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Abstract: In this approach, a method utilizing data series from multivariate parameters to 

detect contaminant events is discussed and evaluated. Eight water quality sensors (pH, 

turbidity, conductivity, temperature, oxidation reduction potential, UV-254, nitrate and 

phosphate) are used in this study and the most commonly used herbicide, glyphosate, is 

selected as the test contaminant. Variations of all parameters are recorded in real time at 

different concentrations. The results from the experiment and analysis show that the 

proposed method with suitable optimization can detect a glyphosate contamination less 

than 5 min after the introduction of the contaminant using responses from online water 

quality sensors. The average true positive rate is 95.5%. The study also discusses the 

impact of the number of sensors on detection performance. The results show that if the 

number of sensors is reduced from 8 to 5, the true positive rate performance is still good. 

This indicates that the method is flexible and can be applied using a smaller number of 

sensors to reduce monitoring costs. 

Keywords: multivariate parameters; conventional water quality sensor; contamination 

detection; glyphosate 
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1. Introduction 

Water systems are vulnerable to contamination accidents and bioterrorism attacks because they are 

relatively unprotected, accessible, and often isolated [1]. The past decades have witnessed a mounting 

number of contaminant incidents in China. Unlike conventional pollution, contaminant accident 

emergency has involves uncertainty, urgency and the need for rapid response. Therefore, how to detect 

a potential contamination incident and identify a specific contaminant in a water source has raised 

concerns all over the world, especially after the events of 11 September 2001 in US. 

One approach for avoiding or mitigating the impact of contamination is to establish an Early 

Warning System (EWS). EWS should provide a fast and accurate means of distinguishing between 

normal variations and contamination events [2]. Ideally, it should be inexpensive, low maintenance, 

easy to integrate into network operations and reliable, with few false positives and negatives [3].  

A key part of an EWS is the detection module, which utilizes online sensors to evaluate water 

quality and detect the presence of contamination. Generally, there are two types of online water quality 

sensors. The first type refers to non-compound specific or conventional water quality sensors, which 

are normally used for routine water quality parameters, including pH, chlorine, total organic carbon 

(TOC), oxidation reduction potential (ORP), conductivity and temperature. The second type refers to 

compound specific water quality sensors or advanced sensors, which are capable of confirmative 

detection at low concentrations for a specific component [4–9].  

Although compound specific sensors are capable of confirmative detection for contaminants  

at low concentration, the long analysis time and the high cost may represent disadvantages during a 

contaminant accident. In recent years, conventional quality sensors have played a growing role.  

As summarized by McKenna et al. [10], two types of approaches to developing and testing event 

detection using water quality signals have been examined. First, laboratory and test-loop evaluation of 

sensors and associated event detection algorithms provides direct measurement of chemical changes in 

background water quality caused by specific contaminants [11–14]. For example, Hall et al. [11] 

reported a sensor response experiment for nine types of contaminants and realized that more than one 

sensor responded to each tested contaminant. After noticing this phenomenon, researchers have 

attempted to develop contaminant detection methods using responses from multiple sensors.  

Yang et al. [12] explored a real-time event adaptive detection, identification and warning (READiw) 

methodology in a drinking water pipe. The suggested adaptive transformation of sensory 

measurements reduced background noise and enhanced contaminant signals. In the method employed 

by Yang et al., the relative value of concentrations of free and total chlorine, pH and ORP are used for 

contaminant classification. This allowed for contaminant detection and further classification based on 

chlorine kinetics. Kroll [13] reported the Hach Homeland Security Technologies (HST) approach using 

multiple sensors for event detection and contaminant identification. In the Hach HST approach, signals 

from five separate orthogonal measurements of water quality (pH, conductivity, turbidity, chlorine 

residual, TOC) are processed from a five-paramater measure into a single scalar trigger signal. The 

deviation signal is then compared to a preset threshold level. If the signal exceeds the threshold, the 

trigger is activated [13]. In Kroll’s method, although responses from multiple sensors are utilized, their 

internal relationship is not explored.  
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The second approach to event detection is based on signal processing and data driven  

techniques [10,15–20]. For example, Hart et al. [15] reported a linear prediction filter (LPF). The LPF 

method predicts the water quality at a future time step and evaluates the residual between predicted 

and observed water quality values. Klise and McKenna [16] developed an algorithm to classify the 

current measurement as normal or anomalous by calculating multivariate Euclidean distance (MED). 

The MED approach provides a measure of the distance between the sampled water quality and  

the previously measured samples contained in the history window. Allgeier et al. [17] and  

Raciti et al. [18] utilized artificial neural networks (ANN) and support vector machines (SVM) to 

classify water quality data into normal and anomalous classes after supervised learning training. 

Perelman et al. [19] and Arad et al. [20] reported a general framework that integrates a data-driven 

estimation model with sequential probability updating to detect quality faults in water distribution 

systems using multivariate water quality time series. A common feature of the methods mentioned 

above is that they are merely relying on data process. The physical characteristics of signals 

responding to contaminants are not considered in these methods. For online water quality sensors, 

fluctuations can be caused by equipment noise or presence of contaminant.  

Liu et al. [21] proposed a method for real-time contamination detection using multiple conventional 

water quality sensors for source water. Eight sensors were used in the case study. In this paper,  

we aim to extend this research by determining how the number of sensors influences the detection 

performance and identifying the optimal combination of sensor deployment. The tested data are from 

contaminant dosing experiments in a laboratory.  

2. Materials and Methods 

2.1. Pilot-Scale Contaminant Injection and Monitoring System 

The pilot-scale system used in this study is a recirculating system simulator in the School of 

Environment Laboratory at Tsinghua University, Beijing, China. A process flow schematic of the 

pilot-scale system used for baseline establishment and single-pass contaminant tests is shown in  

Figure 1. The water tank is approximately 85 cm high with a diameter of 70 cm, and has a total 

capacity of 300 L. The tank is linked with the Guardian Blue early warning system [13] via a 

peristaltic pump at 0.5 L/min. The Guardian Blue early warning system, including Guardian Blue 

event monitor, agent library, water panel, TOC analyzer, and automatic sampler, is a system developed 

by Hach that detects, classifies, and alerts of a wide variety of threat contaminants. In this study, the 

system was only utilized as an online monitoring system. The system was operated in recirculation 

mode for baseline establishment. In this mode, 300 L source water flows through the eight sensors and 

back to the tank. The entire volume of water in the loop is replaced every 72 h if no contaminant test is 

conducted. Generally, the process of establishing baseline takes 4–6 h before any contaminant 

experiments can be carried out. When operating in single-pass contaminant mode, the target 

contaminant is injected into the pipe connecting the tank and sensors via another peristaltic pump. It is 

injected at a rate of 2–20 mL per minute depending on the concentration requirement. The water 

combined with contaminant flows through the sensors directly into a specific waste liquid bucket, 

avoiding pollution of the water in the tank. 
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Figure 1. A process flow schematic of the pilot-scale system. 

2.2. Sensors Investigated 

An online water quality monitoring system developed by Hach was utilized in this study. The 

system can measure the following eight parameters simultaneously and continuously: temperature, pH, 

turbidity, conductivity, oxidation reduction potential (ORP), UV-254, nitrate and phosphate. Table 1 

shows a list of the parameters and the detailed information of their associated sensors.  

Table 1. Detailed information of the parameters and sensors. 

Parameter Sensor Name Measuring Range Sensitivity Measuring Interval 

Temperature DPD1R1-WDMP −10–50 °C ±0.01 °C 1 min 
pH DPD1R1-WDMP −2.00–14.00 ±0.01 1 min 

Turbidity LXV423.99.10100 0.001–4,000 NTU ±0.001 NTU 1 min 
Conductivity D3725E2T-WDMP 0–2,000,000 us/cm ±1 us/cm 1 min 

ORP DRD1R5-WDMP −1,500–1,500 mV ±0.5 mV 1 min 
UV-254 LXG418.99.20000 0.01–60 1/m ±0.01 1/m 1 min 
Nitrate LXG.717.99.50000 0.1–100.0 mg/L ±0.1 mg/L 1 min 

Phosphate LXV422.99.20102 0.05–15 mg/L ±0.05 mg/L 5 min 

2.3. Contaminants Investigated 

The contaminant was determined according to statistical reports on water pollution incidents in 

urban water supply systems in China over the past 20 years. Glyphosate is known as a broad-spectrum 

systemic herbicide that is used to kill weeds, especially annual broadleaf weeds and grasses, and was 
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selected as the target contaminant in this study. Specific quantities of the contaminant were injected 

into the system simulator. 

2.4. Experimental Procedure 

Sensors were calibrated in accordance with the manufacturer’s recommendations and were verified 

with a calibration check standard. Before the introduction of contaminants, the experimental system 

was kept running to establish a baseline. Sensor data were collected continuously and archived 

electronically to establish stable baseline conditions and to record sensor responses to injected 

contaminants. Data from the ORP, nitrate, temperature, pH, conductivity, turbidity and UV sensors 

were monitored and recorded every 1 min during the test period, while the phosphate sensor was 

recorded every 5 min. After the baseline was established, a specific concentration of contaminant was 

injected. Each contaminant injection took over 20–40 min to reach a stabilized reading. The sensors 

were then supplied with uncontaminated raw water and the responses returned to the baseline. The 

same contaminant, at a different concentration, was injected after sensor responses had returned to the 

baseline following the previous test [22].  

2.5. Detection Method 

In this study, it is assumed that multiple water quality sensors can respond to a contaminant 

simultaneously. The method detects contamination by exploring the correlative relationship between 

responses from multiple water quality sensors [21]. This relationship is evaluated using the correlation 

coefficient r, which is calculated by: 
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in which x and y refer to two separate water quality sensors, x, y ∈ (pH, ORP, UV, …); x  and y  stand 

for mathematical expectation; i goes from 1 to n and represents the index for window size. xi and yi 

stand for absolute values for corresponding sensors at time i. The number of data or window size is 

given by n. The window size is the number of past observations used to calculate the correlation 

coefficient. For each sensor, a new observation enters the sliding window at every time step t and the 

oldest observation exits (i.e., first in first out). 

The value of rxy is between −1 and 1. In this study, a correlation indicator Cxy is calculated using  

0xyC  , xy indicatorif r threshold ,or, 1xyr   (2)

1xyC  , if 1xyindicatorthreshold r   (3)

A contamination alarm will be trigged if 

   xy alarm
x y

C threshold x y
 

  ,  , , , ,...x y pH ORP UV  (4)

The value of thresholdindicator and thresholdalarm can be determined based on optimization analysis 

using data from experiments and real events.  
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The performance of the detection method is measured through detection time (DT), true positive 

rate (TPR), false positive rate (FPR) and false negative rate (FNR). DT is defined as the time difference 

between a contamination event taking place and when it is detected, and is evaluated by: 

1 0DT T T   (5)

where T0 is the time when the contamination event occurs and T1 is the time when the contamination 

event is detected. A smaller DT means the detection method is more effective and can detect 

contamination within a shorter time frame.  

TPR, FPR and FNR can be calculated by [20]: 
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where TP (true positive) is the detection of an actual event (alarm on); FP (false positive) refers to a 

routine operation being incorrectly classified as a contamination event (alarm on); TN (true negative) 

refers to a routine operation correctly being classified as such (alarm off); FN (false negative) means 

that an actual event is not detected (alarm off). TPRT denotes the true positive rate after time T. A 

greater TPR means the method is more capable of detecting a real event, while a small FPR implies the 

method is less likely to classify a routine operation as an event.  

In this study, the calculation is based on a 1 min step. A contaminant injection with period of t is 

assumed to be t contamination events. Within the period of contamination, if the method can detect the 

event, then TPR is used to evaluate the performance. The TPRT is expressed as the true positive rate 

within the period from T to the end of injection. TPR1 will be used as an evaluation indicator in this 

study unless otherwise indicated.  

2.6. Parameter Optimization and Validation 

Liu et al. [21] showed that this method was able to detect a contaminant event in a short time 

period and that the parameters had a significant impact on the detection performance. Likewise,  

in our study, an event can be detected if three parameters are given optimal values. Therefore, an 

optimization method can be used to obtain the best combination of thresholdindicator, thresholdalarm and 

window size. Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) is a multi-objective optimization 

algorithm [23] used in recent studies [24–26]. It is computationally fast and has been shown to provide 

better coverage and maintain a better spread of solutions than other multi-objective algorithms. 

The procedure of NSGA-II is summarized by the following steps: (1) generate the initial 

population randomly; (2) evaluate the performance of each chromosome and perform a fast  

non-domination sort; (3) produce the offspring through binary tournament selection, crossover and 

mutation; (4) form intermediate populations and perform a fast non-domination sort; (5) keep 

reproducing the new population until pre-set criteria is met. In this study, the minimum of “FNR” and 

the minimum of “FPR” were used as two fitness functions to evaluate the population of each 
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generation. Values for NSGA-II operators were determined based on the literature [27] and listed in 

Table 2. 

Table 2. Values of GA operators adopted. 

Parameter Name Value 

Population 250 

Generation number 200 

Crossover rate 0.85 

Mutation rate 0.05 

3. Results and Discussion 

3.1. Correlative Responses 

In this study, sensor response experiments for glyphosate with different concentrations were 

conducted. The results from the experiment involving glyphosate are shown in Figure 2a,b. In the 

experiment, glyphosate solutions with concentrations of 0.8 mg/L, 2.0 mg/L, and 4.0 mg/L were twice 

added in sequence. The data series obtained from the first and second time were recorded as series 

“glyphosate-A” and “glyphosate-B”. The “glyphosate-A” series is illustrated using solid green bars at 

the top of Figure 2. As shown in Figure 2, ORP and phosphate increase, while pH and nitrate decrease. 

The responses are mainly due to the introduction of glyphosate solution, as it is slightly acidic and has 

some oxidizing ability. The solution diluted the source water so nitrate shows a weak decrease. 

Conductivity and UV-254 sensors may have shown some response, but, if this is the case, the 

responses are hidden by the fluctuations from source water. Temperature has a clear increasing trend 

when the axes are enlarged, as shown in Figure 2a. Turbidity showed increases after both injections, 

which may appear to be a delayed reaction to the contaminant. However, these peaks in turbidity were 

not caused by the contaminant, but rather were an immediate result of a change in pump speed. 

Uncontaminated raw water is supplied to clean the pipe and system and the pump speed is increased in 

order to quickly return to baseline. The turbidity sensor is very sensitive to changes in water velocity, 

so it fluctuated as shown in the Figure 2a. Unexpected spikes are shown after the third injection in 

some sensor responses, mainly due to the sudden malfunction of the system. 

For different contaminant concentrations, sensor responses show correlative relationships, 

especially for pH, nitrate, ORP and phosphate. This suggests the correlative response is caused by the 

introduction of contaminant and implies that this type of phenomenon can be utilized for detection  

of the presence of contamination. The magnitudes of the sensors’ responses were related to 

contaminant concentrations.  
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(a) 

(b) 

Figure 2. (a) Sensor responses (Turbidity, pH, Conductivity and Temperature) for glyphosate 

(concentrations: 0.8, 2.0, 4.0 mg/L); (b) Sensor responses (ORP, Nitrate, UV-254 and 

Phosphate) for glyphosate (concentrations: 0.8, 2.0, 4.0 mg/L). 

3.2. Parameter Optimization and Validation 

The original data series for both glyphosate-A and glyphosate-B were each separated and regrouped 

into three individual new series, leaving a total of six new data series. Each new series contained  

80–100 values. The first 60 values of the series were data for the no-contamination scenario, and the 

rest of the data were for the contamination scenario with different concentrations. The three new data 

series (A1, A2, A3) created from glyphosate-A were used as the calibration datasets and the other three 

new data series (B1, B2, B3) created from glyphosate-B were used as the validation datasets. The 

optimization results are shown in Figure 3. 
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Figure 3. The optimization results for glyphosate-A series with eight sensors. 

As shown in Figure 3, although there were several solutions in the last generation, only one solution 

had the best performance, as pointed out with an arrow. The values of thresholdindicator, thresholdalarm 

and window size were 0.6912, 7, and 16, respectively. The TPR and FPR were 93.7% and 6.8%, 

respectively, which indicates that the proposed method has the ability to detect contamination events 

caused by glyphosate solution and that the accuracy is quite high.  

The datasets used for validation were obtained from glyphosate-B data series, which contained three 

experiment data series with the same concentrations as glyphosate-A. For the parameters, the optimal 

values obtained from the calibration were used. Table 3 shows the results of validation. As shown in 

Table 3, the TPRs for the concentrations 0.8 mg/L, 2.0 mg/L and 4.0 mg/L were 95.5%, 100% and 

100%, respectively. The FPR for all concentrations were 0%, which revealed excellent detection 

performance for glyphosate solution. The TPR of 100% indicated that the event could be detected  

one minute after the contamination occurred, which is very important in real events. 

Table 3. The TPR and FPR performances of glyphosate-A and glyphosate-B series. 

8-Sensor Glyphosate-A Glyphosate-B 

Concentration 0.8 mg/L 2.0 mg/L 4.0 mg/L 0.8 mg/L 2.0 mg/L 4.0 mg/L 
TPR 88.0% 96.3% 96.7% 95.5% 100.0% 100.0% 
FPR 6.8% 6.8% 6.8% 0.0% 0.0% 0.0% 

3.3. Sensors Selection 

As can be seen from Figure 2, not all the sensors had obvious responses when contaminant was 

added. For example, the results from A-1 dataset show that turbidity and conductivity sensors both had 

weak responses. This leads to an interesting question: would the performance be affected if some 

sensors were removed? The correlation coefficients for each couple of sensors for the “contamination” 

scenario at the 85th minute were calculated and listed in Table 4.  
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Table 4. Correlation coefficients (contamination). 

Sensor Name  Turbidity pH Conductivity Temperature ORP Nitrate UV Phosphate

Turbidity 1.000 −0.447 −0.024 0.383 0.618 −0.424 −0.068 0.313 
pH −0.447 1.000 −0.093 −0.704 −0.947 0.832 −0.302 −0.625 

Conductivity −0.024 −0.093 1.000 0.167 −0.015 0.094 −0.091 0.021 
Temperature 0.383 −0.704 0.167 1.000 0.688 −0.718 0.164 0.443 

ORP 0.618 −0.947 −0.015 0.688 1.000 −0.781 0.216 0.544 
Nitrate −0.424 0.832 0.094 −0.718 −0.781 1.000 −0.399 −0.732 

UV −0.068 −0.302 −0.091 0.164 0.216 −0.399 1.000 0.274 
Phosphate 0.313 −0.625 0.021 0.443 0.544 −0.732 0.274 1.000 

From the results, it can be seen that the coefficients of turbidity and other sensor indicators at the 

85th minute were smaller than the preset threshold. This suggests that the removal of turbidity would 

not affect the TPR performance at this time. Confirmation required further testing, so the turbidity and 

conductivity sensors were removed. The parameters obtained from the calibration were used and the 

TPR performances were shown in Figure 4. The results showed that the FPR for glyphosate-A and 

glyphosate-B were 4.6% and 0%, respectively, which indicated that the performance did not  

change much, and was even improved. However, the TPR was greatly impacted, especially for the  

lowest concentrations.  

 

Figure 4. Comparison of TPR performances. 

Figure 5 shows the sum of correlation indicators at each time step that contaminant was added 

(from the 61st to 85th minutes in A-1 dataset). It revealed two situations in which eight sensors and six 

sensors were used. The sum of correlation indicators for eight sensors was higher than that for six 

sensors for the first ten minutes. This indicates that the turbidity and conductivity sensors responded to 

the injection of glyphosate, although this was not clear from the change of the original data series in 

Figure 2. Figure 5 also reveals that the turbidity and conductivity sensors made little contribution to 

event detection after the concentration stabilized. 
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Figure 5. The sum of correlation indicators at each time step in two situations. 

Another optimization was conducted in order to find the optimal parameters when using six sensors. 

The three new data series created from glyphosate-A were again used as the calibration datasets and 

the other three new data series created from glyphosate-B were used as the validation datasets. The 

optimal values of thresholdindicator, thresholdalarm and window size were 0.6111, 7, and 21, respectively. 

The TPR and FPR results are shown in Figure 4, Figure 6 and Table 5. It can be seen that the average 

TPR and FPR for the six data series were 88.3% and 3.8%, respectively. This was lower than, but close 

to, the performance with eight sensors. The detection method appeared to adapt well as the number of 

monitoring sensors changed. To confirm this, 93 (1 + 8 + 28 + 56) sensor combinations were created 

and optimized. The number of sensors ranged from five to eight. For each combination, there were 

several optimal solutions with different FNR and FPR. Here the distance from each solution point to 

the base point was used as a calculation method to choose the best solution. The best solution points 

for each combination are shown in Figure 7. 

 

Figure 6. The optimization results for glyphosate-A series with six sensors. 

Table 5. The TPR and FPR performances of glyphosate-A and glyphosate-B series. 

6-Sensor Glyphosate-A Glyphosate-B 
Concentration 0.8 mg/L 2.0 mg/L 4.0 mg/L 0.8 mg/L 2.0 mg/L 4.0 mg/L 

TPR 64.0% 96.3% 96.7% 86.4% 86.4% 100.0% 
FPR 7.6% 7.6% 7.6% 0.0% 0.0% 0.0% 
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Figure 7. The result for different sensor deployment. 

Each point in Figure 7 represents the result of one sensor combination. The red one corresponds to 

the eight-sensor combination, while the green, blue and yellow ones correspond to seven-sensor,  

six-sensor and five-sensor combinations, respectively. The points in the red rectangle represent the 

optimal combinations when FNR and FPR were less than 5%. One point is the eight-sensor 

combination, two points are seven-sensor combinations and two points are six-sensor combinations. 

Although there is no five-sensor combination point inside the rectangle, the closest five-sensor point 

also showed a reasonable performance with an FNR of 5.4% and FPR of 2.6%. It is worth noting that 

the detection method was able to adapt well as the number of monitoring sensors decreased from eight 

to five, as expected. Table 6 listed the sensors (parameters) used in different optimal solutions.  

Table 6. Sensors used in each optimal solution. 

Number of Sensors Sensor Names 

7 Turbidity, pH, conductivity, temperature, ORP, nitrate, UV-254 
7 Turbidity, pH, Conductivity, ORP, Nitrate, UV-254, Phosphate 
6 Turbidity, pH, Conductivity, ORP, Nitrate, Phosphate 
6 Turbidity, pH, Temperature, ORP, Nitrate, Phosphate 
5 Turbidity, pH, ORP, Nitrate, Phosphate 

From the results of Table 6, it can also be seen that the removed sensors were mainly UV-254, 

conductivity, or temperature. Figure 2 shows that these sensors did not change visibly in response to 

contamination events, whereas responses of the pH, ORP, nitrate and phosphate sensors were very 

strong. It can also be seen from Figure 7 that the points representing fiv-sensor combinations where 

generally further from the origin of the graph (i.e., optimal point) than the points representing  

six-sensor combinations. This was also true for six-sensor points when compared with seven-sensor 

points. More sensors help to improve the detection performance but also increase costs. However, as 

mentioned previously, appropriate selection of the sensors results in good performance when five, six, 

seven, or eight sensors are used. In another words, utilizing fewer sensors in areas where reducing 

costs is important would also lead to excellent detection performance.  
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4. Conclusions  

In this study, a method utilizing the correlative relationship between multiple sensors was 

optimized. The results from the experiment and analysis showed that the method with suitable 

optimization could detect a glyphosate contamination in less than 5 min after the introduction of 

contaminant using responses from online water quality sensors. The average TPR1 was 95.5%. 

The study discussed the impact of the number of sensors on detection performance. The results 

showed that if the number of sensors was reduced from eight to five, the TPR performance was still 

good. This indicates that the method is flexible and can be applied using a smaller number of sensors 

to reduce monitoring costs. 
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