmental drivers that were manipulated in the scenarios were not investigated factorially, 

however they are not completely independent; changes in mean and maximum water temperature 

occurred in the INFLOW and WIND scenarios (Table 3). This complicates the interpretation of model 

outputs without extensive comparison of individual simulations; an effort not warranted by the goals of 

this study. The scenarios were arbitrarily selected to quickly develop a picture of the sensitivity of the 

model to changed boundary conditions. As such, the important environmental drivers of dilution and 
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nutrient loading are confounded in the multiplication of inflow volumes. Inflow scenarios assumed the 

same constituent concentrations and therefore the higher flow scenarios had higher nutrient loads. 

However as chlorophyll concentrations decreased as flow increased; it is apparent that dilution was a 

more important driver of algal biomass than nutrient load and availability. Despite this, the prediction 

that phytoplankton growth is rarely limited by nutrient availability may suggest that reducing the 

external load may be an option for reducing algal growth. The internal load was not investigated as 

part of this study but given the short water retention time of the reservoir, it is probably of minor 

importance, compared to the external load. The reduction of nutrient availability represents a potential 

strategy for adaptation to climate change and the likely negative effects on water quality resulting from 

increased cyanobacterial growth. Water quality models, such as ELCOM-CAEDYM, have an 

important role to play in determining the potential benefit of a nutrient reduction program. 

3.4. Empirical Reservoir Climatic Sensitivity 

Linear regression between water temperature and chlorophyll median monthly anomalies did not 

resolve slope estimates significantly different from zero (0.105 ± 0.134, Pr(>|t|) = 0.43). The weak 

positive slope estimate combined with a poor predictive relationship (R2 = 0.0142) demonstrates that 

surface water temperature did not play an important role in determining total chlorophyll in this period 

(Figure 3b); it also demonstrates that total chlorophyll was not negatively correlated with water 

temperature, as implied by the water quality model (Figure 3a). This might suggest that deficiencies in 

definition of model structure or parameter identification have resulted in a non-behavioral model response 

(one not consistent with our expectations). These deficiencies could, for example, be found in the 

parameterization of the temperature response functions for growth, or be the product of the  

over-simplification of the phytoplankton community. This remains speculative, as this simple 

comparison cannot resolve the differences between the processes structuring algal growth in the model 

scenarios as compared to those operating over a longer period and in different years, within the 

reservoir. It must further be noted that the empirical analysis is limited to (monthly) anomalies less than 

+2 °C and so could not explore the full range of (annual) anomalies as defined by the model scenarios. 

 

Figure 3. Cont. 
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Figure 3. Comparison of (a) model derived climate sensitivity to (b) empirical reservoir 

climate sensitivity of chlorophyll-a to temperature in summer (December, January, 

February). In panel (b) each point represents the unity normalized anomaly from the 

monthly median value calculated over the period 1998–2013 and is labeled as yyyy-mm. 

4. Conclusions  

This study demonstrated that ELCOM-CAEDYM is sensitive to climate drivers and suitable for use 

in climate impact studies. Rigorous evaluation of the impact of selection of model structures and 

parameter values on the conclusions drawn from scenarios conducted with altered boundary conditions 

is advised. This study highlighted factors likely to be important in determining phytoplankton growth 

in Happy Valley Reservoir. Further it demonstrates that the water quality of the source waters will be 

of major importance to the reservoir water quality dynamics. 
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