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Abstract: Spatial variability plays an important role in nonlinear hydrologic processes. Due 

to the limitation of computational efficiency and data resolution, subgrid variability is 

usually assumed to be uniform for most grid-based rainfall-runoff models, which leads to 

the scale-dependence of model performances. In this paper, the scale effect on the  

Grid-Xinanjiang model was examined. The bias of the estimation of precipitation, runoff, 

evapotranspiration and soil moisture at the different grid scales, along with the scale-dependence 

of the effective parameters, highlights the importance of well representing the subgrid variability. 

This paper presents a subgrid parameterization method to incorporate the subgrid variability 

of the soil storage capacity, which is a key variable that controls runoff generation and 

partitioning in the Grid-Xinanjiang model. In light of the similar spatial pattern and physical 

basis, the soil storage capacity is correlated with the topographic index, whose spatial 

distribution can more readily be measured. A beta distribution is introduced to represent the 

spatial distribution of the soil storage capacity within the grid. The results derived from the 

Yanduhe Basin show that the proposed subgrid parameterization method can effectively 

correct the watershed soil storage capacity curve. Compared to the original Grid-Xinanjiang 

model, the model performances are quite consistent at the different grid scales when the 

subgrid variability is incorporated. This subgrid parameterization method reduces the 

recalibration necessity when the Digital Elevation Model (DEM) resolution is changed. Moreover, 

it improves the potential for the application of the distributed model in the ungauged basin. 
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1. Introduction 

For the last few decades, the development of numerous distributed rainfall-runoff models enables the 

spatial variations to be represented by a network of grid elements. Advances in geographic information 

systems (GIS), remote sensing (RS) and computational technology have also offered the potential to 

build complex distributed hydrologic models and improve the accuracy of hydrologic prediction in time 

and space [1–3]. 

However, many recent studies have suggested that distributed modelling approaches may not always 

provide improved simulations at the outlet compared to lumped conceptual models [4]. One of the 

underlying reasons is that most models do not represent the spatial variability well [5,6]. Limited by the 

resolution of available data and the computational efficiency, most grid-based distributed models do not 

take into account the subgrid variability of model input, parameters and model state [7–9]. With the 

assumption of the uniform subgrid, the high frequency information of hydrologic variables and 

parameters will be lost as the large sampling dimensions act as a filter [10,11]. 

Because of the nonlinearity of hydrologic processes, model simulations of hydrologic responses are 

inherently sensitive to the spatial variability of input forcing and watershed characteristics [12]. There is 

a growing awareness of the sensitivity of small scale variability in hydrologic systems modelling.  

For example, Wood et al. [13] introduced the concept of the Representative Elementary Area (REA). 

The REA is defined as a critical threshold at which the implicit continuum assumption can be used 

without knowledge of the patterns when building the catchment modelling. Arora et al. [14] compared 

the performances of land surface simulations with and without incorporating the subgrid variability of 

precipitation intensity and soil moisture. The results indicated that the inclusion of subgrid variability 

results in significant changes of magnitude, time and frequency of surface runoff generation and 

partitioning. Ghan et al. [15] assessed the relative influence of the subgrid variability of meteorology, 

vegetation characteristics, soil properties on surface runoff with a land surface model. They found that 

neglecting subgrid variability leads to the underestimation of runoff and overestimation of evaporation. 

Vázquez et al. [16] illustrated the scale-dependence of model effective parameters. They noted that the 

effective parameters need a recalibration when the grid resolution is changed. The scale-dependence of 

the model performances and effective parameters makes it a challenge to determine the scale at which the 

spatial variability can be replaced by grid-averaged characteristics. In order to reduce the necessity of 

recalibration, it is required to provide a well representation of subgrid variability. 

The Grid-Xinanjiang model is an improved version of the Xinanjiang model, which is widely used 

for flood forecasting in humid and semi-humid area of China [17,18]. The soil storage capacity is a key 

variable in the Grid-Xinanjiang model, which controls runoff generation and partitioning. Due to the 

relative short spatial structure, the soil storage capacity is more sensitive to the uniform grid assumption. 

The bias of estimation of soil storage capacity will introduce the uncertainty of hydrologic simulation, 

especially for application in the ungauged basin. Therefore, a good representation of subgrid variability 
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of soil storage capacity is necessary for a scale-invariant hydrologic response in the Grid-Xinanjiang 

model. In this paper, based on the analysis of the model performances of the original Grid-Xinanjiang 

model at different grid scales, a subgrid parameterization method is presented to account for the subgrid 

variability of the soil storage capacity. 

The rest of paper is organized as follows: in the next section, we provide a description of the study area; 

a brief description of the Grid-Xinanjiang model and the subgrid parameterization method are presented 

in the model description section; the following section includes a set of numerical experiments conducted 

in the Yanduhe Basin to compare the model performance with and without incorporating the subgrid 

variability; and the final section provides conclusions and perspectives. 

2. Study Area 

The Yanduhe Basin is located in central China with a catchment area of about 601 km2. The Yanduhe 

River, the main river of the Yanduhe Basin, originating from south of Shennongjia Mountain, flowing 

into the Yangtze River at 31°14′ N, 110°18′ E, is 60.6 km in length, with a mean slope of 9.5‰. More 

than 70% of the area is covered by vegetation. The watershed climate is humid, and the average annual 

precipitation is approximately 1300–1700 mm. Dominated by a monsoon climate, most rainfall occurs 

during the wet season between April and September. 

As shown in Figure 1, the hourly rainfall is monitored at five rainfall gauging stations located in 

Duizi, Xiagu, Banqiao, Songziyuan and Yanduhe. Hourly streamflow and evaporation data are recorded 

at the outlet of the watershed. The morphology of the basin is described by the Digital Elevation Model 

(DEM) with 30 m resolution from the National Aeronautics and Space Administration (NASA). The 

elevation of the Yanduhe Basin ranges from 130 to 3031 m. 

 

Figure 1. Location and gauging stations of the study area. 
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3. Method 

3.1. The Grid-Xinanjiang Model 

DEMs are the primary computational elements for rainfall-runoff modeling in the Grid-Xinanjiang 

model. In each grid cell, canopy interception, direct channel precipitation, evapotranspiration, runoff 

generation and partitioning are simulated. A simple storage based equation is adopted to calculate the 

cumulative interception during rainfall events. The precipitation that falls on the channel can be treated 

as the direct runoff without loss. The evapotranspiration is simulated as a function of moisture content of the 

vertical soil profile. The soil profile is divided into three layers (upper, lower and deeper layers) in each 

grid cell to account for the uneven vertical distribution of the soil moisture content. The Grid-Xinanjiang 

model employs the saturation excess mechanism, and adopts the concept of soil storage capacity to 

partition the rainfall into runoff and infiltration. Depending on the free water capacity, the runoff is 

further subdivided into surface runoff, interflow and groundwater runoff. 

For the daily simulation, the surface runoff directly routes to the channel as the fast component.  

The interflow and groundwater runoff represent the slow component that routes to the outlet of the 

corresponding subcatchment by two linear reservoirs with different lag times. The subcatchments are 

connected by the channel network. The outflow of each subcatchment is routed to the watershed outlet 

by the multiple-reach Muskingum method. More details are available in Yao et al. [17] and Liu et al. [19]. 

3.2. Subgrid Scale Parameterization of the Soil Storage Capacity 

In the original Xinanjiang model, the spatially uneven distribution of the soil storage capacity is 

depicted by a power function [20]: 

1 1
B

f WM

F WMM
 = − − 
   

(1)

where WM is the soil storage capacity, WMM is maximum watershed soil storage capacity, f/F is fraction 

of basin with the soil storage capacity less than WM, B is exponent of the curve. 

A similar method is also adopted in the ARNO [21] and the Variable Infiltration Capacity (VIC) 

models [22]. The power function provides an analytical solution of runoff generation but lacks definite 

physical interpretation. Following the work of Williams et al. [23] and Anderson et al. [24], Yao et al. [25] 

utilized the soil texture and the land cover attributes to estimate the spatial distribution of the soil storage 

capacity. However, limited by resolution of soil property, the small-scale variability information is not 

readily available. Therefore, the uniform grid assumption is usually adopted. However, the high 

frequency information will be smoothed as the uniform grid acts as a filter. Especially for the soil storage 

capacity, due to the relative short spatial correlation structure, the spatial distribution of the soil storage 

capacity is more easily affected by the smoothing effect [26–28], which may further lead to the  

scale-dependence of the model performance. Therefore, it is necessary to take into account the subgrid 

variability of the soil storage capacity in the Grid-Xinanjiang model. 

By analyzing the spatial organization of soil moisture and different terrain attributes (slope, mean 

curvature, topographic index, specific area, etc.), Western et al. [29] demonstrated that the topographic 

index (TI) can better explain the spatial variability at all scales from 10 m up to the catchment scales.  
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Shi et al. [30] also found a similar spatial pattern between the soil storage capacity and the topographic index. 

On one hand, topography is an important control of the soil moisture distribution [31,32]. The areas that 

have large topographic indices usually correspond to the riparian areas, where it is easier to reach 

saturation because of the relatively small water deficit, and vice versa. On the other hand, the high 

resolutions of topographic indices are more readily obtained than the soil properties. Shi et al. [30] 

suggested the topographic index as an auxiliary variable to correlate with the soil storage capacity  

as following: 

( )minln 1
exp

b
TI TIWM

WMM a

 − +  = −  
     

(2)

where TImin is the minimum topographic index, a and b are two shape parameters. The topographic index 

TI is defined as ln(a/tan β), in which a is the cumulative area per unit length of contour line and β is  

the slope. 

As discussed by Pradhan et al. [33], a distinct shift of the value of the topographic index occurs as 

the DEM resolution becomes coarser. As a function of the topographic index, the soil storage capacity curve 

also changes correspondingly. Therefore, it is necessary to correct the grid-averaged soil storage capacity. 

By integrating the soil storage capacity in each grid, we can estimate the total watershed soil storage 

capacity at each grid scale. The deviation of the total watershed soil storage capacity between the finest 

grid and other grids can be used to correct the mean value of the soil storage capacity within the  

grid cell: 

t
c

c

WMM
WM WM

WMM
=  (3)

where WMc is the soil storage capacity in each grid after correction, WMMt is the total watershed soil 

storage capacity at the finest resolution and WMMc is the total watershed soil storage capacity at the 

modelling scale. 

As suggested by Li and Avissar [34], here we use a beta distribution to describe the subgrid variability 

of the soil storage capacity. Compared to the other commonly used probability distribution (gamma, 

lognormal, etc.), the bounded character of beta distribution is more suitable for the description of soil 

property. It is defined as following: 

α 1 β 1(α β)
( ) (1 )

(α) (β)
f WM WM WM− −Γ += −

Γ Γ  (4)

where Γ() is the gamma function, and α and β are two shape parameters. 

The parameters of the beta distribution can be estimated by the mean and variance values of the soil 

storage capacity within the grid. We can obtain the mean value of the soil storage capacity of the grid 

cell by Equations (2) and (3). The variance indicates the fluctuation range of the soil storage capacity 

within grid which can be derived by spatial aggregation from the finest resolution. Due to the uneven 

distribution of WM within the grid, part of the effective rainfall (Pe) is partitioned into the runoff (R), 

and the other part is stored in the soil (ΔW). As shown in Figure 2, the runoff R in a grid can be  

expressed as: 
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where A is the soil storage capacity corresponding to the soil content and W0; IWM is the cumulative 

density function of WM. 

 

Figure 2. Schematic representation of runoff generation within a grid. 

4. Results and Discussion 

4.1. Model Validation 

The proposed subgrid parameterization method is validated against the observed data from 1981 to 

1986 using a daily time step. The model parameters are calibrated at 30 m resolution with the 

observations from 1981 to 1984. The rainfall data at five gauging stations is interpolated to each grid 

using the inverse distance weighting method. Adopting the seeding technology [35], the Yanduhe Basin 

is subdivided into 58 subcatchments with a threshold of 5 km2. We ran a drainage experiment presented 

by Vivoni [36] to obtain a reasonable spatial distribution of the initial soil moisture. The watershed is 

assumed to drain from a full saturation status without rainfall and evapotranspiration, until the watershed 

soil moisture content reaches the condition that we choose. The annual runoff deviation (ARD) and the 

Nash-Sutcliffe coefficient (NSC) are used as two criteria for the model evaluation. The ARD provides a 

general sense of the water balance, and the NSC is used to assess the goodness of fit between the 

simulated and the observed discharge. The ARD and NSC are calculated as follows: 

= 100%sim obs

obs

R R
ARD

R

− ×
 

(6)
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2
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( )

t t
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t
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where simR  is the annual simulated runoff; obsR  is the annual observed runoff; t
simQ  is the simulated 

discharge at time step t ; t
obsQ  is the observed discharge at time step t ; and obsQ  is the mean value of the 

observed discharge, n  is the total number of values in the time period. 

The simulated results at the Yanduhe Station are summarized in Table 1. The averaged ARD  and
NSC  are 9% and 0.81 respectively in the calibration periods. In the validation period, the ARD  and 
NSC  also reach 10% and 0.76. Figure 3 shows an illustration of the simulated hydrograph against the 

observed data at the Yanduhe Station from April to October in 1986. The results demonstrate consistency 

between the simulation and observation. Further analysis is also based on the observed data in 1986. 

Table 1. Performance of the Grid-Xinanjiang model for the calibration and validation periods. 

Period Year ARD (%) NSC 

Calibration 

1981 13 0.74 
1982 4 0.90 
1983 7 0.81 
1984 11 0.79 

Validation 
1985 14 0.65 
1986 6 0.87 

 

Figure 3. An illustration of the model performance of the Grid-Xinanjiang model with the 

subgrid parameterization in the Yanduhe Basin in 1986. Red dot, observed discharge; black 

line, simulated discharge; blue bar, precipitation. 

4.2. The Scale-Dependence of the Grid-Xinanjiang Model with a Uniform Grid 

The scale-dependence of model performance is the reason that we propose the subgrid 

parameterization method. Before evaluating the reasonability of the subgrid parameterization, we are 

also interested in, to what extent, the hydrologic responses of the original Grid-Xinanjiang model depend 

on the grid scale. Figure 4 depicts the probability density functions of the soil storage capacity from four 

different grid scales (50 m, 100 m, 500 m and 1000 m) in the Yanduhe Basin. A distinct shift is observed 

as the grid scale increases. The mean value of the watershed soil storage capacity increases from 30 to 

57 mm when the grid scale aggregates from 50 to 1000 m. In addition, the peak of the density function 

also moves towards a high value. As a key variable in the Grid-Xinanjiang model, the bias indicates that 
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for the coarse grid, more rainfall can be stored in the soil, and the runoff process will be more sensitive 

to the higher rainfall intensity. 

 

Figure 4. Effect of the grid resolution on the density function of the soil storage capacity. 

The hydrologic responses of the original Grid-Xinanjiang model were evaluated with the observed 

data from April to October in 1986 in the Yanduhe Basin. Figure 5 shows the processes of the average 

monthly precipitation, evapotranspiration, runoff and soil moisture at the different resolutions. For 

comparison, the soil moisture content θ is normalized to the relative soil moisture: θ* = (θ − θr)/(θs − θr). 

θs and θr are the saturation and the residual soil moisture, respectively, the values of which relate to the 

soil texture [37]. The calibrated parameters at the 30 m resolution are directly adopted without 

recalibration at each grid scale. As can be seen in Figure 5, all these processes show an obvious  

scale-dependence. The spatially averaged precipitation reduces with the increasing grid scale. The bias 

of the precipitation mainly concentrates before March and after August, when the amount of rainfall is 

relatively low. The maximum margin of the monthly rainfall volume between 50 and 1000 m grids reaches 

the peak of 8% in September. For the relatively large rainfall volume, such as during June and July, the 

bias is only approximately 2%. This can be interpreted by the different spatial characteristics of rainfall 

types. As discussed by Ciach and Krajewski [38], rainfall fields are less variable for higher rainfall 

intensity. It is obvious that the smoothing effect will be more significant for the storm with higher 

variability. Compared to the precipitation, the runoff is more sensitive to the change of the grid scale. 

The bias of the estimation of precipitation, combined with the bias of totally watershed soil storage 

capacity, results in the inconsistencies of runoff at the different grid scales. For the coarse grid, the 

precipitation is underestimated. In addition, large soil storage capacity also allows more rainfall stored 

in the soil, rather than converting into runoff. The averaged bias of runoff between 50 and 1000 m 

resolution is approximately 28%. The bias of runoff reaches the peak around August. The runoff derived 

from 50 m is almost three times that from 1000 m. Since more rainfall infiltrates into the soil, the relative 

soil moisture increases with the grid scale. Therefore, as a function of moisture content of soil profile, 

the evapotranspiration is correspondingly higher for the coarse grid. The evapotranspiration and the 

relative soil moisture processes exhibit marked differences between March and August. This is because 

the evapotranspiration is more intensive during this period. The averaged bias of evapotranspiration and 

relative soil moisture caused by the spatial aggregation from 50 to 1000 m are 13% and 14%, 

respectively. Due to the decline of the measured evaporation, only slight differences occur in September 

and October. 
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Figure 5. The monthly precipitation, evapotranspiration, runoff and relative soil  

moisture processes. 

To evaluate the scale effect on the effective parameters, the model parameters require a recalibration 

at the different grid scales. To avoid the subjectivity of parameter estimation, automated calibration 

methods are needed. There has been a great deal of work on the research of automated calibration  

methods [39–41]. In this study, the eleven model parameters are auto-calibrated based on the SCE-UA 

(Shuffled Complex Evolution method developed at the University of Arizona) algorithm, which has been 

found to be consistent, effective, and efficient in searching the globally optimum parameters [42,43]. 

The initial parameters are referred to in Yao et al. [17]. The Nash-Sutcliffe coefficient is used as an 

objective function. The iteration of SCE-UA algorithm will stop when the objective function cannot 

improve 0.1% over five iterations or the number of iteration exceeds 10,000. Table 2 lists the value of 

the effective parameters at four different grid resolutions. It is clear that the model parameters vary with 

grid scale in varying degrees. The ratio of the potential evapotranspiration to pen evaporation (K), the 

maximum watershed soil storage capacity (WMM) and the recession constant of the interflow storage 

(Ci) are relatively sensitive. The ratio of the potential evapotranspiration to pen evaporation decreases 

from 1.0 to 0.93 when the grid resolution increases from 50 to 1000 m. The maximum watershed soil 

storage capacity also decrease from 124 to 112. No significant changes were observed for the recession 

constant of groundwater storage (Cg) and two parameters in the Muskingum routing method (X,V). 
  

Apr May Jun Jul Aug Sep Oct
120

160

200

240

280

Apr May Jun Jul Aug Sep Oct
30

60

90

120

150

180

Apr May Jun Jul Aug Sep Oct
0

40

80

120

160

Apr May Jun Jul Aug Sep Oct
0.2

0.4

0.6

0.8

 

Pr
ec

ip
ita

tio
n 

[m
m

]
 50m
 100m
 500m
 1000m

Ev
ap

ot
ra

ns
pi

ra
tio

n 
[m

m
]

 

 

R
un

of
f [

m
m

]

 

R
el

at
iv

e 
so

il 
m

oi
st

ur
e 

[-]



Water 2015, 7 2700 

 

 

Table 2. Model parameters and calibrated values at 4 different grid resolutions. 

Parameter Description Range 
Calibrated value 

50 m 100 m 500 m 1000 m

K Ratio of potential evapotranspiration to pan evaporation 0–2 1.0 0.98 0.94 0.93 

WMM Maximum watershed soil storage capacity (mm) 60–300 124 118 114 112 

α Shape parameter 0–20 1.1 1.0 0.9 0.9 

β Shape parameter 0–20 1.5 1.5 1.5 1.4 

SM Free water storage capacity (mm) 0–100 12 11 10 10 

Ki Outflow coefficient of free water storage to interflow 0–0.7 0.42 0.40 0.41 0.40 

Kg Outflow coefficient of free water storage to Groundwater 0–0.7 0.28 0.26 0.26 0.25 

Ci Recession constant of interflow storage 0.3–0.8 0.58 0.57 0.54 0.53 

Cg Recession constant of groundwater storage 0.8–0.995 0.85 0.86 0.85 0.84 

X A weight factor of Muskingum method 0.1–0.5 0.33 0.33 0.32 0.32 

V Flow velocity in channel (m/s) 0.5–2 1.3 1.3 1.3 1.3 

4.3. Evaluation of the Subgrid Parameterization 

As discussed above, the bias of the soil storage capacity at the different grid scales is an important 

reason for the scale-dependence of the model performances and the effective parameters. Therefore, a 

good representation of soil moisture capacity at the subgrid scale is necessary for a scale-invariant 

hydrologic response in the Grid-Xinanjiang model. Following the subgrid parameterization described in 

Section 3, Table 3 compares the annual water budget with and without the subgrid variability. The total 

annual evapotranspiration (Ep), runoff (R), surface runoff (RS), interflow (RI) and groundwater runoff 

(RG) at four different resolutions are calculated with the same parameters. As seen in Table 3, with the 

uniform grid, the annual evapotranspiration increases with the grid scale. The bias of the annual 

evapotranspiration between 50 and 1000 m resolution can reach 48 mm. The total runoff is significantly 

underestimated for the coarse grid. The annual total runoff at the 50 m resolution is 852 mm, and 763 mm 

at the 1000 m resolution. Note that the differences of interflow and groundwater runoff are quite small, 

and the bias of runoff mainly originates from surface runoff. This is because the runoff is partitioned 

into different components by the free water capacity, which is relatively small. The impact of the change 

of the free water capacity on the partitioning of interflow and groundwater runoff is limited. The runoff 

in excess of the free water capacity converts into surface runoff. Thus, the decrease in the total runoff 

from fine to coarse grid firstly leads to a change of the surface runoff. However, when the subgrid 

variability of the soil storage capacity is incorporated, the bias of the annual evapotranspiration  

between 50 and 1000 m significantly reduces to 3 mm. For the 1000 m resolution, the bias of 

evapotranspiration with and without the subgrid parameterization are considerably large, accounting for 

almost 22% of the annual evapotranspiration. For the non-uniform subgrid, the runoff increases by  

23 mm and 101 mm for the 50 m and 1000 m resolutions, respectively. Compared to the uniform subgrid, 

both interflow and groundwater runoff increase marginally after incorporating the subgrid variability, 

and the differences at different resolutions are almost negligible. 
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Table 3. Performance of the Grid-Xinanjiang model with and without the  

subgrid parameterization. 

Process 
Uniform Subgrid Non-uniform Subgrid 

50 m 100 m 500 m 1000 m 50 m 100 m 500 m 1000 m 

Ep(mm) 472 487 516 520 430 430 427 427 

R (mm) 852 819 768 763 876 875 862 864 

RS (mm) 244 208 154 147 253 253 242 243 

RI (mm) 374 376 378 379 383 383 382 383 

RG (mm) 234 235 236 237 239 239 239 239 

In Figure 6, the Nash-Sutcliffe coefficient is used as the criteria to evaluate the model performances 

of two subgrid schemes at the different grid scale. Because there is no measured data available for the 

actual evapotranspiration and soil moisture, the simulated results at the 30 m resolution are taken as the 

true values. In Figure 6, the dash-dot line is obtained from the original Grid-Xinanjiang model, and the 

solid line represents the model performance after incorporating the subgrid variability. With the uniform 

grid, the NSC of runoff process ranges between 0.93 and 0.98. The difference is more apparent for 

evapotranspiration and soil moisture processes. With the same parameters, the NSC of the 

evapotranspiration and the relative soil moisture decline to 0.88 and 0.82 at 1000 m from 0.98 and 0.97 

at 50 m. However, when the subgrid variability is taken into account, the model performances at the 

different resolutions are quite consistent. The improvement of the model performance is significant, 

especially at the larger grid scales. The increases of the NSC for the three processes at 1000 m resolution 

reach 4%, 5% and 12%, respectively. It can be concluded that the subgrid parameterization can partly 

eliminate the scale-dependence of the model. Not only the total water budget, but also the performance 

at each time step is quite consistent at each resolution when the subgrid variability is taken into account, 

but it needs to be pointed out that the proposed subgrid parameterization only depicts the subgrid 

variability of soil storage capacity, and the variability of precipitation, evapotranspiration or flow routing 

velocity at the subgrid scale may still cause the inconsistency of model performances at the different grid scales. 

 

Figure 6. Model performances with and without subgrid parameterization. The solid line 

represents the NSC from the Grid-Xinanjiang model with uniform grid, and the dash-dot line 

represents the NSC after incorporating the subgrid variability. 
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To further investigate the effect of subgrid parameterization, Figure 7 plots the simulated discharge 

at the outlet from the original Grid-Xinanjiang model versus the discharge after incorporating the subgrid 

variability at 50 m, 100 m, 500 m and 1000 m grid resolutions. It seems that the model tends to 

underestimate the discharge if the subgrid variability of soil storage capacity is neglected. The gap 

between the two schemes increases with grid scale. For the 50 m grid resolution, the discharge is closely 

fit to the 1:1 line. While for the 1000 m resolution, the discharge increases by an average of 6% after 

incorporating the subgrid variability. The bias of the discharge with and without subgrid variability can 

be as high as 40 m3/s. The large bias between the two schemes mainly occurs when the discharge is less 

than 100 m3/s. Even for small discharge, the gap is also evident. However, no significant change is 

observed for large discharge. It is because, for the saturation excess mechanism employed by the  

Grid-Xinanjiang model, large discharge is usually associated with relatively high soil content and intense 

rainfall. Once the watershed is fully saturated, all of the effective rainfall will directly convert into the 

runoff without loss. In this case, the effect of the spatial variability on runoff will no longer exist. It 

demonstrates that the subgrid variability is more necessary for the relatively dry period. This conclusion 

not only works for the Grid-Xinanjiang model, but also for the other saturation excess dominated 

hydrologic model. 

 

Figure 7. Discharge from the original Grid-Xinanjiang model (Quni) versus runoff after 

incorporating the subgrid variability (Qnon-uni).  
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5. Conclusions 

Spatial variability is known to increase with scale. With the assumption of a uniform grid, the spatial 

averaging operation leads to the scale-dependence of model performance. In this study, we take the  

Grid-Xinanjiang model as an example to investigate the effect of subgrid variability on the hydrologic 

response. The processes of precipitation, runoff, evapotranspiration and soil moisture at four different 

grid scales (50 m, 100 m, 500 m and 1000 m) are compared. The calibrated parameters based on 30 m 

resolution are used for each simulation without recalibration. The results derived from the Yanduhe 

Basin show that the model performances vary with grid scales. As a key variable in the Grid-Xinanjiang 

model, the total watershed soil storage capacity increases from 30 to 57 mm when the grid resolution 

spatially aggregates from 50 to 1000 m. Depending on the different rainfall structure, the precipitation 

is underestimated for coarse grid. The bias of precipitation process and watershed soil storage capacity 

leads to the inconsistency of the hydrologic responses across scales. Calibrated by the SCE-UA method 

against the observed data, the model effective parameters also vary with grid scale in varying degrees. 

Therefore, for a scale-invariant hydrologic response, the subgrid variability is required to be taken 

into account. In light of the sensitivity of the Grid-Xinanjiang model to the soil storage capacity, this 

study presents a subgrid parameterization method to incorporate the subgrid variability of the soil  

storage capacity. The topographic index is adopted as an auxiliary variable to correlate the soil storage capacity. 

On one hand, the topographic index and the soil storage capacity have similar spatial distributions and 

physical basis. On the other hand, the high resolution topographic index is more readily obtained than 

the soil property information. A beta distribution is introduced to represent the spatial distribution of the 

soil storage capacity within grid cell. Compared to the original Grid-Xinanjiang model, the simulated 

runoff, evapotranspiration and soil moisture processes are quite consistent at different grid scales when 

the subgrid variability is incorporated. The inclusion of the subgrid variability results in a significant 

increase of runoff and a decrease of evapotranspiration. For the annual water budget, the differences of 

runoff and evapotranspiration with and without incorporating the subgrid variability can reach 101 mm 

and 93 mm respectively at the 1000 m resolution. Due to the saturation excess mechanism employed by 

the Grid-Xinanjiang model, the correction of hydrologic responses resulting from subgrid parameterization 

is more obvious for relatively small rainfall event or dry conditions. The subgrid parameterization 

method benefits to reduce the necessity of recalibration when DEM resolution is changed, but it also 

needs to be noted that the proposed parameterization method only partly eliminates the scale-dependence 

of the runoff generation. Further research deserves more attention on the scale effect on flow routing. 
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