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Abstract: The dynamic relationship between watershed characteristics and rainfall-runoff 

has been widely studied in recent decades. Since watershed rainfall-runoff is a non-stationary 

process, most deterministic flood forecasting approaches are ineffective without the 

assistance of adaptive algorithms. The purpose of this paper is to propose an effective flow 

forecasting system that integrates a rainfall forecasting model, watershed runoff model, and 

real-time updating algorithm. This study adopted a grey rainfall forecasting technique, based 

on existing hourly rainfall data. A geomorphology-based runoff model can be used for 

simulating impacts of the changing geo-climatic conditions on the hydrologic response of 

unsteady and non-linear watershed system, and flow updating algorithm were combined to 

estimate watershed runoff according to measured flow data. The proposed flood forecasting 

system was applied to three watersheds; one in the United States and two in Northern 

Taiwan. Four sets of rainfall-runoff simulations were performed to test the accuracy of the 

proposed flow forecasting technique. The results indicated that the forecast and observed 

hydrographs are in good agreement for all three watersheds. The proposed flow forecasting 

system could assist authorities in minimizing loss of life and property during flood events. 
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1. Introduction 

Flood forecasting systems are nonstructural methods for reducing flood damage. An efficient 

forecasting system can assist with mitigating imminent disasters by providing information that can be 

disseminated rapidly to the flood-threatened areas. Standard practices in flood forecasting systems 

include hydrometeorological data transmission, database management, rainfall prediction, runoff 

estimation, and forecast information dissemination. 

Brath et al. [1] indicated that quantitative rainfall forecasting plays a primary role in extending the 

lead time of river flow forecasting, which can improve the timeliness of flood control mechanisms. 

Because of improvements in the accuracy of weather radar systems, radar-based rainfall forecasting 

systems have superseded traditional rain gauges that provide measurements at only several locations for 

flood forecasting [2–4]. Toth et al. [5] indicated that radar detection is particularly difficult in 

mountainous regions because of the effect of ground occultation and altitude. Consequently, radar-based 

measurement techniques are limited under topographic conditions where radar reflectivity is poor [6,7]. 

Thus, hydrologists typically use probabilistic and stochastic methods for rainfall forecasting based on 

current and past rainfall measurements (e.g., [8–13]). Because these methods typically require large 

volumes of rainfall data for calibrating and training the model parameters, Deng [14] proposed a grey 

system theory-based model for future data prediction. Moreover, grey theory-based models require 

relatively few observations to predict outcomes [15–17]; thus, they are suitable for rainfall forecasting. 

Rainfall forecasts are inputted into rainfall-runoff models to provide flood warning information for 

authorities. In recent decades, artificial neural networks (ANNs) have become a well-known tool for 

hydrologic forecasting [18–29]. However, ANNs require a large amount of hydrologic data to determine 

the adaptive weights, which are inadequate to be applied to data-sparse areas. Although fully distributed 

grid-based routing models can provide detailed information on flood wave transports, they may  

be unsuitable for real-time flood forecasting systems because the simulation process is typically  

time-consuming [30]. Hence, lumped and semi-distributed hydrological models are acceptable practical 

alternatives. For example, the Sacramento model was adopted by the National Weather Service River 

Forecast System in the United States [31,32], the tank model has been widely applied for runoff 

forecasting in Japan [33], the Hydrologiska Byråns Vattenbalansavdelning (HBV) model was adopted 

in Europe [34], and the Xinanjiang model was introduced in China [35]. To further minimize the 

requirement of observed flow data to develop semi-distributed models, hydrologists have adopted 

geomorphology-based runoff models [36–40].  

Rodriguez-Iturbe and Valdes [35] proposed the geomorphologic instantaneous unit hydrograph 

(GIUH) model, which can be employed to derive the instantaneous unit hydrograph (IUH) of a watershed 

based on information from a topographic map or digital elevation data set. Subsequent studies have 

modified the GIUH model by incorporating kinematic-wave approximation, thereby providing 
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reasonable estimations of flow velocity, which augments rainfall-runoff simulation used in both gauged 

and ungauged sites [41–43].  
It is necessary to implement the effective data assimilation in the forecast process to bridge the 

immense gap between the theory and operational practice [44]. Comprehensive reviews of data 

assimilation approaches in operational hydrologic forecasting were presented by Liu et al. [45]. Since 

uncertainty is an inherent characteristic of watershed hydrodynamics, an ideal flood forecasting system 

should incorporate a real-time updating algorithm that revises the model state to improve the forecasting 

accuracy. Refsgaard [46] reported that techniques for updating real-time forecasting can be classified 

into the following four categories: (1) updating input variables; (2) updating state variables; (3) updating 

model parameters; and (4) updating output variables (i.e., error prediction). Previous studies have 

developed updating techniques based on time-series analysis [47,48], statistical methods [17,49], 

multiple regression analysis [50], dimensional variational algorithms [51,52], and the filter  

approaches [53–58]. Selection of an appropriate updating algorithm depends on the availability of  

real-time feedback data and the structure of the rainfall-runoff model employed for flow forecasting.  

The purpose of this study is to develop an effective flood forecasting system for midsize rural 

watersheds. We adopted the grey rainfall forecasting technique based on existing hourly rainfall data to 

avoid poor radar reflectivity in mountainous watersheds. In performing the watershed runoff simulation, a 

geomorphology-based runoff model which can account different geomorphologic and hydrological 

characteristics of the watershed was used in this study. Furthermore, a flow updating algorithm was linked 

to the runoff model to estimate watershed runoff in the next three hours. The proposed flow forecasting 

system can operate with high efficiency to meet the requirements of real-time flow forecasting. The system 

was applied to three watersheds; one in the United States (Goodwin Creek) and two in Northern Taiwan 

(Heng-Chi and San-Hsia). The results of the flood forecasting were compared with official records to 

confirm the validity of the proposed system. In the following sections, Section 2 describes the analytical 

methods including the short-term rainfall forecasting and the geomorphology-based runoff model with an 

updating algorithm. The application of the proposed methods and the forecast results are presented in 

Section 3. Section 4 summarizes the conclusions of this study. 

2. Analytical Methods 

The framework of the proposed flood forecasting system incorporates a grey rainfall forecasting 

model [14], kinematic-wave-based GIUH (KW-GIUH) model [36], and flow updating algorithm that is 

linked to the KW-GIUH model to improve the flow forecasting accuracy. 

2.1. Short-Term Rainfall Forecasting 

The grey rainfall forecasting is adopted herein for two reasons: (1) a short-term rainstorm system is 

too complex to be simulated by using deterministic approaches; (2) the grey system provides an efficient 

way for rainfall prediction using only small amount of past observed rainfall data. Consequently, the 

grey model proposed by Deng [14] is appropriate for the present system for rainfall forecasting.  

Although hydrological time-series data typically exhibit random forms, a systematic trend can be 

observed after a repeatedly accumulated generating operations (AGO). According to the AGO concept, 
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Deng [14] developed an effective method for predicting future data based on a limited number of 

observations. A series of raw rainfall data can be expressed as follows: 

( ) ( ) ( ) ( )0 0 0 0(0)( ) (1),  (2),  ..., ( ) ,...,  ( )R t r r r k r n =    (1)

where ( ) ( )0R t  denotes the raw time-series rainfall data set, and ( ) ( )0r k  is the kth observed rainfall. The 

first-order AGO series can be defined as [14]: 

(1) (0)

1

( ) ( ) ;  1,  2,  3,  ...,
t

k

R t r k t n
=

= =  (2)

where ( ) ( )1R t  is the first-order AGO rainfall time series, and ( ) ( )1r t  is the first-order AGO observed 

rainfall data at time t. A first-order differential equation is employed to fit the cumulative rainfall data, 

which can be expressed as: 

(1)
(1)( )

( )
dR t

aR t b
dt

+ =  (3)

where a  and b  are the grey system model parameters. Deng [14] indicated that the whitening of the 

grey derivatives of discrete data with unit time intervals can be expressed as: 

(1)
(1) (1) (0)( )

( ) ( 1) ( )
t k

dR t
r k r k R k

dt =

= − − =  (4)

The whitening value of (1) ( )
t k

R t
=

 is defined as: 

( )(1) (1) (1) (1)1
( ) ( ) ( ) ( 1) ,     2,  3,  ... ,  

2t k
Z k R t r k r k k t

=
= ≅ + − ∀ =  (5)

where (1) ( )Z k  denotes the whitening value of (1) ( ) t kR t = . Next, Equations (4) and (5) are substituted into 

Equation (3) to obtain a grey discrete differential form as: 
(0) (1)( ) ( )R k a Z k b+ ⋅ =  (6)

The grey parameters a and b can be estimated using the least square method. Thus, the solution of 

Equation (6) is expressed as: 

(1) (0)( ) ( ) akb b
r k t r k e

a a
− + Δ = − + 

 
  (7)

where ( )(1)
1r k +  is the forecast value of the first-order AGO series. Consequently, the rainfall depth at 

the subsequent time step can be obtained from the equation: 

(0) (1) (1)
( ) ( ) ( ),   1,  2,  3,  ... ,  r k t r k t r k k n N+ Δ = + Δ − ∀ = ∈  

 (8)

where 
(0)

( )r k t+ Δ  is the forecast rainfall depth at time k t+ Δ . The grey parameters in Equation (7) are 

updated when the new observed rainfall data are obtained. Yu et al. [17] indicated that the accuracy of 

rainfall forecasting decreases when the lead time is increased because the forecast error is cumulated 

from previous lead-time forecasting. Consequently, an algorithm called single-time-step forecasting 

proposed by Yu et al. [17] was used to overcome the shortcoming. 
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Several studies have successfully applied the first-order grey model for hydrological forecasting [14–17]. 

Because forecast errors are cumulative, grey forecasting models become less reliable as the forecast lead 

time increases. However, when a grey rainfall forecasting model is combined with a watershed  

rainfall-runoff model, the forecast lead time can be extended because of the time lag in the transporting 

of a flood wave from upstream to downstream.  

This study adopted four criteria to evaluate the performance of the grey rainfall forecasting model. 

First, the error of total cumulative rainfall (ETCR) is defined as: 

1 1

1

n n

tt
t t

n

t
t

r r

ETCR
r

= =

=

−
=
 





 (9)

where tr  is the forecast rainfall at time t; tr  denotes the observed rainfall at time t; and n represents the 

number of time steps to be estimated. A more accurate forecast can be obtained when ETCR is 

approximately zero. Second, the relative root mean square error (RMSE) is defined as:  

( ) 2

1

/
n

tt t
t

R R R
RMSE

n
=

 −
 

=


 
(10)

where tR  denotes the observed cumulative rainfall at time t;  tR  is the forecast cumulative rainfall at 

time t. A more accurate forecast can be obtained when RMSE is approximately zero. Third, the 

coefficient of efficiency (CE) is defined as [56]: 

( )
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=

=

−
= −

−




 (11)

R  represents the mean of the observed cumulative rainfall. A more accurate fit between the forecast 

rainfall and the observed rainfall can be obtained when CE is approximately one. Moreover, the 

coefficient of correlation (CC) is defined as: 

( )  ( )
( )  ( )
1

22

1 1

n

t tt
t

n n

tt
t t

R R R R
CC

R R R R

=

= =

− −
=

− ⋅ −



 
 (12)

where R  is the mean of the forecast cumulative rainfall at time t. A more accurate forecast can be 

obtained when the value of CC is approximately one. The ETCR and RMSE represent a quantitative 

judgment of model performance. The CE is used to measure the similarity between the predicted and 

observed accumulated rainfall. The CC is used to measure the correlative relationship between the 

predicted and observed accumulative rainfall. 
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2.2. Geomorphology-Based Runoff Model with an Updating Algorithm 

This study adopted an IUH model to provide an efficient method for estimating watershed  

runoff. The KW-GIUH model [36] was used because the IUH can be derived only by using watershed 

geomorphologic information obtained from a topographic map or digital elevation dataset. The 

hydrological response function of the watershed can be expressed analytically as follows [35]: 

  ( ) ( ) ( ) ( ) ... ( ) ( )
o i jix x x x

ww W

u t f t f t f t f t P w
Ω

∈

 
 = ∗ ∗ ∗ ∗ ⋅  (13)

where ( )u t  is the IUH of the watershed; W  is the flow path space, which is expressed as 

,  ,  ,...,  
io i jW x x x xΩ= ; ( )

oixf t  denotes the travel time probability density function in state jx  with a 

mean value of 
jxT ; ∗  denotes a convolution integral; and ( )P w  represents the probability of a raindrop 

adopting a flow path w . 

Kinematic-wave approximation can be employed to express the runoff travel time for the ith-order 

surface flow region as follows [59]: 
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where on  is the overland-flow roughness coefficient; 
ioL  denotes the mean ith-order overland length; 

ioS  is the mean ith-order overland slope; ie represents the effective rainfall intensity; and m is an 

exponent recognized as 5/3 in Manning’s formula. The runoff travel time for the ith-other channel is 

expressed as follows [36]: 

1

1/2

2

2
i i

i i i

i i

m
o cmi e c

x co co
oe c i

B i n L L
T h h

i L S B

 
   = + −    
 

 (15)

where iB  is the ith-order channel width; cn  represents the channel roughness coefficient; icL  is the 

mean ith-order channel length; icS  denotes the mean ith-order channel slope; and 
icoh  is the inflow 

depth of the ith-order channel caused by water transporting from upstream reaches. Hence, the runoff 

travel times for different orders of overland-flow paths and channels can be estimated, and the watershed 

IUH can then be derived by using Equation (13). Consequently, the watershed runoff simulated by using 

KW-GIUH model can be expressed as: 

( ) ( ), 0sim tQ i u t d
τ

τ τ τ= −  
(16)

where ,sim tQ  is the simulated direct runoff at time t; ( )i τ  is the rainfall intensity; and ( )u t τ−  is the unit 

impulse response function derived from the KW-GIUH model.  

Uncertainty is an inherent hydrodynamic characteristic of watershed; therefore, this study adopted a 

real-time updating algorithm to improve the accuracy of flow forecasting. The change in measured 

discharge between time t and t t+ Δ  can be expressed as: 
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,,rec rec trec t tQ Q Q+ΔΔ = −  (17)

where ,rec tQ  and ,rec t tQ +Δ  denote the measured discharges at time t and t t+ Δ , respectively; and recQΔ  

represents the change in measured discharge between time t and t t+ Δ . Assuming that a reliable runoff 

model is used and short-term rainfall forecasting data (i.e., with a lead time of several hours) are 
available, the value of recQΔ  in Equation (17) is assumed equal to the change in simulated discharge 

between time t and t t+ Δ ; this is illustrated as follows: 

,,rec sim sim tsim t tQ Q Q Q+ΔΔ = Δ = −  (18)

where ,sim tQ  and ,sim t tQ +Δ  denote the simulated discharges at time t and t t+ Δ , respectively; and simQΔ  

represents the change in simulated discharge between time t and t t+ Δ  . Consequently, the forecast 

discharge at time t can be approximated by: 

,,

,             
rec t recfore t t

rec t sim

Q Q Q

Q Q
+Δ = + Δ

≅ + Δ
 (19)

where ,fore t tQ +Δ  is the forecast discharge at time t t+ Δ  and simQΔ  is obtained from Equation (18). The 

schematic of the updating algorithm is shown in Figure 1. In the case that the real-time measured 
discharge ,rec tQ  cannot be transmitted successfully through the telemetric system during the rainstorm, 

the forecast discharge at time t t+ Δ  ( ,fore t tQ +Δ ) is replaced by the model generated runoff discharge  

( sim, t tQ +Δ ) without using the updating techniques. Although the proposed updating algorithm is simple, 

it is an efficient method for watershed runoff forecasting. 

 

Figure 1. Schematic of the updating algorithm. 

To evaluate the suitability of the KW-GIUH model, two criteria were chosen to determine the 

goodness-of-fit between the observed and simulated flow hydrographs. The coefficient of efficiency 

QCE  is defined as follows [60]: 
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where ( )recQ t  and ( )foreQ t  denote the recorded and forecast discharges at time t, respectively; recQ  is 

the mean recorded discharge during a storm event, and n is the number of discharge records during the 
storm event. The QCE  is used to measure the similarity between the predicted and observed discharge 

hydrographs. A more accurate fit is obtained when the value of QCE  is approximately one. The peak 

discharge error is defined as follows: 

( ) ( )
( )(%) 100

P Pfore rec

P
P rec

Q Q
EQ

Q

−
= ×  (21)

where ( )P fore
Q  is the forecast peak discharge, and ( )P rec

Q  denotes the recorded peak discharge. The EQp 

is used to measure the error of peak discharge directly. The error of time to peak discharge, PET , is 

defined as: 

( ) ( )P P fore P recET T T= −  (22)

where ( )P foreT  and ( )P recT  are the forecast and recorded time to peak discharge, respectively. 

3. Model Applications 

3.1. Description of Study Watersheds  

Three watersheds were selected to investigate the applicability of the proposed model; one in the 

United States (Goodwin Creek) and two in Northern Taiwan (Heng-Chi and San-Hsia). Goodwin Creek 

is a tributary of Long Creek that flows into the Yocona River, which is one of the main rivers of the 

Yazoo River Basin. Figure 2a shows the watershed stream network and locations of hydrological 

gauging stations. The terrain elevation of the Goodwin Creek watershed ranges from 71 to 128 m above 

sea level (mean). The land area is composed of cultivated land (13.79%), forests (26.00%), pastures 

(59.80%), and water (0.41%). The climate of the Goodwin Creek watershed is humid with hot 

temperatures during summer and mild temperatures during winter. The mean annual temperature and 

rainfall are approximately 17 °C and 1399 mm, respectively. Most of the rainfall occurs during winter 

and spring. Hydrological data were obtained from the Agricultural Research Service of the United States 

Department of Agriculture. Among the 32 rain-gauging stations in the area, this study obtained rainfall 

records from nine stations. The Thiessen polygons method [61] was employed to calculate the hourly 

spatial-average rainfall intensities. Fourteen flow gauging stations were set up in the Goodwin Creek 

watershed area. The control areas of the flow gauging stations ranged from 0.06 to 21.39 km2. In this 

study, Flow-gauging Station No.1 (STA01), which has a drainage area of 21.39 km2, was selected as the 

test site to verify the model.  

The Heng-Chi and San-Hsia watersheds are subwatersheds in Ta-Han Creek, which is one of the main 

rivers of the Tam-Sui River Basin in Northern Taiwan. Figure 2b shows the watershed stream networks 
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and locations of the hydrological gauging stations. The elevation of the Heng-Chi (San-Hsia) watershed 

ranges from 20 to 970 m (30 to 1770 m), and the land is composed of 70% (75%) forest, 25% (20%) 

cultivated land, and 5% (5%) buildings/road. The mean annual precipitation in these areas is 

approximately 3000 mm. Most of the severe storm events are from typhoon activity between May and 

October, and intense rainfall (>50 mm/h) occurs every year. 

(a) (b) 

Figure 2. Watershed boundary and channel network of the study watersheds: (a) Goodwin 

Creek watershed; (b) Heng-Chi and San-Hsia watershed. 

The geomorphologic factors were obtained from a digital elevation model [62] based on datasets of the 

Goodwin Creek watershed (30-m resolution) and the Heng-Chi and San-Hsia watersheds (40-m 

resolution). Table 1 shows the geomorphologic factors of the watersheds used in the KW-GIUH model. 

Table 1. Geomorphologic factors of the study watersheds. 

Watershed i Ni iA (km2) icL (km) icS (m/m) ioS (m/m) 

Goodwin 
(STA01) 

1 76 0.18 0.40 0.0128 0.0228 

2 16 0.75 0.76 0.0090 0.0257 

3 4 3.08 1.56 0.0060 0.0260 

4 1 21.38 7.53 0.0019 0.0213 

Heng-Chi 

1 29 1.07 0.80 0.1304 0.3028 

2 6 6.91 3.13 0.0580 0.2957 

3 2 19.81 1.79 0.0105 0.2468 

4 1 53.15 4.98 0.0078 0.1977 

San-Hsia 

1 69 1.15 0.92 0.1613 0.3138 

2 16 4.99 2.08 0.0924 0.3016 

3 3 18.15 3.88 0.0372 0.3644 

4 1 125.88 17.83 0.0131 0.2918 

Notes: iN  is the number of ith-order streams; iA  is the mean ith-order subwatershed area; icL  is the mean  

ith-order channel length; icS  is the mean ith-order channel slope; ioS  is the mean ith-order hillslope slope. 
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3.2. Rainfall Forecasting  

Table 2 shows the details of storm events that occurred in the study watersheds; these details were 

used for parameter calibration and model verification. In performing the grey rainfall model, parameters 

a and b (Equation (7)) can be estimated by using a least square method only based on small amount of 

past observed rainfall data. The watershed geomorphological factors in performing the KW-GIUH 

model are shown in Table 1, which can be obtained by applying a digital elevation model. The calibrated 

model parameters of the KW-GIUH model for the Heng-Chi and San-Hsia watersheds are no = 0.6 and 

nc = 0.05, and no = 0.2 and nc = 0.02 for the Goodwin watershed. The values of model parameters were 

stable for the test storms in the watersheds. Sensitivity analysis for the model parameters of KW-GIUH 

can be found in Lee and Yen [42]. 

Table 2. Storm records analyzed in this study. 

Watershed 
(Rain Station) 

Event Date 
Rainfall Peak 

(mm/h) 
Total Rainfall 

(mm) 
Rainfall 

Duration (h) 
Flow Peak 

(m3/s) 

Goodwin 
(STA01) 

10/07/1989 11.13 92 48 29.7 
02/03/1991 16.80 62 18 21.1 
14/02/1992 4.66 30 11 9.1 
04/08/1995 13.29 113 28 16.7 
29/11/1996 6.95 44 29 10.2 
23/12/1997 7.17 45 13 19.6 
15/02/1998 10.20 62 48 27.3 
13/03/1999 11.92 95 52 31.0 
01/04/2000 24.09 152 63 32.9 
17/01/2001 7.26 78 60 10.3 

Heng-Chi  
(Ta-Pao) 

17/08/1984 36.00 372 51 169.0 
16/09/1985 69.00 348 25 620.0 
17/09/1986 46.00 420 61 457.0 
27/07/1987 32.00 114 18 164.0 
08/09/1987 59.00 261 45 329.0 
18/08/1990 48.00 342 48 492.0 
05/06/1993 54.00 146 18 179.0 
10/07/1994 22.00 150 31 58.2 
30/07/1996 31.00 450 42 243.0 
31/10/2000 33.00 508 38 317.0 

12125San-Hsia 
(Ta-Pao) 

17/08/1984 36.00 372 51 214.0 
16/09/1985 69.00 348 25 620.0 
17/09/1986 46.00 420 61 404.0 
27/07/1987 32.00 114 18 349.0 
08/09/1987 59.00 261 45 379.0 
18/08/1990 48.00 342 48 1060.0 
05/06/1993 54.00 146 18 339.0 
10/07/1994 22.00 150 31 257.0 
30/07/1996 31.00 450 42 720.0 
31/10/2000 33.00 508 38 435.0 
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Table 3 and Figure 3 show the performance of the grey rainfall forecasting model for the three 

watersheds. The ETCR and RMSE from Equations (9) and (10) represent the quantitative evaluation of 

the model performance, and CE from Equation (11) indicates the performance of the model based on 

cumulative rainfall. The performance of the model was assessed qualitatively based on the value of CC 

(Equation (12)) relative to the correlation between the forecast and observed cumulative rainfall. The 

results showed that ETCR is less than 0.24, RMSE is less than 0.38, CE is greater than 0.85, and CC is 

greater than 0.90, indicating that the forecast and recorded hyetographs are in good agreement. The 

forecast and recorded hyetographs in Figures 4 and 5 show the performance of the grey rainfall 

forecasting model based on lead times ranging from 1 to 3 h. Although the accuracy of the forecast 

rainfall decreases as the lead time increased, the results indicate that the proposed grey model is suitable 

for rainfall forecasting. 

Table 3. Results of grey forecast rainfall. 

Watershed Event Date 

ETCR RMSE CE CC 

1-h 

Ahead 

2-h 

Ahead 

3-h 

Ahead 

1-h 

Ahead 

2-h 

Ahead 

3-h 

Ahead

1-h 

Ahead

2-h 

Ahead 

3-h 

Ahead 

1-h 

Ahead 

2-h 

Ahead 

3-h 

Ahead

Goodwin 

Creek 

10/07/1989 0.03 0.18 0.22 0.03 0.08 0.17 0.99 0.98 0.92 0.99 0.95 0.88 

02/03/1991 0.05 0.16 0.20 0.08 0.17 0.29 0.96 0.93 0.88 0.99 0.95 0.88 

14/02/1992 0.01 0.03 0.08 0.02 0.14 0.27 1.00 0.98 0.95 0.99 0.96 0.90 

04/08/1995 0.06 0.11 0.16 0.04 0.17 0.24 0.97 0.90 0.87 0.99 0.98 0.92 

29/11/1996 0.03 0.09 0.10 0.08 0.24 0.31 0.97 0.90 0.85 0.99 0.98 0.96 

23/12/1997 0.06 0.15 0.21 0.03 0.19 0.25 0.98 0.91 0.88 0.99 0.99 0.97 

15/02/1998 0.04 0.07 0.16 0.06 0.11 0.19 1.00 0.94 0.88 1.00 0.96 0.97 

13/03/1999 0.09 0.14 0.20 0.06 0.18 0.21 0.99 0.95 0.89 1.00 0.98 0.90 

01/04/2000 0.03 0.08 0.15 0.03 0.12 0.16 0.99 0.96 0.91 1.00 1.00 0.98 

17/01/2001 0.07 0.11 0.19 0.07 0.11 0.16 0.98 0.91 0.88 0.98 0.94 0.91 

Heng-Chi 

and  

San-Hsia 

17/08/1984 0.05 0.08 0.16 0.11 0.18 0.27 0.99 0.98 0.94 1.00 0.98 0.96 

16/09/1985 0.06 0.12 0.24 0.09 0.22 0.31 0.96 0.93 0.86 0.99 0.95 0.88 

17/09/1986 0.01 0.03 0.05 0.05 0.18 0.21 1.00 0.98 0.95 1.00 1.00 0.99 

27/07/1987 0.09 0.18 0.22 0.03 0.11 0.18 0.97 0.91 0.88 0.98 0.93 0.91 

08/09/1987 0.01 0.09 0.10 0.14 0.26 0.38 0.89 0.83 0.80 1.00 0.98 0.96 

18/08/1990 0.03 0.09 0.12 0.08 0.17 0.24 0.95 0.85 0.81 1.00 0.99 0.97 

05/06/1993 0.05 0.08 0.11 0.01 0.04 0.19 1.00 0.94 0.87 0.99 0.96 0.97 

10/07/1994 0.09 0.11 0.18 0.02 0.13 0.20 0.98 0.99 0.96 0.99 0.98 0.90 

30/07/1996 0.04 0.07 0.11 0.05 0.15 0.22 0.99 0.95 0.83 1.00 1.00 0.98 

31/10/2000 0.04 0.05 0.17 0.08 0.09 0.13 0.99 0.97 0.93 1.00 1.00 0.99 

Average 0.05 0.10 0.16 0.06 0.16 0.23 0.98 0.93 0.89 1.00 0.98 0.94 
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Figure 3. Results of evaluated criteria for grey forecast rainfall. 
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(b) 

(c) 

Figure 4. Grey model for rainfall forecasting in Goodwin Creek watershed: (a) 1-h ahead; 

(b) 2-h ahead; (c) 3-h ahead. 
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(b) 

(c) 

Figure 5. Grey model for rainfall forecasting in San-Hsia watershed: (a) 1-h ahead;  

(b) 2-h ahead; (c) 3-h ahead. 

3.3. Flow Forecasting  

Four sets of tests were performed to evaluate the applicability of the proposed system for real-time 

flood prediction. The simulation results are detailed shown as follows. 
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rainfall-runoff. Observed rainfall data were inputted into the KW-GIUH model and the flow updating 
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peak occurred at 57 h. The reason for this inconsistency is unknown. However, this unusual hydrological 

record could be used to test the effectiveness of the proposed flow updating algorithm. 

(a) 

(b) 

Figure 6. Flow forecasting using measured rainfall data and without flow updating in  

Goodwin Creek and San-Hsia watersheds: (a) Goodwin Creek watershed (STA 01);  

(b) San-Hsia watershed. 

Table 4. Results of flow forecasting using measured rainfall and without flow  

updating technique. 

Watershed Event Date CEQ EQp (%) ETp (h) 
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(SAT01) 

10/07/1989 0.83 6.29 1 

02/03/1991 0.92 2.56 0 

14/02/1992 0.88 4.33 1 

04/08/1995 0.86 7.81 −1 

29/11/1996 0.93 2.08 0 

23/12/1997 0.89 3.54 0 

15/02/1998 0.88 4.28 0 

13/03/1999 0.84 3.07 0 

01/04/2000 0.90 0.09 1 

17/01/2001 0.82 25.00 12 
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Table 4. Cont. 

Watershed Event Date CEQ EQp (%) ETp (h) 

Heng-Chi 

17/08/1984 0.92 2.00 −1 

16/09/1985 0.88 0.24 −1 

17/09/1986 0.85 1.82 0 

27/07/1987 0.86 4.16 0 

08/09/1987 0.92 3.46 0 

18/08/1990 0.85 4.52 −1 

05/06/1993 0.97 2.01 −1 

10/07/1994 0.86 1.25 −1 

30/07/1996 0.94 3.54 −1 

31/10/2000 0.95 3.01 −2 

San-Hsia 

17/08/1984 0.90 6.54 0 

16/09/1985 0.89 3.33 0 

17/09/1986 0.86 6.29 1 

27/07/1987 0.84 5.54 1 

08/09/1987 0.88 5.19 0 

18/08/1990 0.83 2.24 0 

05/06/1993 0.87 5.64 −1 

10/07/1994 0.95 2.13 0 

30/07/1996 0.96 1.32 −1 

31/10/2000 0.95 7.65 −3 

Average 0.89 4.36 0.10 

(2) Flow forecasting by using forecast rainfall and without flow updating 

For the second set of tests, flow forecasting was performed by inputting the forecast rainfall (obtained 

from the grey model) into the KW-GIUH model. Table 5 and Figure 7 show that the flow forecasting 

accuracy decreased as the lead time increased from 1 to 3 h. For the t + 1 forecast, the forecast flow is 

in good agreement with the observed flow. For the t + 2 and t + 3 forecasts, the temporal variation of the 

flow hydrograph is adequately represented in the simulation although the simulated flow peak is higher 

than the observed flow peak because the forecast peak rainfall was overestimated in the hyetograph. 

Regarding the storm event at the Goodwin Creek watershed on 17 January 2001, the results shown in 

Figure 7a indicate that the KW-GIUH model forecast the first flow peak accurately. However, the second 

flow peak is underestimated because of the inconsistency between the rainfall hyetograph and flow 

hydrograph as mentioned. 
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Table 5. Results of flow forecasting using forecast rainfall and without flow  

updating technique. 

Watershed Event Date  

CEQ EQp (%) ETp (h) 

1-h 

Ahead 

2-h 

Ahead

3-h 

Ahead

1-h 

Ahead 

2-h 

Ahead 

3-h 

Ahead 

1-h 

Ahead 

2-h 

Ahead 

3-h 

Ahead

Goodwin 

(SAT01) 

10/07/1989 0.82 0.49 0.31 14.41 37.91 51.18 1 2 3 

02/03/1991 0.92 0.84 0.81 9.88 27.41 39.42 1 2 3 

14/02/1992 0.87 0.86 0.77 12.48 19.88 32.77 0 1 2 

04/08/1995 0.86 0.83 0.77 11.82 20.43 28.91 1 2 3 

29/11/1996 0.92 0.85 0.83 8.97 14.81 17.94 0 1 2 

23/12/1997 0.89 0.86 0.83 18.13 29.87 41.09 1 1 2 

15/02/1998 0.87 0.81 0.69 14.30 28.99 45.17 1 2 3 

13/03/1999 0.82 0.74 0.70 7.69 12.90 18.09 0 1 2 

01/04/2000 0.90 0.55 0.03 8.95 45.27 62.98 1 2 3 

17/01/2001 0.82 0.81 0.80 24.75 1.27 30.97 12 12 12 

Heng-Chi 

17/08/1984 0.90 0.86 0.81 4.81 11.85 19.28 1 2 2 

16/09/1985 0.87 0.81 0.74 3.29 8.74 20.32 1 1 2 

17/09/1986 0.83 0.79 0.71 10.93 24.31 31.88 1 2 3 

27/07/1987 0.85 0.83 0.78 8.49 18.41 24.31 1 2 2 

08/09/1987 0.92 0.90 0.86 7.96 16.19 19.22 1 2 2 

18/08/1990 0.75 0.43 0.09 14.41 19.84 31.03 1 2 3 

05/06/1993 0.95 0.94 0.88 2.09 7.31 9.08 0 1 2 

10/07/1994 0.85 0.81 0.70 1.09 8.54 11.72 0 1 1 

30/07/1996 0.93 0.91 0.82 9.75 14.32 18.97 −1 0 0 

31/10/2000 0.95 0.94 0.86 4.71 5.47 7.93 −3 −2 −1 

San-Hsia 

17/08/1984 0.90 0.81 0.79 8.49 14.55 21.09 1 2 2 

16/09/1985 0.88 0.80 0.74 6.39 11.52 17.92 1 1 2 

17/09/1986 0.86 0.83 0.52 9.31 18.45 37.01 1 2 3 

27/07/1987 0.84 0.83 0.67 4.09 11.12 14.17 1 2 2 

08/09/1987 0.87 0.81 0.63 4.41 9.18 22.97 1 2 2 

18/08/1990 0.81 0.62 0.31 6.31 11.48 18.02 1 2 3 

05/06/1993 0.85 0.81 0.76 7.31 9.52 16.55 0 1 2 

10/07/1994 0.95 0.91 0.85 4.86 7.59 16.31 0 1 1 

30/07/1996 0.95 0.94 0.89 1.96 4.48 12.05 −1 0 0 

31/10/2000 0.94 0.92 0.80 8.67 13.71 16.58 −3 −2 −1 

Average 0.88 0.80 0.69 8.69 16.18 25.16 0.73 1.60 2.23 
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(a) 

(b) 

Figure 7. Flow forecasting using forecast rainfall and without flow updating in  

Goodwin Creek and San-Hsia watersheds: (a) Goodwin Creek watershed (STA 01);  

(b) San-Hsia watershed. 

(3) Flow forecasting by using measured rainfall and flow updating technique 

The third set of tests was conducted to evaluate the performance of the KW-GIUH model when the 

flow updating algorithm was used in the rainfall-runoff simulation, as shown in Equation (18). The 

measured rainfall at t + 1, t + 2, and t + 3 was inputted into the KW-GIUH model. Table 6 and Figure 8 
show the simulation results, which were evaluated based on the coefficient of efficiency QCE , error of 

peak discharge PEQ , and error of time to peak discharge PET . When the value QCE  is approximately 

one and PEQ  and PET  are approximately zero, good agreement between the recorded and simulated 

hydrographs is anticipated. The results in Figure 8 show that the QCE  values are higher than 0.96, the 

mean PEQ  is 2.73%, and the mean PET  is 0.17 h for the t + 1 simulation. For the t + 2 simulation, the 

QCE  values are higher than 0.87, the mean PEQ  is 4.40%, and the mean PET  is 0.67 h. Finally, for the 

t + 3 simulation, the QCE  values are higher than 0.81, the mean PEQ  is 7.92%, and the mean PET  is 

1.23 h. Figure 9 shows that the forecast and recorded hydrographs are in good agreement for all storm 

events in this test, indicating that the proposed flow updating algorithm combined with the KW-GIUH 
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model simulated the watershed runoff more accurately than do the KW-GIUH model alone. Moreover, 

regarding the storm event at the Goodwin Creek watershed on 17 January 2001, the flow hydrographs 

in Figures 7a and 9a show that the second peak was accurately forecasted when the flow updating 

algorithm is used, despite the recorded flow peak appearing to be unreasonable. The results show that 

using a purely deterministic approach to simulate watershed rainfall runoff is difficult without the assistance 

of a real-time adaptive algorithm. 

Table 6. Results of flow forecasting using measured rainfall and flow updating technique. 

Watershed Event Date  

CEQ EQp (%) ETp (h) 

1-h 

Update 

2-h 

Update

3-h 

Update

1-h 

Update

2-h 

Update

3-h 

Update

1-h 

Update 

2-h 

Update 

3-h 

Update

Goodwin 

(SAT01) 

10/07/1989 0.97  0.93  0.89  2.54 5.77 8.43 1 1 1 

02/03/1991 0.98  0.94  0.90  0.14 3.43 4.95 1 1 2 

14/02/1992 0.96  0.91  0.84  3.83 5.46 5.57 0 0 1 

04/08/1995 0.96  0.92  0.83  2.53 4.59 7.33 0 0 1 

29/11/1996 0.96  0.91  0.85  3.64 4.22 8.36 1 2 2 

23/12/1997 0.97  0.92  0.85  4.81 5.65 8.78 −1 0 1 

15/02/1998 0.96  0.92  0.86  0.19 3.19 3.97 −1 −1 0 

13/03/1999 0.96  0.91  0.83  3.71 0.13 9.80 0 1 1 

01/04/2000 0.97  0.93  0.85  1.94 0.97 8.11 −1 −1 0 

17/01/2001 0.97  0.87  0.81  0.84 0.53 2.05 1 1 1 

Heng-Chi 

17/08/1984 0.96  0.92  0.88  4.75 5.69 10.54 0 0 1 

16/09/1985 0.97  0.93  0.89  4.55 6.29 14.12 0 0 1 

17/09/1986 0.97  0.92  0.90  2.30 1.89 4.92 0 1 2 

27/07/1987 0.96  0.91  0.88  0.76 2.69 5.50 0 1 1 

08/09/1987 0.96  0.92  0.89  1.62 5.86 8.80 1 2 2 

18/08/1990 0.97  0.93  0.91  0.50 3.40 4.14 −1 0 0 

05/06/1993 0.98  0.93  0.91  2.75 0.68 8.15 1 2 2 

10/07/1994 0.97  0.93  0.90  3.03 4.42 9.09 1 1 2 

30/07/1996 0.96  0.91  0.89  3.16 2.19 2.09 0 0 1 

31/10/2000 0.98  0.93  0.91  3.17 10.78 14.44 0 1 1 

San-Hsia 

17/08/1984 0.96  0.92  0.87  2.95 5.69 12.86 1 1 2 

16/09/1985 0.96  0.91  0.88  1.21 8.33 13.23 0 1 1 

17/09/1986 0.97  0.92  0.89  1.53 1.64 3.23 0 1 1 

27/07/1987 0.97  0.92  0.88  3.76 3.24 4.18 0 0 1 

08/09/1987 0.97  0.91  0.86  1.64 6.24 10.8 0 1 2 

18/08/1990 0.96  0.91  0.88  1.69 3.23 3.15 0 0 1 

05/06/1993 0.97  0.94  0.91  2.42 4.89 9.33 1 2 2 

10/07/1994 0.96  0.91  0.88  1.72 3.09 11.56 0 0 1 

30/07/1996 0.98  0.98  0.93  3.84 3.28 4.34 −1 0 1 

31/10/2000 0.99  0.96  0.95  6.22 7.35 9.42 1 2 2 

Average 0.97  0.92  0.88  2.73  4.40  7.92  0.17 0.67 1.23 
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Figure 8. Results of evaluated criteria for flow forecasting using measured rainfall and flow 

updating technique. 

(a) 

(b) 

Figure 9. Flow forecasting using measured rainfall and flow updating algorithm in  

Goodwin Creek and San-Hsia watersheds: (a) Goodwin Creek watershed (STA 01);  

(b) San-Hsia watershed. 
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(4) Flow forecasting by using forecast rainfall and flow updating algorithm 

The final set tests was conducted to confirm the performance of the proposed flood forecasting 

system. The forecast rainfall is generated by using the grey model, and the flow updating algorithm is 

included in the runoff simulation by using the KW-GIUH model to improve the forecasting accuracy. 
Table 7 and Figure 10 show that the mean QCE  ( PEQ ) values of the t + 1, t + 2, and t + 3 forecasts are 

0.92 (4.50%), 0.80 (9.12%), and 0.72 (13.57%). The mean PET  values of the t + 1, t + 2, and t + 3 

forecasts are 0.70 h, 1.47 h, and 2.13 h, respectively. The results of the storm event simulations in  

Figure 11 shows that the recorded and simulated hydrographs are in good agreement for all the three 

watersheds under various geoclimate conditions, even as the lead time increases from 1 to 3 h. 

Table 7. Results of flow forecasting using forecast rainfall and flow updating technique.  

Watershed Event Date  

CEQ EQp (%) ETp (h) 

1-h 

Ahead  

2-h 

Ahead 

3-h 

Ahead 

1-h 

Ahead 

2-h 

Ahead 

3-h 

Ahead 

1-h 

Ahead  

2-h 

Ahead 

3-h 

Ahead 

Goodwin 

(SAT01) 

10/07/1989 0.94  0.82  0.80  3.81  11.21  13.91  1 1 2 

02/03/1991 0.95  0.87  0.77  1.00  3.60  7.33  1 1 2 

14/02/1992 0.89  0.69  0.66  4.22  1.89  4.04  1 2 2 

04/08/1995 0.88  0.70  0.69  1.01  8.67  12.59  1 2 3 

29/11/1996 0.89  0.86  0.81  3.64  9.45  16.24  1 1 2 

23/12/1997 0.91  0.69  0.65  7.28  8.15  14.89  0 1 2 

15/02/1998 0.93  0.85  0.79  9.56  10.69  11.28  0 1 2 

13/03/1999 0.91  0.79  0.78  3.70  8.91  7.28  0 1 1 

01/04/2000 0.95  0.72  0.61  4.13  12.34  18.75  1 2 3 

17/01/2001 0.97  0.94  0.91  1.07  0.39  4.20  0 1 1 

Heng-Chi 

17/08/1984 0.95  0.76  0.62  8.42  11.21  3.71  1 1 2 

16/09/1985 0.89  0.71  0.61  4.88  13.77  5.66  1 1 2 

17/09/1986 0.90  0.84  0.79  1.52  8.15  19.10  1 2 3 

27/07/1987 0.96  0.76  0.61  6.79  9.97  11.52  1 2 2 

08/09/1987 0.89  0.75  0.62  0.04  7.44  16.60  1 2 3 

18/08/1990 0.91  0.78  0.66  3.21  0.22  9.67  0 1 1 

05/06/1993 0.88  0.77  0.61  7.93  12.73  19.02  1 2 3 

10/07/1994 0.92  0.74  0.64  3.28  11.82  23.11  1 1 2 

30/07/1996 0.96  0.90  0.83  1.70  3.62  6.61  1 2 2 

31/10/2000 0.95  0.89  0.82  3.68  5.03  10.02  1 2 2 

San-Hsia 

17/08/1984 0.93  0.76  0.63  9.31  11.59  17.42  1 2 3 

16/09/1985 0.89  0.74  0.61  5.81  14.60  19.88  1 2 2 

17/09/1986 0.91  0.91  0.78  8.44  18.00  22.30  0 1 2 

27/07/1987 0.89  0.72  0.59  7.32  11.52  15.39  1 2 3 

08/09/1987 0.96  0.83  0.74  1.75  5.47  14.50  0 1 1 

18/08/1990 0.91  0.75  0.65  1.68  3.13  9.50  1 2 2 

05/06/1993 0.88  0.71  0.63  6.03  22.14  27.56  1 2 3 

10/07/1994 0.92  0.78  0.69  1.32  13.36  28.36  0 1 2 

30/07/1996 0.98  0.97  0.92  4.60  4.83  5.03  1 1 2 

31/10/2000 0.98  0.95  0.94  7.75  9.65  11.62  0 1 2 

Average 0.92  0.80  0.72  4.50  9.12  13.57  0.70 1.47 2.13 
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Figure 10. Results of evaluated criteria for flow forecasting using forecast rainfall and flow 

updating technique. 

(a) 

(b) 

Figure 11. Flow forecasting using forecast rainfall and flow updating algorithm in  

Goodwin Creek and San-Hsia watersheds: (a) Goodwin Creek watershed (STA 01);  

(b) San-Hsia watershed. 

4. Conclusions  

This study developed an integrated framework for flood forecasting by using a rainfall forecasting 

model, watershed rainfall-runoff model, and real-time flow updating algorithm. Considering that current 

numerical meteorological models used in Taiwan cannot provide a 3-h prediction of the temporal 
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distribution of rainfall, this study adopted a grey rainfall forecasting model. Using the KW-GIUH model 

for runoff simulation is advantageous because it can be developed based on only geomorphologic factors 

of the watershed. Moreover, a real-time flow updating algorithm was incorporated into the KW-GIUH 

structure to account for the uncertainty of watershed runoff processes. The proposed flood forecasting 

system was tested based on hydrological records from three watersheds under different geomorphological 

and hydrological conditions. For the 1-h, 2-h, and 3-h ahead forecast cases, the simulated mean 

coefficient of efficiency (error of peak discharge) is 0.92 (4.5%), 0.80 (9.12%), and 0.72 (13.57%). The 

mean ETP values of the t + 1, t + 2, and t + 3 forecast cases are 0.70 h, 1.47 h, and 2.13 h, respectively. 

These results indicate that the proposed flood forecasting system can provide credible warning 

information for authorities. Furthermore, the proposed flow forecasting system can operate with high 

efficiency to meet the requirements of real-time flow forecasting. Nevertheless, in considering that the 

forecast rainfall is assumed to have the same tendency as previous rainfall; hence, only short-term 

prediction is applicable for this rainfall forecasting system. Since spatially-uniform rainfall is used in the 

KW-GIUH model, the proposed flow forecasting may be not used in a large watershed. Further 

validations to account for watersheds with various hydrological and geomorphologic characteristics are 

still required in future research.  
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