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Abstract: Reliably estimating the turbulent fluxes of latent and sensible heat at the Earth’s surface
by remote sensing is important for research on the terrestrial hydrological cycle. This paper presents
a practical approach for mapping surface energy fluxes using Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) images from an improved two-source energy balance
(TSEB) model. The original TSEB approach may overestimate latent heat flux under vegetative
stress conditions, as has also been reported in recent research. We replaced the Priestley-Taylor
equation used in the original TSEB model with one that uses plant moisture and temperature
constraints based on the PT-JPL model to obtain a more accurate canopy latent heat flux for model
solving. The collected ASTER data and field observations employed in this study are over corn
fields in arid regions of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER)
area, China. The results were validated by measurements from eddy covariance (EC) systems, and
the surface energy flux estimates of the improved TSEB model are similar to the ground truth.
A comparison of the results from the original and improved TSEB models indicates that the
improved method more accurately estimates the sensible and latent heat fluxes, generating more
precise daily evapotranspiration (ET) estimate under vegetative stress conditions.
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1. Introduction

Modeling surface energy fluxes on a regional scale is essential for assessing energy and mass
exchanges between the hydrosphere, atmosphere, and biosphere. Evapotranspiration (ET) is a major
component of the processes and models for predicting soil water availability, forecasting rainfall,
and monitoring drought, water balance, and global climate change [1]. However, ET is difficult to
measure and predict, especially on a regional scale. Remote sensing techniques have been widely
used to estimate surface energy fluxes in recent years because they provide numerous parameters
necessary for surface energy balance (SEB) models, such as the land surface temperature, surface
albedo, and vegetation index at various spatiotemporal resolutions.

The numerous SEB algorithms that have been developed in the past few decades generally
include one-source models, such as SEBAL [2], METRIC [3], and SEBS [4], and multi-source models,
such as TSEB [5] and SEB-4S [1]. The one-source models treat the vegetation and soil as one “big
leaf” with identical temperature and aerodynamic resistance for heat transfer at the same height.
In contrast are the multi-source models, in which vegetation and soil are independent sinks or
sources of heat fluxes. Although good results have been obtained for dense canopies, the precision
of one-source models always decreases over sparse vegetation [6,7]. Under partial vegetation canopy
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cover, both soil and vegetation components contribute to the net flux exchange as well as the remotely
sensed signals; multi-source approaches are more suitable in such situations. The two-source energy
balance (TSEB) models can be divided into layer and patch approaches. The TSEB layer approach
(e.g., [5]) is meant to represent a stand of vegetation exchanging sensible and latent heat with the
atmosphere from two different sources: a substrate (e.g., bare soil or herbaceous canopy) and an
upper canopy. The total flux of sensible or latent heat emanating from the whole canopy is calculated
as the simple sum of the fluxes emanating from each layer [8]. In the TSEB patch model, each
patch acts independently, and the total flux of sensible or latent heat is computed as the mean of
the component fluxes (soil and canopy) weighted by their relative area (fractional vegetation cover,
fc) [8].

Both the layer and patch TSEB approaches require the input of the component temperatures (soil
and canopy temperatures), which can be derived from the radiometric temperatures measured at two
view angles, for example, using an along-track scanning radiometer (ATSR). However, radiometric
temperature (Trad) is usually only available at a single view angle from satellites (e.g., MODIS,
ASTER, HJ-1B, FY3A, and Landsat 8). To solve this problem, the TSEB patch model proposed by
Sanchez et al. [9] was tested by component temperatures from field observations; Anderson et al. [10]
used the light-use-efficiency (LUE) model for TSEB scheme driven primarily by thermal remote
sensing inputs. Long and Singh [11] proposed the TTME patch model and obtained the component
temperatures from the sketch of the trapezoid fc-Trad feature space. The Priestley-Taylor iteration
approach, which derives the component temperature by providing an initial estimate of the canopy
ET, is more popular [12,13] due to its avoidance of having to estimate vapor pressure deficit and
its briefness.

However, there are still deficiencies in regional applications using TSEB models, mostly resulting
from the uncertainty of the derived component sensible and latent heat fluxes. Although the
Priestley-Taylor iteration approach has been widely used in TSEB models, its insufficiency is obvious;
it may overestimate the canopy ET, which leads to underestimation of the total sensible heat flux and
overestimation of the total latent heat flux. This is especially the case with low soil wetness, high air
drying power, and sparse vegetation cover [11,13–15] because the original Priestley-Taylor iteration
approach proposed by Norman et al. [5] did not include a reasonable reduction of initial canopy ET
under vegetative stress conditions, such as water stress and air temperature stress.

In this paper, an improved layer TSEB model was tested by combining four ASTER remote
sensing images and micrometeorological flux tower data. A modified Priestley-Taylor iteration
approach containing two plant physiological constraints, plant moisture and temperature, was
introduced to provide a reasonable initial canopy ET for model solving. To map the daily
ET, a method of extrapolation by combining the instantaneous evaporative fraction (EF) derived
from ASTER images was used. Finally, the estimations were validated by covariance (EC)
system measurements from nine stations over croplands in the Heihe Watershed Allied Telemetry
Experimental Research (HiWATER) area, China. The estimations provided by the TSEB models with
or without plant physiological constraints were also compared.

2. Materials and Methods

2.1. Study Site and Measurements

Accurate and precise ground-based measurements are essential for defining and verifying
satellite-based estimates and for supporting specialized research [16]. HiWATER has been designed
as a comprehensive eco-hydrological experiment in the Heihe River Basin in the arid northwest region
of China within the framework of “Integrated research on the eco-hydrological process”. The overall
objective of HiWATER is to improve the observability of hydrological and ecological processes, to
build a world-class watershed observing system, and to enhance the applicability of remote sensing in
integrated eco-hydrological studies and water resource management at the basin scale. Ground-based
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measurements from nine stations were collected in 2012 within an observation matrix (Figure 1)
located in the Yingke and Daman irrigation districts of the Zhangye Oasis. The land surface of the
observation area is heterogeneously dominated by corn, orchards, and vegetables. Each station was
equipped with an EC tower and an automatic weather system (AWS).

The AWS observations (Figure 2) included wind speed (height: 5 m and 10 m; sensor type:
AV-30 WS (Avalon Scientific, Inc., Jersey, NJ, USA), Windsonic (Gill Instruments Ltd., Hampshire,
UK)), air temperature and humidity (height: 5 m and 10 m; sensor type: Avalon AV-14TH (Avalon
Scientific, Inc., Jersey, NJ, USA)), air pressure, net radiation (Rn) and four radiation components
(downward shortwave radiation, reflected shortwave radiation, downward longwave radiation, and
upward longwave radiation; sensor type: Kipp & Zonen CNR 4 (Kipp & Zonen B.V., Delft, The
Netherlands), Eppley PIR & PSP (Eppley Laboratory, Inc., Newport, RL, USA), soil temperature
(sensor type: Avalon AV-10T (Avalon Scientific, Inc., Jersey, NJ, USA)) and moisture (sensor type:
Campbell CS616 (Campbell Scientific, Logan, UT, USA)) profiles, and turbulent fluxes (sensor type:
CSAT3 & LI7500A (Campbell Scientific, Logan, UT, USA)). Three soil heat flux plates (sensor type:
AV-HFT3 (Avalon Scientific, Inc., Jersey, NJ, USA)) were placed horizontally 0.06 m below the soil
surface, one under the plant positions and two in adjacent rows. The soil heat flux (G) was calculated
by adding the average flux measured by the three soil heat flux plates at a fixed depth (0.06 m) to
the energy stored in the soil layer above the heat flux (∆s) plate measured using two thermocouples
buried 0.02 m and 0.04 m over the flux plates. The net storage of energy (∆s) in the soil column was
computed using the change over time of the temperature of the soil layer above the heat flux plates
via the method of Consoli and Vanella [16].
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The raw data acquired from the EC towers at 10 Hz were processed using the post-processing
software EdiRe developed by Edinburgh University, UK, including spike removal, lag correction of
H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, performance
of the planar fit coordinate rotation, density fluctuation correction (WPL-correction), and frequency
response correction [17]. The half-hour-averaged latent and sensible heat flux (LE and H)
values were calculated from the post-processed results. In general, the averaged closure ratio
[CR = (LE + H)/(Rn − G)] for all observations was 0.85. Twine et al. [18] reported that the Bowen
ratio method for forcing closure of the measured energy balance improved the agreement with the
water balance results. Therefore, this method was used to correct the eddy covariance measurements
of the sensible and latent heat fluxes for energy closure.

2.2. Remote Sensing Data

ASTER has three spectral bands in the visible near-infrared (VNIR), six bands in the short-wave
infrared (SWIR), and five bands in the thermal infrared (TIR) regions, with 15, 30, and 90 m ground
resolution, respectively. Four images from ASTER Level 1-B in 2012 were collected over the whole
experimental region on 11 August, 18 August, 3 September, and 12 September. The images were
geometrically rectified to the Universal Transversal Mercator projection system (UTM Zone 33N)
using the Environment for Visualizing Images (ENVI). The spectral radiance was obtained through a
radiometric calibration process for the calculation of the apparent reflectance in the VNIR region of
the electromagnetic spectrum using the following equations:

Lλ = (DNλ − 1) · UCCλ, (1)

where Lλ is the ASTER spectral radiance (W·m−2· sr−1·µm−1) at the sensor’s aperture at wavelength
λ and obtained from the digital numbers (DN) values from the ASTER Level 1-B data. UCCλ is the
unit conversion coefficient. The surface reflectance was obtained from the at-sensor spectral radiance
by atmospheric correction conducted using the ENVI Fast Line-of-sight Atmospheric Analysis of
Spectral Hypercubes (FLAASH) method. The normalized difference vegetation index (NDVI) was
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computed using the ASTER band 2 and 3N surface reflectance. The leaf area index (LAI) was related
to NDVI based on the following equation [19]:

LAI =
√

1 + NDVI
1 − NDVI

NDVI. (2)

Surface radiometric temperature (Trad) is a key parameter in the TSEB model. In this study, Trad
was retrieved using the algorithm for the linear combination of the ASTER five TIR bands proposed
by Jimenez-Munoz and Sobrino [20].

Furthermore, the disaggregate radiometric temperature (DisTrad) approach proposed by
Kustas et al. [21] was used to disaggregate Trad to a 15 m spatial resolution, the same resolution
as the VNIR region of ASTER. DisTrad is a thermal sharpening technique that uses the relationship
between Trad and NDVI without requiring any empirical external calibration by fitting a least-squares
expression between the radiometric temperature and NDVI (15 m) aggregated at the coarser Trad
spatial resolution (90 m). This technique has shown good performance for agricultural areas [16].

2.3. Methods

The improved TSEB model has a similar scheme to the model of Norman et al. [5].
The relationships between the net radiation (Rn), soil heat flux (G), sensible heat flux (H), and latent
heat flux (LE) are:

Rn = G + H + LE (3)

Rn = Rnc + Rns (4)

H = Hc + Hs (5)

LE = LEc + LEs (6)

G = CgRns (7)

Rns = LEs + Hs + G (8)

Rnc = LEc + Hc. (9)

Rnc and Rns are the net radiation (W·m−2) absorbed by the canopy and penetrating to the
soil surface, respectively; Hc and Hs are the sensible heat fluxes (W·m−2) from vegetation and soil,
respectively; and, similarly, LEc and LEs are the latent heat fluxes (W·m−2) over the canopy and soil
surface, respectively. Cg is the ratio of soil heat flux and net radiation over the soil surface. A simple
algorithm was used to predict the net radiation:

Rn = (1 − α)Sd + εaσT4
a − εσT4

rad (10)

εa = 1.24
(

ea

Ta

)1/7
(11)

ε = fcεc + (1 − fc) εs, (12)

where Sd is the downwelling shortwave radiation (W·m−2) estimated by Allen et al. [3] and εa is the
emissivity of the atmosphere related to air temperature Ta (K) and water vapor pressure ea (hPa). ε is
the land surface emissivity estimated by Consoli and Vanella [16]. εc is the emissivity of vegetation
and εs is the emissivity of the soil surface, which can depend on the soil moisture [11,22]. In addition,
some representative values for εc and εs can be retrieved from the look-up tables compiled by
Rubio et al. [23] in the absence of measured values. α is the broadband albedo in the visible and
near infrared bands computed from the formulation proposed by Consoli et al. [24]. fc is the fractional
vegetation cover and is related to the NDVI.
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The soil heat flux was estimated using the equation described by Colaizzi et al. [25]:

G = CgRns =

{
a · cos

[
2π
b

(t + c)
]}

Rns, (13)

where t is the time in seconds relative to solar noon, a is the amplitude parameter, b is the period, and
c is the phase shift. In this study, a = 0.3, b = 86,400 (s), and c = 10,800 (s).

The sensible heat flux is expressed according to the following equations:

Hc = ρCp
Tc − Ta

rah
(14)

Hs = ρCp
Ts − Ta

rah + rs
, (15)

where Tc is the radiometric temperature from the canopy component and Ts is the radiometric
temperature from the soil surface. The derived surface radiometric temperature Trad can be related to
Tc and Ts based on the fractional vegetation cover within the sensor field of view, f (θ):

f (θ) = 1 − exp
(
−0.5LAI

cosθ

)
(16)

Trad =
[

f (θ)T4
c + [1 − f (θ)] T4

s

] 1
4 , (17)

where θ is the view zenith angle, rah is the aerodynamic resistance to heat transfer between the
canopy and the reference height (see Appendix A of Morillas et al. [13]), and rs is the aerodynamic
resistance to heat flow in the boundary layer immediately above the soil surface (see Appendix C of
Norman et al. [5]).

Tc and Ts are critical for solving the TSEB model and can be measured directly from
appropriate measurements. However, ground-based observations are difficult over a large region.
Norman et al. [5] proposed a method that uses the Priestley-Taylor approach to provide an initial
estimate of LEc as follows:

LEc = αpt fg
∆

∆ + γ
Rnc (18)

Rnc = Rn[1 − exp(−kLAI/
√

2cos(θz))]. (19)

Equation (19) is a modification from the original formulation proposed by Norman et al. [5] based
on simulations with a detailed soil–plant–atmosphere model, Cupid [26]. θz is the solar zenith angle
and the value of k = 0.45 is used for dense vegetated cover (i.e., LAI ≥ 2), while for partial canopy
cover where LAI < 2, k = 0.8 is used [26]. The green canopy fraction fg was computed according to
Equation (20) [27,28]. fIPAR is estimated as a linear function of NDVI according to Fisher et al. [27].

fg =
fAPAR
f IPAR

(20)

The parameter αpt is always set as 1.3. By combining Equations (9), (10), (14) and (18), the
initial Tc can be obtained. Ts is estimated from this initial Tc by Equation (17), and Hs is estimated
by Equation (15). Finally, the initial LEs can be obtained by Equation (8). This equation system is
the basis of the iterative procedure. When the LEs is greater than zero, iteration stops because a
reliable solution has been reached. In contrast, when the LEs is less than zero, an unrealistic situation
under daytime conditions is assumed because condensation in the soil is very unlikely [13]. This is
considered in the case of vegetative stress (water or temperature), which forces an iterative reduction
of the parameter αpt until a positive LEs is attained. The Priestley-Taylor approach is relatively simple
and has been proven to be theoretically robust for estimates of potential evapotranspiration.
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In this study, two more plant physiological constraints, the plant moisture constraint fm and the
plant temperature constraint fT , were used to reduce the LEc from its potential level [27,28].

LEc = αPT fg fM fT
∆

∆ + γ
Rnc (21)

The plant moisture constraint, fm, was estimated from the relative change in light absorptance
according Equation (22), assuming that light absorptance varies primarily in response to moisture
stress [29]. fARAR is the fraction of absorbed photosynthetically active radiation and can be acquired
from MODIS standard products or calculated as a function of vegetation indexes [28].

fM =
fAPAR

fAPARmax
(22)

The plant temperature constraint (fT) accounts for reductions in the photosynthetic efficiency
when plants are growing at temperatures departing from their optimum temperature range [30].
fT depends on the optimum air temperature for plant growth Topt (◦C) and air temperature (Ta).
In our research, we fixed Topt as 25 ◦C, as this value has been applied in global modeling studies
across different types of biomes [28]. fT is given by:

fT = 1.184 ·
[
1 + e0.2·(Topt−10−Ta)

]−1 [
1 + e0.3(−Topt−10−Ta)

]−1
. (23)

The daily ET (ET24, mm) was computed using a method of extrapolation by combining the
instantaneous evaporative fraction (EF) derived from ASTER images and the daily radiation (Rn,24)
measured by the micrometeorological flux tower. L is the latent heat of vaporization.

ET24 = EF
Rn,24

L
=

LE
Rn − G

Rn,24

L
(24)

3. Results and Discussion

3.1. Surface Radiometric Temperature

Figure 3 depicts a comparison of the ground-based surface radiometric temperatures (Trad) with
the ASTER-derived surface temperatures. Although the ASTER images have a spatial resolution
of 90 m for the thermal infrared bands and the scale of the thermal ground-based measurements is
approximately 10 m [16], the comparison shows reasonable variation, with a determination coefficient
of R2 = 0.91, yielding a bias of 0.18 K, an RMSD of 1.10 K, and an MAPD of 0.33%.Water 2015, 7 9 
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3.2. Instantaneous Surface Energy Fluxes

The estimates of the energy balance components (Rn, G, H, and LE) obtained by combining
the modified TSEB model with the ASTER images were compared with the tower-based flux
measurements that were adjusted for energy balance closure using the Bowen ratio method. For each
flux tower, the simulated fluxes were averaged over the estimated upwind footprint or source
area [31]. The following three statistical parameters were chosen to measure the strength of the
relationship between the simulated results and measurements: the root mean squared difference
(RMSD), bias, and mean absolute percentage difference (MAPD). Maps of the different energy balance
terms obtained on 18 August from the application of the improved TSEB models are shown in
Figure 4, with the scatterplot shown in Figure 5 and the statistics listed in Table 1. The results indicate
that, in general, all four components of the energy balance equation agree reasonably well with the
tower-based measurements.

To estimate the net radiation, Equation (10) was applied using values εc = 0.985 and εs = 0.960,
yielding a bias of 2.4 W·m−2, RMSD = 19.0 W·m−2 and MAPD = 2.2%. In some studies, Cg is set
as a constant to estimate the soil heat flux; however, Cg can vary within the range 0.2–0.5 depending
on the soil type and moisture content. The simulated G from the phase difference equation compares
well with the ground measurement, with an RMSD of 17.3 W·m−2, a bias of −0.1 W·m−2, and a
MAPD of 18.1%.
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Figure 4. Maps of the improved TSEB-derived surface energy fluxes on 18 August 2012.
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Table 1. Statistics of the improved TSEB model-derived surface energy fluxes.

Flux Day Observation
Number

Observed
Averaged
(W·m−2)

Simulated
Averaged
(W·m−2)

Bias
(W·m−2)

RMSD
(W·m−2)

MAPD
(%)

Rn

11 August 8 653.4 661.0 7.6 22.1 2.8
18 August 9 671.3 675.7 4.4 15.1 1.9

3 September 9 666.4 662.2 −4.2 26.3 3.3
12 September 9 659.1 660.8 1.7 6.9 0.9

Overall 35 662.5 664.9 2.4 19.0 2.2

G

11 August 8 80.0 77.7 −2.3 17.8 17.1
18 August 9 75.2 75.1 −0.1 16.7 20.7

3 September 9 80.2 77.3 −2.9 23.5 25.9
12 September 9 74.6 79.5 4.9 7.1 8.6

Overall 35 77.5 77.4 −0.1 17.3 18.1

H

11 August 8 111.5 116.6 5.1 27.0 25.8
18 August 9 100.7 104.1 3.4 22.8 18.7

3 September 9 200.1 189.1 −11.0 24.3 10.2
12 September 9 282.3 278.5 −3.8 46.8 13.2

Overall 35 173.7 172.1 −1.6 31.9 16.7

LE

11 August 8 461.9 466.7 4.8 38.2 6.4
18 August 9 495.3 496.4 1.1 25.0 3.9

3 September 9 386.1 395.9 9.8 22.2 4.7
12 September 9 302.2 302.8 0.6 48.6 13.5

Overall 35 411.4 415.5 4.1 35.1 7.1

Figure 5 shows high values of the determination coefficient R2 for both the simulated H and
LE compared to the tower-based flux measurements. H had an RMSD of 31.9 W·m−2, a bias
of −1.6 W·m−2, and a MAPD of 16.7%. LE was also well reproduced by the improved TSEB
model, demonstrating an overall RMSD of 35.1 W·m−2, a bias of 4.1 W·m−2 and a MAPD of
7.1%. An obvious seasonal change is evident from the mean values of H and LE from Table 1.
For 11 August and 18 August, both the simulated and measured sensible heat flux showed a mean
value over all stations of approximately 100 W·m−2, with relatively high latent heat flux mean values.
However, in September, the corn began to transition into its senescence stage, and the vegetative stress
condition decreases the latent heat to less than 400 W·m−2 and increases the sensible heat flux to over
200 W·m−2 for both days.

Figure 6 presents comparisons of the H and LE from the original and improved TSEB models.
The original TSEB model without the constraints ft and fm tended to overestimate the latent heat flux
and underestimate the sensible heat flux. Figure 7 shows the mean values of H and LE for the four
days, obtained using the two approaches. On 18 August, the sensible heat flux from the original TSEB
was slightly less than the EC measurements. However, on 11 August, 3 September, and 12 September,
H was underestimated by the original approach, leading to overestimation of LE.
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3.3. Daily ET

Figure 8 presents comparisons of the model-derived and tower-based measurements, and
Figure 9 shows maps of the daily ET for the four days. The ET maps for the four days indicate
both temporal and spatial variations. The corn field showed higher ET values than the other land use
types. A seasonal variation in ET was also found; an obvious decline in ET occurred in September
because the vegetation transitioned into the senescent stage, with more severe vegetative stress.
The results from the improved TSEB model showed good overall agreement with the ET measured
by eddy covariance. Although some adjacent values were found for both the improved and original
TSEB models, the latter generally overestimated ET, especially on 11 August, 3 September, and
12 September (Figure 10). From the statistics in Table 2, larger RMSD, bias, and MAPD values
were obtained using the original TSEB. The improved TSEB model, including consideration of the
physiological constraints, provided a more reasonable estimation of the daily ET, decreasing the
overall RMSD by approximately 0.44 mm, the bias by 0.59 mm, and the MAPD by 11.53%.
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3.4. Determination of the Effects of Plant Constraints

Reliable ET estimates are essential for improving spatial crop water management. Land surface
energy balance models, using remote sensing data from ground to airborne and satellite platforms
at different spatial resolutions, have been found to be promising for mapping daily ET at the farm
level and on the regional scale [16]. Recent research has shown that the TSEB model solved using
the original Priestley-Taylor approach may overestimate LE, especially under low soil wetness, high
air drying power, and sparse vegetation cover [11,13–15]. The parameter αpt of 1.3 is suitable
for unstressed canopy [31], however, there is a critical assumption involved in TSEB that the
Priestley-Taylor formula with only fg and a parameter αpt of 1.3 applies for both stressed and
unstressed vegetation and agricultural crops, and there is no mechanism in the model to capture
the condition of αpt < 1.3 and LEs > 0. Examining the Priestley-Taylor iteration approach in TSEB,
the parameter αpt is only manually reduced to account for vegetative stress when a nonphysical
solution of LEs, i.e., LEs < 0 during the daytime, is attained. Therefore, if a solution, i.e., LEs > 0, is
obtained under vegetative stress, the parameter αpt does not change, and overestimation of LE occurs.
Furthermore, when reducing αpt, the iteration immediately stops when LEs is above zero; however,
it is unreasonable sometimes because αpt may still be too large.

fg accounts for the fraction of the LAI that is green and is assumed to be unified without
additional information about phonological condition [5]. The method for fg in this paper has been
widely used in regional estimates of actual evapotranspiration and has also been validated for
different ecosystems [13,27,28]. Fisher et al. [27] proposed that no moisture stress occurs before peak
light absorptance, when the canopy is actively growing and water stress should be minimal. At moist
sites, fm plays only a minor role; its contribution is primarily limited to sites that experience drought.
The method for ft is from the Carnegie–Ames–Stanford Approach (CASA) model [28]. ft decreases
when the air temperature departs from the optimum range for plants growth. To avoid calibrations of
Topt depending on the site, Garcia et al. [28] fixed Topt at 25 ◦C, a value that has been widely applied.

To determine the relationships between plant constraints and derived energy fluxes, we
determined the mean values for the three plant constraints (Table 3). fg changed slightly for the
four days, and fm and ft varied daily. On 18 August, fm is the largest of the four days and ft values
were close to 1; thus, the performance of the two approaches was more similar. For 11 August, TSEB
without an ft close to 1 and a decreasing fm (0.72) underestimated H (Figure 7). On 3 September
and 12 September, both fm and ft declined because of increasing plant moisture and temperature
stress. In this situation, the canopy is less vigorous, with a higher canopy resistance; the stomata of
leaves near the top of the canopy close progressively, and plants start to reduce their transpiration.
More energy is transformed into sensible heat flux. If the vegetative stress becomes more severe,
sensible heat flux can become the dominant turbulent heat flux; this phenomenon is found in the
drylands in the arid region.

Ignoring fm and ft, the simulated H of the two days in September was lower than the EC
measurements, causing an overestimation of the latent heat flux, especially on 12 September
(Figure 7). This overestimation was a result of the more severe vegetative stress that occurs, with
lower fm and ft.

Table 3. Mean values of fg, fm and ft.

Date fg fm ft

11 August 0.96 0.72 1.00
18 August 0.98 0.82 0.99

3 September 0.95 0.70 0.81
12 September 0.88 0.51 0.52
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Guzinski et al. [32] found that the TSEB model is sensitive to αpt and that using only the remote
sensing vegetation-index-based fg to scale αpt may lead to an underestimation of the sensible heat
flux. As Consoli and Vanella [16] proposed that the αpt variation should be set within the range
of 1.1 to 1.3, a lower value αpt = 1.1 was also tested for the original TSEB model. Although better
results were found from the comparison of averaged heat fluxes, the phenomenon of the original
TSEB with αpt = 1.1 underestimating H and overestimating LE still existed, especially in September
(Table 4). Manually adjusting the value of αpt downwards may play a role under multiple vegetative
stress conditions; however, this seems subjective because the severity of vegetative stress is always
not clear. Using plant physiological-based different constraints may be more reasonable.

The described satellite-based energy balance models provide instantaneous values for the heat
flux corresponding to the time of satellite overpass. An important step in the application of the
improved two-source energy balance model is extrapolation from instantaneous to daily data, which
are more valuable for agricultural purposes. The extrapolation method used in this paper assumes
self-preservation in the diurnal cycle of the energy budget, such that the relative partitioning among
the components of the energy balance, expressed by EF, remains constant throughout the day. In
this method, the accuracy of the instantaneous EF directly determines the precision of the daily
ET. Overestimation of the instantaneous latent heat flux in the original TSEB model also results in
overestimation of the EF, leading to obviously higher daily ET measurements than EC measurements,
especially under severe vegetative stress, as shown by the reduced fm and ft values in September. The
comparison indicated that the improved TSEB model provided a more accurate estimation of the
daily ET than the original TSEB.

Table 4. Statistics of energy fluxes from improved TSEB and original TSEB (αpt = 1.3 and 1.1).

Flux Day
Observed
Averaged
(W·m−2)

Improved TSEB
Averaged
(W·m−2)

Original TSEB
Averaged
(W·m−2)

TSEB (αpt = 1.1)
Averaged
(W·m−2)

H

11 August 111.5 116.6 55.6 78.1
18 August 100.7 104.1 80.1 94.9

3 September 200.1 189.1 122.2 141.9
12 September 282.3 278.5 184.8 199.4

LE

11 August 461.9 466.7 527.7 505.2
18 August 495.3 496.4 520.5 505.7

3 September 386.1 395.9 462.8 443.0
12 September 302.2 302.8 396.6 381.9

Many single-source models, such as SEBS and SEBAL, also underestimate the sensible heat flux,
especially over a partial canopy. Gokmen et al. [6] were the first to propose considering the water
stress and integrating the soil moisture factor derived from remote sensing data into SEBS; however,
the fitting method is complex, limited, and difficult to extend over a large area. On the other hand, the
improved approach in this study requires no calibration and can be easily applied with imagery from
many other satellites with thermal infrared bands, such as MODIS, FY3, and Landsat, for regional,
continental, or global mapping of ET. A comparison of a single-source model and improved TSEB
may be conducted in a future study. The TSEB-based dual temperature difference (DTD) model,
introduced by Norman et al. [26], will also be tested with the improved TSEB in future work.

4. Conclusions

The main aim of this study was to test an improved TSEB model that takes into account plant
physiological, moisture, and temperature constraints. We have found that the original TSEB model
overestimates the latent heat flux under multiple vegetative stresses (moisture and air temperature),
as previously reported. The estimates of the surface energy fluxes obtained by combining the
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improved TSEB with ASTER images and meteorological data were compared with measurements
obtained from nine eddy covariance towers. More accurate sensible and latent heat estimates were
found, even under severe vegetative stress conditions. The proposed approach can easily be used
with other satellite images for a larger area of application.
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