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Abstract: Effective sensitivity analysis approaches are needed to identify important parameters
or factors and their uncertainties in complex Earth system models composed of multi-phase
multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study,
the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff
and latent heat flux are evaluated using data from a watershed. Different metrics, including residual
statistics, the Nash–Sutcliffe coefficient, and log mean square error, are used as alternative measures
of the deviations between the simulated and field observed values. Four sensitivity analysis (SA)
approaches, including analysis of variance based on the generalized linear model, generalized cross
validation based on the multivariate adaptive regression splines model, standardized regression
coefficients based on a linear regression model, and analysis of variance based on support vector
machine, are investigated. Results suggest that these approaches show consistent measurement
of the impacts of major hydrologic parameters on response variables, but with differences in the
relative contributions, particularly for the secondary parameters. The convergence behaviors of the
SA with respect to the number of sampling points are also examined with different combinations of
input parameter sets and output response variables and their alternative metrics. This study helps
identify the optimal SA approach, provides guidance for the calibration of the Community Land
Model parameters to improve the model simulations of land surface fluxes, and approximates the
magnitudes to be adjusted in the parameter values during parametric model optimization.
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1. Introduction

Recent advances in modeling Earth systems involve model development and integration, data
collection, and high-performance computing. The integrated Earth system involves multi-phase,
multi-component biogeophysical and biogeochemical processes. Integrated models introduce
numerous model and coupling parameters and therefore formidable high-dimensional parameter
space; moreover, many of the parameters cannot be observed or measured, and therefore are subject
to great uncertainty. All of these factors make it difficult to predict and quantify uncertainty and risk
for decision-making.
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A land surface model (LSM) is the land component of a numerical weather prediction or a
climate model. Developed as physically based models, the parameters in LSMs are designed to
be physically meaningful, measurable, and transferable to locations that share the same physical
properties [1,2]. Nevertheless, predictions from current-generation LSMs remain subject to large
uncertainties because of model structure errors caused by inaccurate parameterizations used to
represent physical processes, uncertainty in external forcing data and initial and boundary conditions,
as well as uncertainty in model parameters. As LSMs become increasingly sophisticated with
interacting processes described by complicated parameterizations yet with poorly constrained
parameter values, more and more research is focusing on designing algorithms to better estimate
and constrain LSM parameters and to quantify the associated uncertainties [3–6]. Version 4 of the
Community Land Model (CLM) was released by the National Center for Atmospheric Research as
the land component within the Community Earth System Model (CESM) [7,8]. CLM4 simulates
biogeophysical processes such as energy and water fluxes from canopy and soil; heat transfer in soil
and snow; the hydrology of canopy, soil, and snow; and stomatal physiology and photosynthesis.
Even though most of its applications are conducted at continental or global scales [9,10], CLM4 can
be run at any resolution, such as at flux tower sites [4,11] or small watersheds [12,13]. The main
governing equations and parameters are briefly introduced in Supplementary Materials Section 1.

Various techniques have been used for sensitivity analysis (SA) in land surface modeling [14–17].
These uncertainty quantification (UQ) and SA approaches have different focuses: global vs. local
sensitivity, derivative vs. interpreted variance, and quantitative vs. qualitative. To evaluate contributions
quantitatively, one can choose from different approaches [18,19], such as generalized cross validation
(GCV) [20], analysis of variance (ANOVA), standardized regression coefficients (SRCs) [21], the
Morris method [22], and the Sobol method [23,24]. Some of these approaches (e.g., the Morris
and Sobol methods) are based on simulation data directly, while others (e.g., GCV, ANOVA,
and SRC) are based on regression models. The simulation-based SA methods require numerous
simulation trials for high-order parameter space, which can be unaffordable for computationally
expensive simulations, so regression-based SA methods become favorable under such circumstances.
The various regression models that could be used in SA include the generalized linear model
(GLM) [25–28], multivariate adaptive regression splines (MARS) model [20,24,29,30], support vector
machine (SVM) [31–33], Gaussian process [34], and artificial neural networks (ANN) [35]. In this
study, we investigated four SA approaches to provide quantitative measures of the significance
of a parameter/factor by calculating its contribution of variance to the overall variability of the
model responses. Using these methods, the effects of linear, interaction, and high-order terms
of input variables can all be explored and narrowed down to fewer terms using parameter
reduction/selection techniques.

In our previous studies [4,13], the sensitivity of surface fluxes and runoff simulations to
major hydrologic parameters in CLM4 was investigated by integrating CLM4 with a stochastic
exploratory UQ framework. The framework features an entropy approach to objectively define
priors distributions of the input parameters that are representative of our knowledge of the system,
an efficient sampling method to explore the parameter space so that the output statistics are
exploratory of most if not all of the possibilities of the reality, and the multivariate GLM analyses and
significance statistical tests to rank the significance of input parameters and develop relationships
between inputs and outputs using response surface plots and the finalized linear models. The UQ
framework was applied at 13 flux towers in the Ameriflux network and 20 watersheds of the Model
Parameter Estimation Experiment (MOPEX) [13] spanning a wide range of climate, landscape, and
soil conditions. We found that the CLM4-simulated latent heat flux (LH), sensible heat flux (SH), and
runoff show the largest sensitivity to parameters of subsurface runoff generation.

It is particularly challenging to choose among the many SA approaches and various
combinations of input and response variables. Firstly, it is widely recognized that different SA
approaches might yield different conclusions regarding parameter sensitivities and/or developed
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relationships between the input parameters and output responses. Secondly, the choices of statistical
measures or the descriptive properties/metrics of model outputs may provide quite different findings
and/or conclusions about the model sensitivity from different perspectives. Furthermore, using
different metrics/measures/properties as the output variables in the SA would require different
numbers of samples or ensemble simulations to yield converged response surfaces (output variable
vs. input parameters). Therefore, the robustness of the conclusions derived using a single SA
approach (e.g., Hou et al. [4] and Huang et al. [13]) is to be assessed. In addition, because the ultimate
goal of SA is to provide guidance for calibration, rather than focusing solely on model responses to
parameters, more attention must be paid to deviations between simulated and observed variables.

Therefore, the study documented here aimed to evaluate the sensitivity of deviations between
simulated and observed runoff and latent heat flux, identify the possible ways of adjusting the input
parameter values for model improvement, and evaluate the feasibility of model calibration given
guidance results using the various SA methods. The SAs conducted during this study also provide
systematic and quantitative means for reducing the order of parameter space that can significantly
accelerate the calibration process. We also evaluated the robustness of the conclusions derived from
previous studies by comparing the choices of response variables and/or metrics for calibration,
sampling, and SA methods. Hence, the analyses described herein provide guidance for parameter
inversion design before integrating strategies such as Bayesian inversion [36,37].

In Section 2, we describe the study site, its model parameterization, the different metrics used in
the SAs, and the SA approaches. Section 3 presents the results of the effects of using different metrics
and SA approaches and discusses the convergence behaviors relative to the number of training
sample sets. Discussion and conclusions are provided in Section 4.

2. Methods

2.1. Site Description

To evaluate how various metrics or SA methods might affect the SA results, we explore
four different approaches at one MOPEX watershed investigated in our previous studies [4,13,36].
In the current study, the streamflow at the outlet of the watershed is retrieved from U.S. Geological
Survey (USGS) station 07147800 located at Winfield, Walnut River, Kansas. The 1 km resolution
evapotranspiration products at monthly time step during the period of 2000–2008, based on the
Moderate Resolution Imaging Spectroradiometer (MODIS) [38] (i.e., MOD16), is aggregated over
the entire watershed and serve as observations for validating CLM4 simulations. Details of the
MOD16 algorithm can be found at the description of MODIS Global Evapotranspiration project
(MOD16) [39]. The watershed, covered by grasslands and croplands, has a drainage area of
4869.18 km2, and is hereafter referred to as MOPEX 07147800. Daily streamflow observation data
are from the USGS station and are partitioned into surface and baseflow components using the one
parameter recursive filter [40]. The data are further aggregated to the monthly time step in this
study to evaluate simulations of total runoff and the partitioning between surface and subsurface
runoff climatologically.

In this study, CLM4 is applied as a typical lumped watershed hydrologic model by assuming
that the entire watershed can be represented as one grid cell using surface and subsurface runoff
generation formulations based on the TOPMODEL assumptions [12,41]. A 3.8 m soil column is used
to simulate the soil moisture redistribution. It is discretized into 10 layers. An unconfined aquifer
with a prescribed storage capacity and specific yield is added to the bottom of the soil column that
could potentially be recharged or supply water to the soil column. The temporal resolution is one
hour, and the results are averaged in each month to match the resolution of the available observation
data. Therefore, all of the comparisons between simulations and observations in this study are based
on the differences between the averaged simulated values in each month for this single lumped grid
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and the monthly averaged water flow data recorded at the MOPEX 07147800 streamflow station or
the monthly averaged latent heat derived from MODIS.

2.2. Model Parameterization

Ten parameters associated with the soil hydrologic process (i.e., surface and subsurface
runoff, recharge, soil water transport) are evaluated in this study, and consistent with our earlier
studies [4,13]. The parameters are fmax (maximum factional saturated area), Cs (shape parameter
of topographic index distribution ), fover (decay factor that represents the distribution of surface
runoff with depth), fdrai (decay factor that represents the distribution of subsurface runoff with
depth), Qdm (maximum subsurface drainage), b (Clapp and Hornberger exponent), Sy (specific yield),
Ψs (saturated soil matrix potential), Ks (hydraulic conductivity), and θs (porosity). Definitions
of the 10 selected parameters are in Supplementary Materials Section 1. The uncertainty ranges
and prior information about each input parameter are reported in our previous work [13] and are
summarized in Supplementary Materials Table S1. Given the prior information, the prior probability
density functions (pdfs) of input parameters are derived using the minimum-relative-entropy (MRE)
algorithm [42,43]. With the entropy concept, the MRE solution is unique and maximally uncommitted
with respect to unknown information given information such as bounds and moments. Therefore, the
input parametric uncertainties are fully represented in the form of the MRE prior pdfs, from which
samples of the input parameters can be generated using efficient sampling approaches (e.g., quasi
Monte Carlo (QMC), Latin Hypercube sampling (LHS)). The details of the MRE algorithm and how
to apply it on CLM4 input parameters were introduced in our previous work [4]. Other parameters,
like leaf area index and rooting depth of vegetation, may also affect runoff and evapotranspiration.
Considering too many parameters at the same time may significantly increase the computational
cost and make the SA results unreliable. Therefore, it is preferable to not work directly with a
very high-dimensional parameter space, because doing so would make the SA results inconclusive.
One solution is to divide all of the CLM4 parameters into several groups for SA study according to
their associated physical processes and interactions. We chose the group of parameters associated
with the soil hydrologic process in this study. In future work, we will consider adding more
parameters or evaluating different groups of parameters.

2.3. Response Variables and Metrics

In this study, we focus on CLM4-simulated runoff and latent heat flux at the MOPEX 0717800
basin from 2000 to 2008. The observed and simulated data to be evaluated include total runoff
(runoff), subsurface runoff (qdrai), surface runoff (qover), and latent heat flux (LH). Three metrics are
applied to quantitatively evaluate the deviations between the CLM4 simulations and observations:
residuals, Nash–Sutcliffe coefficient (NSC) [44,45], and log mean square error (LMSE). Residuals
directly measure the deviation between simulation results and observed data, and they favor more
of the high flow or high heat flux, because in general the absolute differences between simulations
and site observations are bigger when the observations of runoff or latent heat flux are higher.
The NSC measures the deviation between simulations and observations during the whole time period
of investigation by a nonlinear combination of the correlation, the difference in the mean, and the
difference in the variability. It emphasizes high flows or heat flux. LMSE evaluates the difference
between simulations and observations during the whole time period of investigation as well. Because
the value of runoff usually ranges from 0 to a few hundreds in the units of millimeters per day, the
log10 prunoffq usually ranges from´10 to 2. Therefore, the LMSE puts much more weight on the small
runoff values (e.g., near 0 mm/day). The same behavior is true for latent heat flux. Therefore, LMSE
places more weight on low flows or low heat flux.
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2.4. Effective Sampling and Sensitivity Analysis Methods

2.4.1. Sampling Methods

Input parametric uncertainty can be fully represented in the form of MRE prior pdfs. To reliably
evaluate the propagation of such uncertainty using the CLM, samples should be generated from
the pdfs to explore all possibilities within the parametric space without introducing undesired bias.
However, as the model’s parameter dimensionality increases, the number of samples required for
a systematic approach to adequately cover the parametric space becomes unreasonable without
efficient sampling methods. Furthermore, the distribution of samples should be consistent with prior
information about the parameters.

QMC methods have become increasingly popular over the last two decades because of their
faster convergence speeds and effective sampling of high-dimensional parametric space without
clumping and gaps [4,46]. In this study, 1024 QMC samples were generated from existing scrambled
Sobol sequences [23,47] that ranged from 0 to 1 and were scaled to the actual input parameter ranges
listed in our previous work [4]. The QMC samples were projected onto the prior MRE pdfs to
construct realizations of the samples in physical space, as shown in Figure 1.
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2.4.2. Sensitivity Analysis Approaches

Sensitivity analysis can be based on the direct system model outputs or a surrogate (e.g., a
regression model) that can fit the original system outputs to input parameters or factors. Analysis
based on the direct outputs avoids the inaccuracy and biases in the regression models, but
requires a large amount of sampling points with the necessary number of replicated values of
input parameters [48,49], such as those produced using the replicated Latin Hypercube sampling
(rLHS) method [50]. For a high-dimensional input parameter space, the number of sampling
points is usually more than 10,000 to achieve a converged result [51,52]. This number of sampling
points is unaffordable for most studies, particularly when the forward model (e.g., CLM4) is
computationally demanding. Therefore, SA based on a regression model is more efficient, especially
for high-dimensional input parameter space, because it does not require replicated values of each
input parameter. The accuracy of the regression method directly affects the reliability of SA. In this
study, four SA approaches are investigated, including analysis of variance (ANOVA) based on
the generalized linear model (GLM), generalized cross validation (GCV) based on the multivariate
adaptive regression splines (MARS) model, standardized regression coefficients (SRCs) based on the
linear regression model (LM), and ANOVA based on support vector machine (SVM). These four
approaches are briefly introduced in the following sections.

ANOVA Based on GLM

Assuming the response variable Y (e.g., runoff and/or its metrics) follows a normal distribution,
a GLM is fitted with the following starting model:

Yi “ c0 `
ÿ

j“1 to J

cjxi,j ` εi (1)

where xi,j represents the ith realization of the jth parameter, which can be original or transformed
first-order, two-way interaction, or higher order terms; cj is the fitted coefficient for the jth parameter,
which can be calculated by the least squares method [53,54]; Yi represents the ith realization of the
response variable, such as ri,t, NSCi, and LMSEi in this study; and ε is model-fitting residuals.
Generally, use of a GLM is recommended for a monotonic system [33], and it can offer an explicit
equation to present the relationship between input and output parameters, which is favorable for
engineering applications. ANOVA is a collection of statistical models used to analyze the regression
models. In this study, a new regression model built by removing a selected Kth parameter is

Yi “ c0 `
ÿ

j“1 to J, j‰K

cjxi,j ` εi (2)

The total deviation difference between the new regression model (Equation (2)) and the
completed regression model (Equation (1)) is defined as a quantitative measurement of the
importance of parameter xK. This approach summarizes all of the contribution of the parameter
xK in different orders and interaction terms.

GCV Based on the MARS Model

The MARS model is a form of a nonparametric regression technique and can be seen as
an extension of linear models that automatically model nonlinearities and interactions between
variables. The MARS regression model is of the following form:

f̂ pxq “
k
ÿ

i“1

ciBi pxq (3)
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where Bi pxq is a basis function, ci is a coefficient, and k is the number of MARS terms. The basis
function Bi pxq can be a constant, a hinge function [20], or a product of two or more hinge functions,
and x represents input parameters. In the MARS model-building process, MARS repeatedly adds
paired basis functions to the model, until the residual sum-of-squares (RSS) is smaller than required
or the maximum number of terms (specified by the user) is reached. This process is called forward
passing and it usually builds an over-fit model, which means the model has a good fit to the training
data used to build the model but it will not generalize well to new data. Therefore, the MARS model
can be implemented with backward passing to remove terms one by one until the GCV is small
enough. GCV is defined as follows:

GCV “
RSS

N

¨

˚

˝

1´
k` P

k´ 1
2

N

˛

‹

‚

2 (4)

where N is the number of observed system outputs, and P is a penalty coefficient, which is about 2
or 3 [20]. With MARS terms dropped, the RSS always increases, but the denominator of Equation (4)
increases as well, so the GCV is a form of regularization that trades off goodness-of-fit against model
complexity. After the MARS model is specified, the GCV can be used to quantitatively measure the
importance of input parameters. For a developed MARS model, when all of the terms related to an
input parameter are removed, the RSS and the number of MARS terms (k) will change, which leads
to GCV changes. Conversely, the GCV change due to removal of the MARS model terms related to a
parameter can be used as a quantitative measure of how much the regression model depends on the
removed input parameter, that is, the importance of the corresponding input parameter. The MARS
model theoretically can offer better interpolation than the GLM for a nonmonotonic nonlinear system,
so the measurement of input parameter importance is supposed to be more reliable. In addition, the
convergence behavior and performance with the number of sampling points for the MARS model
and GLM are different, as demonstrated and discussed in Section 3.3.

SRC Based on the LM

A linear polynomial regression analysis assumes the following form:

Ym “

n
ÿ

k“1

bkxm
k ` b0 ` εm (5)

For the m-th sample points, x are the input parameters, b are the coefficients to be determined, Y
is the output from the computational model, and ε is the discrepancy between the simulation model
output and the regression results. For the k-th input parameter, the SRC is defined as [21,55]

SRC “
bk ŝk

ŝ
(6)

where

ŝ “
„

1
M´ 1

ÿM

m“1

`

Ym ´Y
˘2
1{2

and ŝk “

„

1
M´ 1

ÿM

m“1

`

xm
k ´ xk

˘2
1{2

(7)

and M is the total number of sampling sets, and symbol p q stands for the mean value.
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ANOVA Based on SVM

The basic idea of the SVM regression model is to find a function that deviates most from the
actually obtained outputs for all of the training data and, at the same time, is as flat as possible [31,32].
For a linear function in the form of

Yi “
ÿ

j“1 to J

ajxi,j ` bi (8)

where aj is the weighting coefficient, bj is a translation coefficient, and xi,j is jth input parameter for
the ith sample, the formulated SVM approximation is

minimizing
1
2
|a|2 (9)

subject to

#

Yi ´
ř

j“1 to J ajxi,j ` bi ď ε
ř

j“1 to J ajxi,j ` bi ´Yi ď ε

where ε is the most required deviation. Because the SVM assumption may be unrealistic in
general, a slack variable is used to control the tradeoff between flatness and how much deviation
is tolerated. Coefficients aj can be calculated from the optimization problem (Equation (9)), and
the bi can be calculated using Karush-Kuhn-Tucker (KKT) conditions [33]. More details regarding
SVM can be found in references [31–33]. The ANOVA for SVM is designed to be the total deviation
difference between a new regression model (Equations (10) and(11)) that is kicked out a selected input
parameter (xK) and the completed regression model (Equations (8) and (9)) is defined as a quantitative
measurement of the importance of parameter xK.

Yi “
ÿ

j“1 to J, j‰K

ajxi,j ` bi (10)

minimizing
1
2
|a|2 (11)

subject to

#

Yi ´
ř

j“1 to J, j‰K ajxi,j ` bi ď ε
ř

j“1 to J, j‰K ajxi,j ` bi ´Yi ď ε

3. Results and Discussion

3.1. Effects of Choices of Response Variables/Metrics

Figure 2 shows boxplots [56–58] that compare the residuals for different response variables and
metrics as a function of input parameters Sy. In this study, Sy is one of the input parameters that
show significant sensitivity relative to the deviation between the simulation and observation data, so
we only show the boxplots of Sy to be concise. The boxplots for other input parameters are shown
in Figures S1–S3 in the Supplementary Materials Section 3. As mentioned in Section 2.1, a 3.8 m soil
column is used to simulate the soil moisture redistribution; it is discretized into 10 layers and an
unconfined aquifer with a prescribed storage capacity and specific yield (Sy) is added to the bottom
of the soil column that could potentially be recharged or supply water to the soil column. Generally,
a large value of Sy leads to more water exchange between soil layers and the aquifer. At this site, such
exchange seems to reduce overland flow (qover) and consequently increases subsurface runoff (qdrai)
by infiltrating more water into the subsurface. The recharge of the aquifer enhances percolation of
water from shallow to deep soil layers, reduces available water to the shallow rooted vegetation
dominated by cropland and grassland, and therefore the latent heat flux (LH). On the other hand,
under extremely wet conditions, both qdrai and LH are high because there is sufficient soil water
supply to both. Therefore, there is no simple linear relationship between Sy and LH. The total amount
of LH may be affected nonlinearly by the combination of Sy and other parameters. In Figure 2,
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the vertical red line is the default value of Sy, which is 0.18 at this site. The red circles are the
corresponding metric value obtained by using the default values for all of the selected 10 input
parameters. The boxplots of residual and NSC of total runoff, subsurface runoff qdrai, and surface
runoff qover indicate that increased values of Sy can reduce the deviations between simulation and
observation data. The boxplots of LMSE of total runoff, qdrai, and qover do not indicate an obvious
preference of Sy value that can reduce the deviations. For latent heat (LH), residual and NSC indicate
that decreased values of Sy can reduce the deviations, while LMSE indicates that increased values
of Sy can reduce the deviations. In summary, the boxplots of various metrics of streamflow indicate
that a large value of Sy can significantly reduce the model deviations. The metrics of LH indicate that
simultaneous adjustments of Sy and other parameters are required to further reduce the deviation
for LH. Many trials in the boxplots show that NSC LH approaches 1 and LMSE LH approaches
0 simultaneously with large Sy values. It should be noted that the boxplot is mainly used for
qualitatively showing the significance of the metrics variation due to changes in the input parameters
and the potential for reducing the deviations by adjusting parameter values. It is impossible to
find the optimal input parameter value directly from the boxplot. Systematic calibration of input
parameters will be discussed in our future work.Water 2015, 7, page–page 
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3.2. Effects of Choices of SA Approach

The preceding analyses provide qualitative information (Figure 2 and Figures S1–S3) about
which parameters are more significant, and therefore need to be adjusted when calibrating the
CLM4, and they indicate the direction of such adjustments. Sensitivity analysis approaches can
quantitatively measure the importance of each input parameter, but different approaches usually
yield different evaluations, especially for complicated systems. In many cases, it is hard to justify
which approach is best for the particular system. For example, ANOVA based on a GLM usually
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enlarges the importance of top-ranked parameters, so it is efficient for parameter screening and
reduced-order model development. GCV based on a MARS model usually more evenly distributes
the contribution of variance among all of the parameters, so it may enlarge the importance of lower
ranked parameters. There is no universal method that can accurately evaluate the importance of input
parameters for every system, but GCV is considered a more reliable SA approach for nonmonotonic
nonlinear systems. It is reasonable to compare the measurements/findings from multiple approaches,
such as ANOVA, GCV, and SRC, or combine them with qualitative analysis to provide supplementary
information to each other and to remove ambiguities from the conclusions. As mentioned above, the
reliability of the regression model affects the accuracy of the sensitivity measurement. Generally,
a higher order regression model can fit the training set better, which means that an SA based on
higher order regression model is more accurate. However, a high-order regression model may over-fit
the training set, e.g., fitting the noises or outliers in the system, which may reduce the reliability of
the SA results. Therefore, an appropriate order of the regression model is critical for SA. In this
study, a first-order GLM, MARS, LM, and SVM model can provide a correlation coefficient (R2) of
about 0.2 to 0.4, and a second-order GLM or MARS model can fit the system R2 of around 0.8 to 0.9.
A third-order GLM or MARS model can provide a R2 reaching 0.99, but the resulting relationships
are hard to interpret physically, and likely to be over-fitted statistically given the high number of
coefficients to be fitted with limited sample sets; therefore, third or higher order models are not
considered in this study.

Figure 3 shows the sensitivity score of the input parameters for the NSC and LMSE of runoff,
qdrai, qover, and LH derived using six different approaches. They are SRC based on LM, ANOVA
based on SVM, GCV based on first- and second-order MARS, and ANOVA based on first- and
second-order GLM. The score stands for the percentage of the contributions to the total variance
of the investigated output response from each input parameter’s uncertainty. The warm color (red)
stands for more important, and the cold color (green) means less important. Generally, Sy shows
considerable importance for most response variables and metrics. fdrai is important for total runoff,
subsurface runoff, and LH, while log10pKsq is more important for surface runoff and LH. log10pΨsq is
relatively important for surface runoff and latent heat as well. log10pQdmq also shows considerable
impact on qdrai and LH. In general, the six approaches show consistent results.
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Figure 3. Sensitivity scores for different response variables/metrics and SA approaches.

Figure 4 shows the proportion of sensitivity of ANOVA based on the first-order GLM for
residuals of runoff, qdrai, qover, and LH in 108 months to investigate the seasonal patterns of parameter
importance. The proportion of sensitivity is calculated for each month separately. For the residuals
of total runoff (Figure 4a), Sy and fdrai are dominant in the contributions to the residuals between
simulations and observed data in all of the 108 months. fdrai is more important in winter and
Sy is more important in summer. Using the residual of qdrai as the response variable (Figure 4b), the
sensitivity scores are almost the same as using total runoff. Regarding the residual of qover (Figure 4c),
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fmax, fover, Sy, and log10pKsq are the top four input parameters in most of the 108 months fmax, fover,
and Sy are more important in winter and less important in summer, while log10pKsq is more important
in summer and less important in winter. Figure 4d shows the residuals of LH. Sy, as the critical
parameter, is more important in winter and less important in summer. For the investigated site,
Sy mainly controls (indirectly) how fast the water can percolate through the soil layers; it modifies the
lower boundary condition of the 1-D Richards equation by recharging the underlying aquifer layer
during and after precipitation. Fast percolation leads to less overland flow and shallow-layer soil
moisture, and therefore less LH. It should be noted that the proportion of sensitivity shown here is
only for ANOVA based on the first-order GLM. The figures showing the proportion of sensitivity
variation with time for other SA approaches are in Supplementary Materials Figure S4, which assigns
a relatively lower proportion of sensitivity to Sy.

Figure 5 summarizes the four most important input parameters (red blocks) for different
response variables (total runoff, qdrai, qover, and LH), metrics (NSC, LMSE, and residual), and four
SA approaches (SRC based on LM, ANOVA based on SVM, GCV based on second-order MARS,
and ANOVA based on second-order GLM). The total contributions percentages of the top four input
parameters are also listed in the bottom line in Figure 5. ANOVA based on GLM or SVM indicates that
the top four important parameters are adequate to calibrate the CLM4, because they account for 80%
to 90% of the variations in response variables. However, GCV and SRC show that the top four most
important parameters only contribute 60% to 80% to the total variability of the response variables. The
quantitative importance measurement provides a guideline for further model calibration for CLM4.
For example, using the four most important parameters listed in Figure 5 as unknowns, one can
efficiently calibrate CLM by adjusting the parameters to match the total runoff simulations; adding
the fifth and sixth important parameters (i.e., b and θs) would have little impact on matching runoff
observations and CLM4 predictions.
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As mentioned in Section 3.2, different SA approaches may lead to different important 
measurement results for input parameters. Moreover, the convergence speed of the SA approach 
may vary, and the SA approach with higher convergence speed is always preferred. The 
convergence speed also varies with different response variables. Figure 6 shows the comparison of 
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Figure 4. Proportion of sensitivity for residual in 108 months. (a) Residual of total runoff (runoff)
ANOVA (GLM 1st order); (b) Residual of subsurface runoff (qdrai) ANOVA (GLM 1st order);
(c) Residual of surface runoff (qover) ANOVA (GLM 1st order); (d) Residual of latent heat (LH)
ANOVA (GLM 1st order).
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Figure 5. The four most important input parameters (red blocks) for different response variables
(total runoff, qdrai, qover, and LH), metrics (NSC, LMSE, and residual), and four SA approaches
(SRC based on LM, ANOVA based on SVM, GCV based on second-order MARS, and ANOVA based
on second-order GLM).

3.3. Convergence, Under-Sampling Issues, and Model Verification

As mentioned in Section 3.2, different SA approaches may lead to different important
measurement results for input parameters. Moreover, the convergence speed of the SA approach
may vary, and the SA approach with higher convergence speed is always preferred. The convergence
speed also varies with different response variables. Figure 6 shows the comparison of the convergence
of sensitivity scores for different response variables (NSC of total runoff, qdrai, qover, and LH)
and SA approaches (ANOVA based on first-order GLM and GCV based on first-order MARS).
The convergence curves for LMSE and second-order regression models are shown in Figure S5 in
the Supplementary Materials, where only the three most important input parameters are compared.
For the NSCs of total runoff and qdrai (Figure 6a,b), around 700 sampling points are needed to get a
converged sensitivity measurement, and the GCV measurement still shows small fluctuations after
700 sampling points. ANOVA measurement seems to be a little more stable than GCV. For the NSC
of qover (Figure 6c), around 250 sampling points are needed for stabilized sensitivity scores; similarly,
GCV shows slightly larger fluctuations than ANOVA. For the NSC of LH (Figure 6d), 250 samples are
needed, while the LMSE of LH needs about 400 sampling points. In summary, GCV and ANOVA
can both achieve relatively stable measurements using a reasonable number of sampling points.
The sensitivity score results converge slightly slower than the ANOVA results. From this point of
view, the ANOVA results are more reliable with limited samples. In addition, the convergence curves
provide guidance on the reliability of SA with different numbers of sampling points. For the field site
of investigation, the recommended number of sampling points would be at least 400 in order to fully
understand and therefore use the calibratable portion of the total variability in the observations. If the
research focus is to separate the dominant and secondary input parameters, 250 or even 128 sampling
points can provide relatively reliable results in ranking the parameter significance.
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of LH (1st order).

4. Conclusions

In this study, different SA approaches were applied to various combinations of input parameters
and CLM4 output metrics in order to evaluate the consistency and robustness of the conclusions
about parameter sensitivity and the possibility of model optimization. Generally, Sy shows significant
impacts on the deviation between the CLM4 simulations and observed conditions of the investigated
MOPEX 07147800 basin. fdrai is important for qdrai and LH, while log10 pKsq and log10pΨsq are
important for qover and LH. log10pQdmq also shows considerable impact on qdrai and LH. The soil
hydraulic parameters, Ks and Ψs, θs, and b, affect the maximum infiltration capacity and therefore
have significant impact on qover. According to the default global data set for CLM4, the prior ranges of
θs and b are much smaller than those of Ks and Ψs, so their impacts on the variation of surface runoff
qover seem to be smaller. fmax and fover are also critical parameters controlling qover, and because
they are closely related to topography and were estimated from high-resolution digital elevation
models, their default values and ranges were relatively accurate with small uncertainties and impacts
on model outputs. The subsurface runoff, qdrai, is exponentially dependent on fdrai and Sy, and
linearly dependent on Qdm. Furthermore, the hydrologic parameters investigated in this study would
influence not only runoff, but also soil moisture, which is key to the simulations of latent heat flux.
Therefore, the parameters important for runoff are usually important for latent heat flux as well.

All of the investigated SA approaches yield consistent findings and show that in general at least
three among the top four parameters are confirmed by two or more SA approaches, although the
quantitative measures of parameter importance vary among the SA approaches. ANOVA indicates
that the four most important parameters contribute around 80% to 90% of the variations in response
variables, which means that these four parameters are adequate to calibrate CLM4. GCV and SRC
indicate that the four most important parameters only contribute around 60% to 80% of the variations
in response variables, and the calibration might need the fifth and even sixth most important
parameters to help reduce the mismatches between runoff observations and CLM simulations.
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Theoretically, the MARS model can be used to build a regression model that perfectly matches the
training set (here the CLM4 simulations), because the MARS model can keep adding hinge functions
into the model to reduce the deviations to 0. Therefore, the MARS model provides a more accurate
regressed model than the other three regression models. However, a more accurate regression model
does not guarantee that the corresponding sensitivity measurement will be more reliable, because
the training data not only provide information about the relationship between input and output
parameters, but also contain noises associated with errors and uncertainties in observation-based
data and numerical errors in CLM4 simulations. The regression model that perfectly matches the
training data set might be over-fitted; therefore, it is reasonable to use multiple models to provide
complementary information. Considering that the four SA approaches provide similar sensitivity
measurements for most response variables in this study, we believe they are reliable for the study site.

The first- and second-order regression models were used to fit the response variables, and the
impacts of the order of regression models on the sensitivity measurement were investigated. If the
relationships between response variables and input parameters are linear, the order of regression
models do not affect the sensitivity measurement much, e.g., the NSC of qover, NSC of LH, and LMSE
of qdrai. If the relationships between response variables and input parameters are mostly quadratic,
the order of regression models affect the sensitivity measurement, e.g., the NSC of runoff, NSC of
qdrai, LMSE of runoff, and LMSE of qover.

This study also evaluated the effectiveness of quantitative SA approaches on different types
of CLM4 output data, including runoff and latent heat fluxes. Different metrics of these simulated
deviations are treated as response variables in the SA, which identifies the parameters dominating
the deviations and therefore should be included in the model calibration or parameter inversion
design. Depending on the purpose of matching the whole time series (low, high, and medium values)
or just the extreme events (e.g., high runoff/LH), different sets of parameters should be inverted.
For example, in model calibration on subsurface runoff, if the purpose is matching whole time
series, Sy, fdrai, and log10pQdmq would be the parameters to be adjusted, and adjustment of fmax

and log10 pKsq might also be considered if higher accuracy numerical prediction is expected. If the
calibration focuses on a low flow regime, Sy, fdrai, log10pΨsq, log10pQdmq, and fover should be included
as unknowns. In addition, adopting different SA approaches may yield different ideas of inversion
setup, and such differences are more obvious for parameters whose contributions are somewhere
between dominant and secondary. The common parameters identified to be important by different
SA approaches are of high priority to be optimized for reducing the discrepancies between runoff/LH
observations and model simulations. It is reasonable to conduct joint inversion of multiple data or
metrics to provide supplementary information to each other.

As mentioned in Section 2, the subsurface and surface runoffs are derived from total runoff.
Because the subsurface runoff dominates the total runoff in the studied basin, the SA results are
almost the same for total runoff and subsurface runoff. The metrics of NSC and LMSE indicate that
the separation of subsurface runoff from total runoff helps improve the matches between simulated
qdrai and observations. Because the temporal variations in total runoff and surface runoff (qover)
are mainly caused by precipitation, the effects of the input parameters may be concealed by the
temporal variations in precipitation, especially the short-term components. Separating the subsurface
flow (qdrai) from total runoff might weaken the influence of precipitation variations and enhance the
contributions from the input parameters. As a result, adjustments of the input parameters can clearly
modify the simulated qdrai, and therefore it could be more favorable to use qdrai for model calibration.

The convergence behaviors (as a function of the number of samples) of the SA approaches
provide guidance for the number of sampling points to be used for reliable SA and parameter
identifiability study. For the study site, the recommended number of sample sets is at least 400.
If the focus is to separate the dominant and secondary input parameters, 250 or even 128 sampling
points are acceptable [4].
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