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Abstract: This pilot study explores the potential of using low-resolution (0.2 points/m2) 

airborne laser scanning (ALS)-derived elevation data to model stream rating curves. Rating 

curves, which allow the functional translation of stream water depth into discharge, making 

them integral to water resource monitoring efforts, were modeled using a physics-based 

approach that captures basic geometric measurements to establish flow resistance due to 

implicit channel roughness. We tested synthetically thinned high-resolution (more than  

2 points/m2) ALS data as a proxy for low-resolution data at a point density equivalent to 

that obtained within most national-scale ALS strategies. Our results show that the errors 

incurred due to the effect of low-resolution versus high-resolution ALS data were less than 
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those due to flow measurement and empirical rating curve fitting uncertainties. As such, 

although there likely are scale and technical limitations to consider, it is theoretically 

possible to generate rating curves in a river network from ALS data of the resolution 

anticipated within national-scale ALS schemes (at least for rivers with relatively simple 

geometries). This is promising, since generating rating curves from ALS scans would 

greatly enhance our ability to monitor streamflow by simplifying the overall effort required. 

Keywords: topographic LiDAR; rating curves; streamflow monitoring; water resources 

 

1. Introduction 

Topographic light detection and ranging (LiDAR) technology is based on the emission of laser light 

in a defined wavelength and frequency and the corresponding collection of backscatter from an 

illuminated surface. Topographic LiDAR (also commonly referred to as laser scanning) has gained 

popularity for 3D surface mapping applications [1,2]. One major advantage of topographic LiDAR in 

comparison to traditional photogrammetric mapping using stereo and dense image matching is the 

ability of the laser beam to penetrate vegetation through canopy gaps. This allows generating area-wide  

high-resolution digital terrain models (DTMs) under forested and vegetated areas [3,4]. Depending on 

the required accuracies and areas of coverage, topographic LiDAR systems are commonly mounted on 

airborne (airborne laser scanning, ALS), terrestrial (terrestrial laser scanning, TLS) or other mobile 

laser scanning platforms. As the economic and processing limitations of topographic LiDAR data 

decrease, thereby increasing data coverage and data availability [5], there are increased capabilities in 

both large-scale and small-scale applications. 

This is easily seen in the current trend towards the production of national-scale ALS scans. The 

Netherlands [6], Switzerland [7] and Denmark (www.gst.dk) were some of the first countries in 

Europe to have completed such a national ALS campaign. For instance, Denmark provides datasets 

with a resolution of about 0.5 points/m2 and a resulting 1.5-m grid elevation model produced (and 

publicly available) with a 0.1-m vertical resolution. Many other countries have ALS scans ongoing. 

Sweden [8] (www.lantmateriet.se) is currently in the process of establishing a national-scale ALS 

dataset with a density of about 1 to (at best) 0.5 points/m2. The United States of America is also in the 

planning phase with the Center for LiDAR Information Coordination and Knowledge looking to 

establish a national-scale scan made up of various state-level scans and existing ALS datasets [9]. This 

push is complemented through efforts like OpenTopography (www.opentopography.org) in the United 

States of America that seek to facilitate community access to Earth science-oriented topography data 

and related tools and resources. As these data come online, researchers and techniques need to be 

prepared to utilize them to their fullest potential [10]. 

What is evident, however, from the span of current studies across the environmental literature is that 

topographic LiDAR data provide a large amount of geospatial information [11] of which only a small 

fraction is typically utilized [12]. For example, much existing research focuses on high-resolution 

ALS-based mapping of terrestrial hydrologic and hydraulic systems (e.g., [13,14]). ALS has also been 

utilized for the collection of topographic and geomorphological data [15] and for mapping in and along 
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river channels [16,17]. High-resolution and highly accurate topographic data, like that available from 

ALS, are needed for monitoring of river corridors, particularly in connection with natural hazard 

management (e.g., [18–20]) or the investigation of geomorphological change of floodplains [21,22]. 

Höfle et al. [4] showed the potential for water surface classification and delineation of river systems. 

Recent advances have also been made in using ALS to investigate forest ecosystems and to improve 

forest management (e.g., [23–25]). While ALS can provide increased accuracy, challenges still exist in 

complex urban environments [26]. In such landscapes, TLS has been shown to provide finer 

resolutions allowing for improvement to, for example, urban flood modeling [27]. In addition, TLS 

techniques are gaining traction among ecologists for describing vegetation architecture and functioning 

(e.g., [28–30]). Still, relatively few studies have begun to utilize the current generation of topographic 

LiDAR to fill knowledge gaps remaining in our understanding of, for example, key hydrologic fluxes. 

One of the more active fields of hydrological research has been the utilization of LiDAR data to 

characterize roughness and stream geometry for use in hydraulic modeling. Traditionally, LiDAR data 

have allowed for characterization of distributed roughness maps for use in hydraulic modeling [31–33], 

leveraging relationships between vegetation height and hydraulic roughness from flume studies [34,35]. 

Abu-Aly et al. [36] offered a divergent methodology to utilize LiDAR data employing the approach 

from Katul et al. [37] to quantify hydraulic roughness as a function of vegetation height and water 

depth via a 2D hydraulic model. Nathanson et al. [38] demonstrated that high-resolution ALS data 

(more than 2 points/m2) can contain enough information on the stream channel geometry to model 

stage-discharge relationships (rating curves) under certain conditions for relatively simple channel 

geometries. The rating curve is the functional relationship that allows for stream discharge monitoring 

based on direct observation of water height (stage) in a stream channel. What remains to be seen is if 

such approaches are viable at the resolutions expected for national-scale, low-resolution ALS 

acquisitions (i.e., resolutions of about 0.5 points/m2). 

The question thus becomes: How much information in terms of point cloud resolution (i.e., point 

density) is needed from an ALS survey to model rating curves with sufficient accuracy? Specifically, 

could low-resolution scans with a point density similar to those being carried out at national scales be 

used to estimate stage-discharge relationships? This pilot study seeks to answer these questions using 

the Krycklan experimental catchment (Figure 1) as a test bed with a relatively simple channel 

geometry. While this pilot study potentially represents a narrow range of rivers, the answers found here 

could have broad reaching potential to facilitate stream discharge monitoring. 

2. Materials and Methods 

2.1. Test Site and Datasets 

The Krycklan catchment study area has its main outlet at 64°12' N and 19°52' E in the Svartberget 

research station as part of the national research infrastructure (www.fieldsites.se) located approximately  

50 km northwest of Umeå, Sweden [39]. The site has a long history as a host to several 

multidisciplinary research projects related to water quality, hydrology, stream biodiversity and climate 

effects (e.g., [40–42]). High-resolution ALS data (Figure 1) were acquired at Krycklan’s outlet during 

low-flow conditions using a helicopter-mounted TopEye MkII S/N 425 system [43]. These data form 
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the core of this pilot study. An initial classification of ground echoes from non-ground echoes was 

achieved by a computational routine implemented at the Swedish University of Agricultural Sciences 

(SLU) evaluating the intensity and the number of echoes from each emitted laser pulse in the scan. 

This allowed for initial classification of the higher intensity ground echoes reflecting the region’s 

relatively smooth ground surface topography and the lower intensity vegetation echoes. This 

information was then used to filter based on the identification of backscatter signatures caused by 

surface vegetation, which can be identified relative to backscatter signatures caused by ground 

topography (see [38] for more details). After filtering ground from non-ground echoes, the set of ALS 

data covering the 90-m stream segment considered in this study consisted of over 45,000 ground 

echoes (Figure 1). This gives an average point density of about 2.7 points/m2 over the 1.67 ha area. 

 

Figure 1. Site map showing the location of the Krycklan experimental catchment in 

Sweden and the stream section modeled. The green line indicates the location of the  

cross-section where the rating curve was extracted. There is a non-thinned density of about 

a 2.7-points/m2 maximum in the highlighted point cloud that constitutes the main rating curve 

modeling domain. 

2.2. Methods 

A key issue associated with using ALS data to run a hydraulics-based rating curve model is the 

resolution of data required to adequately represent the channel geometry. The goal of this study was to 

investigate the potential of modeling stream flows using a set of synthetically thinned ALS point 

clouds of the same density as in typical national-scale ALS surveys. This was accomplished in 

fundamentally two steps. The first consisted of generating realizations of ALS surveys at different 

resolutions relevant for the study site. The second consisted of using these realizations to model a 

rating curve. Both steps are described in the following sections. 

2.2.1. Step 1: 3D Point Cloud Thinning of Airborne Laser Scanning Data 

A systematic thinning of information was carried out to synthetically reduce the ALS survey data 

resolution to a level comparable with the resolution that will be available through the ongoing national 
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ALS acquisition of Sweden [6] (www.lantmateriet.se). In this study, we considered two distinct  

high-resolution ALS survey datasets as the starting point for the systematic thinning. To allow for the 

consideration of the systematic thinning alone, the first high-resolution starting point consisted of the 

ALS topography data augmented within the stream channel to account for the inability of the ALS to 

sense through the stream water. As such, the stream bottom topography was estimated using a detailed 

topographic survey in the field and merged into the high resolution ALS data before thinning. This 

surveyed data consisted of 29 cross-sections along the 90-m stream reach utilized in this modeling 

study. Of course, such a bathymetric profile density would be feasible only for small scales or site-specific 

investigations. Observations were made using a Trimble S6 DR robotic total station (Trimble 

Navigation, Limited, 2013), and the linear density of the observations along each of these transects was 

3.2 points/m. These data, where there was a slightly lower average areal point density of 1.0 pt/m2, 

were merged into the ALS LiDAR point cloud to provide consistent coverage of the stream channel 

geometry along the entire 90-m stream reach considered. 

Clearly, including some detailed bathymetric survey transects may not be representative of the  

data actually captured during a low-resolution ALS scan. As such, to provide a potentially more 

representative case, we also considered a second high-resolution starting point consisting of the 

unaltered ALS topography data. For this second case, it should be noted that a horizontal line was 

assumed to extend from the lowest available ALS topography point, thereby defining an apparently flat 

stream bottom, to facilitate subsequent hydraulic rating curve modeling. Nathanson et al. [38] 

demonstrated that the impact of such a flat bottom assumption was minimal at this location. This was 

because most of the information with regard to the stream channel’s overall shape (particularly, as it is 

expressed at higher flows) and geometry is measured with the ALS data. It should also be noted that 

such a flat bottom assumption would likely be too simple for certain river types. Riffle pool-type 

rivers, for example, show typical patterns of shallow and deep areas that might not be approximated as 

simple flat bottoms or trapezoidal cross-sections when modeling a rating curve. 

The resultant point clouds (what can be considered high-resolution data) were thinned by applying a 

circular selection with a 3D search radius at each point. The procedure was to identify all points lying 

within a given radius of randomly selected initial base points and subsequently removing these points. 

The impact of the initial base points considered as the basis for the thinning was tested through several 

random realizations of initial base point distributions. There was minimal impact on the initial base 

point distribution on the resultant thinned point cloud. Thinning was tested for radii ranging from 0.25 m 

to 2.00 m, resulting in average point densities ranging from 2.2 points/m2 to 0.2 points/m2 (Figure 2a). 

This allowed for various realizations of ALS data resolution. While all resultant thinned ALS scans 

were implemented in the hydraulic rating curve modeling (see the following section), only the results 

for the “most thinned” data, e.g., 0.2 points/m2 resolution, were retained and are tested in this study. 

We therefore are considering a worst case scenario relative to the specification of the Swedish ALS 

mapping project in this pilot study. 
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Figure 2. The relation between (a) the 3D search radius and mean point density seen for 

the thinning of the airborne laser scanning (ALS) data and (b) an example cross-section of 

the stream from the thinned (black) and non-thinned (grey) survey-augmented ALS data at 

the location where the rating curves are extracted from the model. 

2.2.2. Step 2: Hydraulic Modeling of Rating Curves 

The thinned ALS and non-thinned ALS data (e.g., the low-resolution and high-resolution elevation 

data, respectively) were used to implement the hydraulic model of Kean and Smith [44] as outlined in 

Nathanson et al. [38]. Note that for the high-resolution, non-thinned case, we use the ALS survey 

augmented by the bathymetric profile survey data, since this provides an absolute best case scenario 

for the rating curve modeling. Our goal was to determine the influence of data resolution on the 

modeling of rating curves. The hydraulic model [44] has been developed for calculating rating curves 

for streams: (1) with bed roughness elements that are small compared to the depth of flow; (2) that 

may contain rigid bank or floodplain vegetation; and (3) that have width-to-depth ratios of 10 or 

greater (see [45] for an approach for modeling narrow channels). The estimated rating curve is thus 

generated using the one-dimensional hydraulic model by computing discharge over the full range of 

stages across the modeling domain in a two-step procedure. In the first step, contributing factors are 

quantified, such as: (1) the shape of the channel; (2) the physical roughness of the streambed, banks 

and floodplain; and (3) the vegetation density on the banks and floodplain. Secondly, the quantified 

roughness is embedded into a flow model for calculation of the stage-discharge relation. 
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As the modeling was implemented in this current study, the shape of the channel and topographic 

structure are taken from the ALS elevation data. Processing work to interpolate between topographic 

points in the point cloud data was done using software for the Multi-Dimensional Surface-Water 

Modeling System (MD_SWMS) available from the U.S. Geological Survey (USGS). As such, this 

gives three possible channel geometries (two from low-resolution thinned ALS data and one from  

high-resolution non-thinned ALS data) per the design of our experiment for mapping of the shape of 

the channel and the bulk roughness elements associated with the spacing of small-scale topographic 

features on the banks and floodplains. Figure 2b shows an example cross-section of the stream at the 

position where the representative rating curves were extracted for the non-thinned and thinned  

survey-augmented data. Boundary (bed) roughness, specified in terms of a roughness height zo for every 

point on a two-dimensional curvilinear grid of the stream channel within the modeling domain, was 

back calculated by using a single measurement of low flow discharge and the corresponding water 

surface slope [38,45]. Vegetation densities on the banks and floodplain, which supply a drag force on 

flows, were measured in the field. Within three randomly selected plots of 10 m2, vegetation density 

was determined by measuring stem and trunk cross-sectional areas perpendicular to flow (i.e., frontal 

areas) for vegetation larger than 0.5 cm in diameter. The average bank and floodplain vegetation 

density was 0.052 m−1 with an observed range of 0.035 m−1 to 0.069 m−1. The average vegetation 

density was considered as representative of the entire reach in our modeling, but the impact of the 

range of densities was considered. The vegetation densities in combination with channel shape 

information define the physical roughness associated with stream banks and the floodplain 

implemented in the hydraulic model. 

The hydraulic model of Kean and Smith [44] calculates velocity profiles for every submerged grid 

point on a two-dimensional curvilinear grid that follows the centerline of the channel. This is done at 

any given cross-section along the stream (x) by solving a version of the St. Venant equations for 

steady, non-uniform flow (Q) in one dimension for shallow water. The model calculates the water 

surface profile that simultaneously satisfies both the continuity and momentum equations: = 0 (1)

and 12 ( ) + + 12 ( ) = 0 (2)

where (u2)av is the square of the downstream velocity component averaged over the cross-section; g is 

the acceleration of gravity; E is the surface water elevation; (τb)av is the perimeter-averaged shear stress and 

R is the hydraulic radius given by the ratio of the cross-sectional area of the flow to its wetted  

perimeter [45]. While the first term of Equation (2) describes the streamwise change of velocity, the 

second term expresses how the pressure gradient changes due to streamwise changes of elevation. The 

final term accounts for the resistance factors. 

As a starting point to simultaneously satisfying Equations (1) and (2), the vertical velocity (u) at any 

point in the stream reach is calculated as: = / × = ∗ ×  (3)
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where ρ is water density; βr is a non-dimensional roughness coefficient and ∗ is the shear velocity, 

which is directly related to the shear stress (τb). In streams with steady flow conditions, the shear stress 

is given by: =  (4)

where h is the local flow depth and Sf is the friction slope. Under such conditions [45], βr will have  

the form: 

= ln 0.74
 (5)

where κ is the von Karman constant equal to 0.408 [46]. By combining Equations (3), (4) and (5), the 

vertical velocity at any point can be calculated as: 

= × ln 0.74
 (6)

Equation (6) is thus used to solve the flow field for the entire reach in an iterative manner. This 

solution can be related to the stage at any cross-section within the modeled stream reach, and repeating 

the procedure for several stages or flows, a rating curve can be modeled for any position along the 

stream. This was done for the stream geometries resulting from both thinned and non-thinned ALS data. 

3. Results 

3.1. Estimation of Rating Curves and Channel Geometry 

The empirical rating curve for the study site has been defined as Q = 3.6 h2.5 (r2 = 0.91) based on 

about four years of direct observation between 2009 and 2012 [38]. We used these observations and 

the resulting empirical rating curve as a basis for comparison of the modeled rating curves generated at 

the stream gage location (Figure 3). There were similarities in the overall shape of the modeled curves 

and the empirical curve for the range of stages presented. While the root mean squared error between 

the observed flows and the empirical rating curve was 0.56 m3/s, it was 0.72 m3/s between the 

observed flows and the rating curve modeled using the non-thinned ALS data augmented with the 

bathymetry profile surveys. The root mean squared errors were 0.56 m3/s between the observed flows 

and the rating curve modeled using the thinned survey-augmented ALS data and 0.39 m3/s between the 

observed flows and the rating curve modeled using the thinned unaltered ALS data under a flat stream 

bottom assumption. Although we had anticipated increased error with the thinned ALS data, this was 

not the case and could indicate the potential for slight bias in the modeling. For both the empirical 

rating curve and the model rating curves, the average absolute error compared to observed flows 

tended to increase with increasing stage (Figure 4). 
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Figure 3. Comparison of the empirical rating curve (black) defined using observed flows 

(circles) with the rating curves modeled using non-thinned ALS data (dark grey), the 

thinned survey-augmented ALS data (grey) and the thinned unaltered ALS data assuming a 

flat stream bottom (light grey). 

 

Figure 4. Average absolute error between flow observations and rating curves grouped by 

quartile of stage. Error bars indicate the standard deviations of the errors within the quartile. 

Looking at the channel geometry along the reach, there was some difference between both the 

thinned and the non-thinned ALS data (Table 1). We can compare at two representative stages. The 

first corresponds to roughly the average annual flow at the Krycklan catchment outlet of about 1 m3/s 

and a stage of 0.6 m. This flow rate is equivalent to a specific discharge (i.e., flow rate per unit 

catchment area) of about 1.3 mm/d, which is similar to observed values reported in Lyon et al. [47]. 

Furthermore, this flow rate corresponds to an annual runoff of around 475 mm/y, which is similar to that 
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reported in Tetlzaff et al. [48] for the Krycklan catchment. The second stage for comparison was 1.4 m, 

which corresponds to the most consistently observed maximum flow rate of around 8 m3/s during the 

spring flood. There was variability in geometries and cross-sectional areas along the channel. Still, 

these differences were small relative to the width and depth of the stream at the same stages. 

Table 1. Stream channel properties estimated using non-thinned and thinned ALS data. 

The reference stage is estimated from the rating curve over the entire section of the stream, 

and distance is measured downstream from the rating curve cross-section. 

Property 
Distance 

(m) 
Non-Thinned 

Thinned 

(Survey) 

Thinned  

(Flat Bottom) 
Non-Thinned 

Thinned 

(Survey) 

Thinned  

(Flat Bottom) 

Streamflow (m3/s)  1.0 1.0 1.0 8.0 8.0 8.0 

Reference Stage (m)  0.6 0.6 0.6 1.4 1.4 1.4 

Area (m2) 0 3.7 4.0 2.8 11.7 12.3 8.8 

Wetted Perimeter (m) 0 7.9 7.8 5.8 12.2 13.2 10.4 

Hydraulic Radius (m) 0 0.5 0.5 0.5 1.0 0.9 0.8 

Top width (m) 0 7.6 7.5 7.5 11.0 12.1 10.2 

Area (m2) 45 2.9 3.5 3.8 10.3 11.3 10.9 

Wetted Perimeter (m) 45 8.4 9.1 8.5 11.1 11.6 11.1 

Hydraulic Radius (m) 45 0.3 0.4 0.4 0.9 1.0 1.0 

Top width (m) 45 8.2 8.8 8.2 10.2 10.5 9.9 

Area (m2) 90 1.8 2.2 4.3 9.5 10.9 11.6 

Wetted Perimeter (m) 90 7.8 7.9 9.2 12.0 14.1 10.9 

Hydraulic Radius (m) 90 0.2 0.3 0.5 0.8 0.8 1.1 

Top width (m) 90 7.5 7.6 8.8 11.2 12.8 9.3 

3.2. Potential Errors Introduced through Using Low-Resolution LiDAR 

We can consider the impact of data resolution as a type of error in the flow estimates. This was 

done by determining the difference in thinned and non-thinned rating curves as a function of stage. In 

addition, we considered the impacts of uncertainty in vegetation densities by implementing both the 

maximum and minimum measured densities in the hydraulic modeling. There was an increase in the 

impact of using low-resolution LiDAR data with increasing stage for both cases (Figure 5). This is 

expected due to the non-linear nature of stage-discharge relationships for natural cross-sections. What 

is important is how this error, and its increase with stage, compares to the estimate of error (or 

uncertainty) associated with actual streamflow measurements used to define empirical rating curves. 

Comparing error due to data resolution with the difference between flow observations and the 

empirical rating curve, we can see that the impact of using low-resolution ALS data is of a similar 

magnitude. This is particularly true for the lower flows and stages less than 1 m. At higher flows, the 

error between observed flows and the empirical rating curve is much larger and exhibits a much higher 

range (due to variability in observations) compared to the error introduced through using low-resolution 

ALS data. 

These potential errors can be translated back into impacts on the hydrograph (Table 2). The 

empirical rating curve and the modeled rating curves were used to translate daily recorded stage values 

from 1 May 2008 through 31 October 2013 into flow values. The impact of thinning the ALS data can 
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be seen in the maximum flow estimated over this period. Further, the variability (expressed as the ratio 

of interquartile range to median flow) is larger when using the empirical rating curve than either of the 

two thinned modeled rating curves over the stages of record. This could be anticipated to some extent 

given the general shape of the rating curves (Figure 3). 

 

Figure 5. Difference between rating curves modeled using thinned survey-augmented ALS 

data and non-thinned ALS data as a function of water stage when considering the 

maximum (black solid) and minimum (black dashed) measured vegetation densities. 

Difference between rating curves modeled using thinned unaltered ALS data (grey solid) and 

non-thinned ALS data are shown only for the average vegetation density. These are 

compared to the difference between observed flows and the empirical rating curve (circles). 

Table 2. Summary of hydrograph statistics estimated using the empirical rating curve and 

the modeled rating curves based on thinned and non-thinned ALS data. 

 Empirical Non-Thinned Thinned (Survey) Thinned (Flat Bottom) 

Maximum (m3/s) 9.12 9.96 9.11 8.18 

Minimum (m3/s) 0.19 0.30 0.32 0.28 

Median (m3/s) 0.55 0.77 0.80 0.69 

Interquartile Range (IQR) (m3/s) 0.50 0.63 0.62 0.54 

IQR/Median (-) 0.90 0.82 0.77 0.78 

4. Discussion and Concluding Remarks 

For the pilot study considered here, we can theoretically produce model rating curves from  

low-resolution, national-scale ALS data. The potential error inflicted due to changing the resolution 

from high to low is on the order of (or less than) that typically associated with establishing and 

maintaining rating curves for natural cross-sections (Figure 5). In addition, a lack of directly-defined 

bathymetry (i.e., a flat bottom assumption) does not have significant impact on the ability to model rating 

curves. Clearly, more work is needed to determine if these findings hold over a range of stream sizes, types 
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and landscape settings. Still, the results of this pilot study are encouraging, as they imply that national-scale 

ALS data could potentially be used to establish rating curves or at least be used to augment ongoing 

discharge monitoring efforts. 

Of course, there are several caveats that must be considered when interpreting or generalizing these 

results. The conditions under which the ALS data are collected (e.g., flow conditions, snow coverage, 

weather) will have an impact on not only the quality of the data, but also the ability to define channel 

geometry. As such, while the loss of geometric channel information considering low-resolution ALS 

data (Table 1) and the subsequent impact on modeling rating curves (Figure 3) were minimal at the 

current scale and site considered, this may not necessarily hold everywhere and across all scales. When 

considering scale, the hydraulic modeling employed holds when the hydraulic radius is approximately 

equal to the average depth (i.e., large width-to-depth ratios). As such, the current application likely 

pushes the lower bound of spatial scales where such an approach is viable (Table 2) without violation 

of the hydraulics. Further, the channel geometry simplicity helps make it possible to capture the main 

channel cross-section elements with low-resolution ALS data (i.e., we can invoke a flat bottom 

assumption when modeling at this site). This can also be seen as the limitations of data resolution to 

resolve stream channel geometries at small scales. As a simple thought experiment, we can consider a 

data resolution of 0.5 points/m2 and assume a minimum of six aligned points to define a simple 

trapezoidal stream cross-section. From those assumptions, the theoretically lower limit imposed by 

data resolution (in the coarsest sense) for modeling a rating curve given the approach considered would 

be a stream width of 3 m (about 1/3 the width of the stream considered in this current study). In practice, 

however, it is not likely that information would be retained regarding in-stream roughness features  

(micro-topography or large boulders) at such small scales. Furthermore, since these small streams 

would likely be headwaters with dense vegetation [49], there is increased likelihood that the resolution 

of the ALS data would be worse than 0.5 points/m2 (although this might not be an issue in regions 

above the tree line). 

Looking further at vegetation density, the results of this pilot investigation indicate a minimal 

impact due to vegetation density variability under the flow regimes considered (Figure 5). However, 

there is still an inherent need to estimate vegetation density for model implementation, which 

represents a limitation in a truly autonomous sense to wider application of the approach outlined. 

Further, as vegetation density can change seasonally and inter-annually, there may be need for multiple 

site visits. These limitations may be overcome in part through remote sensing techniques to estimate 

vegetation densities, for example those based on ALS scanning (e.g., [50,51]). Finally, it should be 

noted that the success of this pilot study lies in part with the flow conditions during which the ALS 

scanning was conducted. The low-flow conditions (less than 0.6 m3/s for this stream) during the 

scanning campaign gave good access to the stream channel allowing for modeling of rating curves 

across flow regimes (low to high). There, of course, may be a loss in the fidelity of ALS scanning data 

as water levels change, leading to uncertainty in the resultant modeled rating curves. How this 

uncertainty propagates across flow regimes and from stage observations through to hydrographs and 

subsequent identification of, for example, hydrological signatures [52] warrants further consideration.  

Regardless of potential difficulties, there appears good potential to utilize low-resolution ALS 

scanning to model streamflows in larger streams (channel width >> data resolution). The results of this 

pilot study indicate that using low-resolution ALS data to define the overall floodplain shapes and 
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channel dimension would be possible. This information would be very relevant at higher flows when 

floodplains dominate river responses [53] by providing a physically-based method for constraining 

rating curve uncertainties. High flows are often the domain of highest uncertainty in discharge time 

series where clear and significant reductions in uncertainty can be realized via a physical modeling 

approach (e.g., [54]). The results of this pilot investigation offer a potential way forward leveraging the 

combination of large-scale ALS data with hydraulic modeling to allow for refinement of rating curve 

accuracy and streamflow monitoring. Streamflow is one of the most important hydrological variables, but 

making continuous flow measurements remains challenging. Establishing and maintaining the high-quality 

rating curves needed for continuously monitoring streamflow and accurately estimating flooding is 

time consuming and expensive, because flow has to be measured over a range of stages. During 

flooding and periods of high flow, in particular, measuring flow is nearly impossible (and can often be 

hazardous), making our ability to accurately estimate flooding extent and impact quite uncertain. There 

is a worldwide trend towards reducing the number of locations where streamflow is actively  

monitored [55]. This tendency for reducing monitoring locations comes at the same time as an increase 

in the interest in terrestrial hydrology and streamflow due to their roles in biogeochemical (carbon) 

cycling and changes in flood frequency associated with climatic changes. There is clearly a need to 

develop methods to facilitate the monitoring of streamflow that require little time “in the field” and are 

both cost effective and safe. Our results demonstrate that it may be possible to employ low-resolution 

ALS data (similar to that collected within national scanning campaigns) to model stream rating curves 

using physics-based modeling approaches (e.g., [44]). 
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