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Abstract: The objective of this study is to develop artificial neural network (ANN)  

models, including multilayer perceptron (MLP) and Kohonen self-organizing feature map 

(KSOFM), for spatial disaggregation of areal rainfall in the Wi-stream catchment, an 

International Hydrological Program (IHP) representative catchment, in South Korea. A 

three-layer MLP model, using three training algorithms, was used to estimate areal rainfall. 

The Levenberg–Marquardt training algorithm was found to be more sensitive to the number 

of hidden nodes than were the conjugate gradient and quickprop training algorithms using 

the MLP model. Results showed that the networks structures of 11-5-1 (conjugate gradient 

and quickprop) and 11-3-1 (Levenberg-Marquardt) were the best for estimating areal rainfall 

using the MLP model. The networks structures of 1-5-11 (conjugate gradient and quickprop) 

and 1-3-11 (Levenberg–Marquardt), which are the inverse networks for estimating areal 

rainfall using the best MLP model, were identified for spatial disaggregation of areal rainfall 

using the MLP model. The KSOFM model was compared with the MLP model for spatial 

disaggregation of areal rainfall. The MLP and KSOFM models could disaggregate areal 

rainfall into individual point rainfall with spatial concepts. 

Keywords: areal rainfall; conjugate gradient; Kohonen self-organizing feature map; 

Levenberg-Marquardt; multilayer perceptron; quickprop; rainfall disaggregation 
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1. Introduction 

Rainfall is a necessary input for the design of hydrologic and hydraulic systems. Rainfall can be either 

measured or generated using stochastic simulation [1]. The variability of rainfall has been acknowledged 

as a reason for the uncertainties in hydrologic applications. To minimize uncertainties calls for methods 

that improve the reliability of rainfall estimation by combining rainfall information from different 

sources [2]. 

Areal rainfall is the average rainfall over the region under consideration and is estimated by one of 

the popular methods, such as arithmetic mean, Thiessen polygon, isohyetal, spline, kriging, and copula 

amongst others [3–5]. The arithmetic mean method is the simplest one for determining areal rainfall. 

The Thiessen polygon method assumes a linear variation in rainfall between two neighboring stations 

and polygons are constructed which are essentially areal weights. This method is considered more 

accurate than the arithmetic mean method. The isohyetal method involves construction of isohyets using 

observed depths at rainfall stations and assumes a linear variation between two adjacent isohyets [4,6] 

The spline method is an interpolation method that divides interpolation intervals into small subintervals 

and each of these subintervals is interpolated by using the third-degree polynomial [7,8]. The kriging 

method is an optimal interpolator, based on regression against observed rainfall values of surrounding 

rainfall points, weighted according to spatial covariance values [5,9]. The copula method can be 

employed to describe the dependencies on an n dimensional unit cube (uniform) among n random 

variables. Description of the spatial dependence structure independent of the marginal distribution is one 

of the most attractive features of copulas [10,11]. 

Rainfall disaggregation can be both temporal and spatial. Temporal rainfall disaggregation entails 

disaggregating hourly, daily, or longer duration rainfall into short time rainfall, and many techniques have 

been proposed [12–25]. Techniques for spatial rainfall disaggregation using various interpolations and global 

climate models (GCMs) scenarios have been proposed. However, relatively limited research has been 

reported on spatial rainfall disaggregation as compared with temporal rainfall disaggregation [26–29]. 

Artificial neural networks (ANNs) are a robust computational method that has been primarily used 

for pattern recognition, classification, and prediction [30]. The main advantage of the ANNs as an 

alternative of the physical and conventional methods is that we do not need an explicit description in 

mathematical terms for the complex processes of the system under consideration [31–33]. Therefore, 

ANNs can generalize the strong nonlinear patterns of natural phenomena, including aggregation and 

disaggregation of rainfall with stabilization.  

During the past decades, a variety of ANNs have been developed and applied for temporal rainfall 

disaggregation [1,34,35]. In this study, two ANN models, including multilayer perceptron (MLP) and 

Kohonen self-organizing feature map (KSOFM), have been applied to estimate spatial disaggregation of 

areal rainfall in the Wi-stream catchment. MLP and KSOFM have been used effectively to model and 

forecast hydrologic time series. Recently, outstanding results using the MLP and KSOFM models in the 

fields of modeling and forecasting, including evapotranspiration, pan evaporation, river flood, 

precipitation downscaling, dew point temperature, soil temperature, and water level and so on, have been 

obtained [31,36–47]. In this study, areal rainfall is the average rainfall over the region under 

consideration and is estimated using the kriging method. Spatial disaggregation of areal rainfall, 

therefore, refers to the process of estimating point rainfall corresponding to individual rainfall stations. 
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Although there have been many investigations using ANNs, their application for spatial disaggregation 

of areal rainfall has been limited. The mathematical formulas based on the spatial disaggregation of areal 

rainfall on the catchment cannot be derived or developed using conventional methods, including simple 

regression analysis. Therefore, the strong nonlinear behavior in nature, such as spatial disaggregation of 

areal rainfall, can be overcome using the ANNs successfully in this study. 

The objective of this study therefore is to develop and apply two ANN models, including multilayer 

perceptron (MLP) and Kohonen self-organizing feature map (KSOFM), for spatial disaggregation of 

areal rainfall in the Wi-stream catchment, an IHP representative catchment, in South Korea. The paper 

is organized as follows: The second part describes ANNs, including MLP and KSOFM. The third part 

describes a case study, including data used and study area. The forth part presents application and results. 

Conclusions are presented in the last part of the paper. 

2. Artificial Neural Networks 

2.1. Multilayer Perceptron (MLP) Model 

The MLP model has an input layer, an output layer, and one or more hidden layers between input and 

output layers. The nodes in one layer are connected only to the nodes of the immediate next layer. The 

strength of signal passing from one node to the other depends on the connection weights of 

interconnections. The hidden layers enhance the network’s ability to model complex functions. 

The MLP model is trained using many kinds of backpropagation algorithms. Training is a process of 

adjusting the connection weights and biases, which calculate the error committed by the networks simply 

by taking the difference between the desired and actual responses, so that its output can match the desired 

output best [30,48]. Detailed information for the MLP model can be found in Tsoukalas and Uhrig [49] 

and Kim et al. [38–40]. 

2.2. Kohonen Self-Organizing Feature Map (KSOFM) Model 

The KSOFM consists of four layers, that is, the input layer, Kohonen layer, hidden layer, and output 

layer. The input layer is composed of n input nodes, each connected to all nodes of the Kohonen  

layer [50–54]. The Kohonen layer consists of [n1-by-n1] matrices. The KSOFM model is a simple yet 

powerful learning process and an effective clustering method, and uses a neighborhood function to 

preserve the topological properties of the input space. It can transform high dimensional input patterns 

into the responses of two-dimensional arrays of neurons and perform this transformation adaptively in a 

topologically ordered fashion based on similarity. Detailed information on the KSOFM model can be 

found in Kohonen [55,56], Principe et al. [57], and Hsu et al. [58]. 

3. Case Study 

The data derived from the Wi-stream catchment were employed to train, cross-validate, and test 

ANNs models. The Wi-stream catchment, shown in Figure 1, is located in 36°10′ N to 36°14′ N in 

latitude and in 128°33′ E to 128°54′ E in longitude. The catchment is in Kunwi-gun County, which is 

located in the center of Gyeongsangbuk-do province. The catchment, 472.53 km2 in area, represents 

77.1% of the total area, 612.86 km2, of Kunwi-gun county. The Wi-stream catchment is narrow from 
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south to north and long from east to west. The central part of the Wi-stream catchment is quite flat and 

suffers from storm and flood damages every year. There are six river stage stations, six groundwater 

stations, 11 rainfall stations, and 11 evaporation stations in the Wi-stream catchment. The stream network 

consists of one main stream and one tributary [59]. The hydrological data of the Wi-stream catchment, 

such as rainfall, river stage, discharge, and groundwater table, have been recorded since 1982. 

 

Figure 1. Schematic diagram of the Wi-stream catchment. 

To estimate areal rainfall using the kriging method in the Wi-stream catchment, hourly rainfall data 

from 11 rainfall stations, including Kunwi (S) (No.1), Hyoreung (No.2), Daeyul (No.3), Kome (No.4), 

Woobo (No.5), Sanseung (No.6), Shinreung (No.7), Euiheung (No.8), Hwasu (No.9), Hwasan (No.10), 

and Seuksan (No.11), were used. In order for ANNs to make accurate generalizations about rainfall, 

sufficient rainfall data should be available [31]. Rainfall must be recorded for more than 24 h, including 

non-rainfall hour, and non-rainfall period must be within 3 h in order to prevent overfitting when ANN 

models are trained for this study. Fourteen rainfall events (Cases 1–14) were chosen from the mid-1980s 

to the mid-1990s to meet this condition. For estimating areal rainfall using the MLP model, input nodes 

consist of point rainfall values from individual rainfall stations including Kunwi (S) (No.1), Hyoreung 

(No.2), Daeyul (No.3), Kome (No.4), Woobo (No.5), Sanseung (No.6), Shinreung (No.7), Euiheung 

(No.8), Hwasu (No.9), Hwasan (No.10), and Seuksan (No.11) stations. Output node consists of areal 

rainfall values using the kriging method from individual rainfall stations and vice versa for spatial 

disaggregation of areal rainfall using the MLP and KSOFM models. 

For ANNs model, data were split into training, cross-validation, and testing sets. The training data 

were used for optimizing the connection weights and bias of ANNs model. In general, one of the 

problems that weaken the training performances is overfitting. If the overfitting problem occurs, the 
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convergence process over the mean square error of the testing data will not decrease but will increase as 

the training data are still trained [31]. It usually occurs when an ANN model has memorized the training 

data and has not learned to generalize to new situations. To minimize the effect of overfitting,  

cross-validation data was used through an early stopping technique where an ANN model performance 

for the cross-validation data was monitored, and training performance was stopped when error on the 

cross-validation data began to rise. Once the ANN model was trained, the generalization and modeling 

ability of the ANN model was evaluated using a completely new testing data [60,61]. In all of these 

applications, 67% of data (Cases 1, 2, 3, 4, 5, 6, 7, 9 and 10, N = 338 h) was applied for training, 15% 

of data (Cases 8 and 11, N = 77 h) for cross-validation, and 18% of data (Cases 12, 13, and 14,  

N = 91 days) for testing. 

Table 1 shows a summary of statistical indices of data used. In Table 1, Xmean, Xmax, Xmin, Sx, Cv, Csx, 

and SE denote, respectively, the mean, maximum, minimum, standard deviation, coefficient of variation, 

skewness coefficient and standard error values of training, cross-validation, and testing data. The 

estimated values were compared with observed values using four different performance evaluation 

criteria: the Nash-Sutcliffe efficiency [62] (NS), root mean square error (RMSE), mean absolute error 

(MAE), and average performance error (APE). As a measure of the accuracy of any hydrologic model, 

NS is one of the most widely used criteria for calibration and evaluation of hydrological models [63]. It 

has been shown that NS alone cannot define which model is better than others. The various evaluation 

criteria (e.g., RMSE, MAE, and APE) must be used to define the model performance. The NS, RMSE, 

MAE, and APE evaluation criteria quantify the efficiency of a model in capturing extremely complex, 

dynamic, nonlinear, and fragmented relationships. A model, which is efficient in capturing the complex 

relationship among the various input and output variables involved in a particular problem, must be 

considered [64]. Table 2 shows mathematical expressions of performance evaluation criteria. 

Table 1. Statistical indices of areal rainfall data using the kriging method. 

Division Number of Data 
Statistical Indices of Areal Rainfall 

Xmean Xmax Xmin Sx Cv Csx SE 

Training 338 3.26 27.76 0.00 4.21 1.12 2.32 0.21 

Cross-validation 77 2.10 16.68 0.00 3.12 1.32 2.62 0.34 

Testing 91 3.62 19.56 0.00 4.13 1.13 1.46 0.42 

Table 2. Mathematical expressions of performance evaluation criteria. 
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Table 2. Cont. 
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Notes: yi (x) = the observed hourly rainfall (mm); yi (x) = the estimated hourly rainfall (mm); uv = the mean 

of observed hourly rainfall (mm); and n = the total number of hourly rainfall values considered. 

4. Applications and Results 

4.1. Selection of Optimal MLP Models for Estimating Areal Rainfall 

Selection of an appropriate structure is important, because the network structure of ANNs directly 

affects the computational complexity and generalization capability [65]. Currently, there is no reliable 

and established method for selecting an appropriate network structure before completion of training [66]. 

A three-layer ANN, with a single hidden layer, has been usually sufficient for approximating 

conventional hydrological processes [67]. The training performance of ANNs is iterated until the training 

error is reached to the training tolerance [38–40]. In this study, the training tolerance where the mean 

square error converged to a certain value was fixed at 0.001. The training performances of MLP and 

KSOFM models were stopped after 10,000 iterations. Results of training were slightly different from 

each completion of training performance, because the values of initial weights for each layer were set as 

random values. Therefore, optimal parameters were determined when the results of training showed the 

best categories [31]. A three-layer MLP, with a single hidden layer, was used to estimate areal rainfall. 

Since the kriging method includes considerable variables to estimate the areal rainfall compared with 

the Thiessen polygon and spline methods, areal rainfall estimated using the kriging method was assumed 

as the observed areal rainfall. Based on the training data, the MLP model adopted three training algorithms, 

conjugate gradient [68,69], Levenberg–Marquardt [70,71], and quickprop [72], using different numbers  

of hidden nodes ranging from 1 to 10. Three training algorithms, including conjugate gradient,  

Levenberg–Marquardt, and quickprop, were used for the MLP model from the previous literatures. 

Outstanding results using the three training algorithms have been reported previously [37–44,61]. To 

overcome problems associated with extreme values, the data were normalized and scaled between 0 and 

1. Another important reason for data normalization is that different data sets represent observed values 

in different units. The similarity effect of data was also eliminated [73,74].  

Figure 2 shows the influence of the number of hidden nodes on the performance evaluation  

criteria (NS, RMSE, MAE, and APE) for three training algorithms during the test period. The  

Levenberg-Marquardt training algorithm was more sensitive to the number of hidden nodes than were 

conjugate gradient and quickprop training algorithms, as seen from large fluctuations with respect to the 

number of hidden nodes. This result is consistent with that reported by [61]. The best values of NS, 

RMSE, MAE, and APE for 11-5-1 networks were, respectively, 0.996, 0.242, 0.072, and 2.014 for the 
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conjugate gradient training algorithm. The best values of NS, RMSE, MAE, and APE for 11-3-1 

networks were, respectively, 0.992, 0.398, 0.258, and 7.401 for the Levenberg-Marquardt training 

algorithm. The best values of NS, RMSE, MAE, and APE for 11-5-1 networks were, respectively, 0.984, 

0.514, 0.317, and 9.029 for quickprop training algorithm. It is clear from Figure 2a–d that 11-5-1 

networks was the best for conjugate gradient and quickprop training algorithms, and 11-3-1 networks 

was the best for Levenberg-Marquardt training algorithm. The inverse networks of 11-5-1 and 11-3-1 

structures, 1-5-11 (conjugate gradient and quickprop) and 1-3-11 (Levenberg-Marquardt), were 

identified for spatial disaggregation of areal rainfall using the MLP model. In this study, results of the 

MLP output layer with a 11-5-1 structure can be written as: 

1 5

a 2 kj 1 ji 1 2

k 1 j 1

R =Φ ( W Φ ( W X(t) B ) B )
 

      (1) 

where i, j, k = the input, hidden, and output layers, respectively; aR  = the areal rainfall (mm);  

)(Φ
1
  = the linear sigmoid transfer function of hidden layer; )(Φ

2
  = the linear sigmoid transfer function 

of output layer; Wkj = the connection weights between the hidden and output layers; Wji = the connection 

weights between the input and hidden layers; X(t)  = the time series data of input variables; 
1

B  = the 

bias in hidden layer; and 
2

B  = the bias in output layer. Figure 3 shows the structure of MLP (11-5-1) 

developed for estimating areal rainfall in this study. 

  

(a) (b) 

Figure 2. Cont. 
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(c) (d) 

Figure 2. Influence of the number of hidden nodes for three training algorithms (test period). 

(a) NS; (b) MAF; (c) RMSE; (d) APE. 

 

Figure 3. Structure of MLP (11-5-1) developed for estimating areal rainfall. 

Before the chosen structures, such as 11-5-1 and 11-3-1, for three training algorithms were used for 

the spatial disaggregation of areal rainfall, homogeneity between observed (kriging method) and 

estimated (MLP model) areal rainfall values was analyzed. The Mann-Whitney U test, one of the tests 

for homogeneity, was used to compare observed and estimated areal rainfall values to evaluate the 

confidence level of MLP model. It is a nonparametric alternative to the two-sample t-test for two 

independent samples and can be used to test whether two independent samples have been taken from the 

same population [75–78]. The critical value of z statistic (zα) was computed for the specific level of 
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significance. If the computed value of z statistic is greater than the critical value of z statistic (zα), the 

null hypothesis, that the two independent samples are from the same population, should be rejected and 

the alternative hypothesis should be accepted. 

Table 3 shows results of the Mann-Whitney U test between observed and estimated areal rainfall 

values for the testing data. The critical value of z statistic (zα), z0.05 = 1.960, was computed for the five 

percent level of significance. Since the computed values of z statistic for both stations were not 

significant, the null hypothesis was accepted for areal rainfall using the MLP model. 

Table 3. Results of the Mann-Whitney U test. 

Model Networks Training Algorithms 
Level of 

Significance 

Mann-Whitney U test 

Critical z Statistic Computed z Statistic Null Hypothesis 

MLP 

11-5-1 Conjugate gradient 0.05 1.960 −0.287 Accept 

11-3-1 Levenberg–Marquardt 0.05 1.960 −0.617 Accept 

11-5-1 Quickprop 0.05 1.960 −0.515 Accept 

4.2. Evaluation for Spatial Disaggregation of Areal Rainfall Using MLP Model 

Three different MLP models, including 1-5-11 (conjugate gradient), 1-3-11 (Levenberg–Marquardt), 

and 1-5-11 (quickprop), were used for spatial disaggregation of areal rainfall. Figure 4 shows the 

developed structure of MLP (1-5-11) for spatial disaggregation of areal rainfall. 

 

Figure 4. Structure of MLP (1-5-11) developed for spatial disaggregation of areal rainfall. 

Figure 5 shows the influence of individual rainfall station on the performance evaluation criteria (NS, 

RMSE, MAE, and APE) for three training algorithms during the test period. The three training algorithms 

were generally sensitive to individual rainfall station, as seen from large fluctuations with respect to the 

individual rainfall station. The spatial disaggregated rainfall using three training algorithms yielded similar 

values on the performance evaluation criteria (NS, RMSE, MAE, and APE) for individual rainfall station. 
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For Euiheung (No.8) station, the values of NS, RMSE, MAE, and APE were 0.870, 1.480, 0.849, and 

25.335, respectively, for 1-5-11 structure (conjugate gradient); were 0.886, 1.385, 0.732, and 21.863, 

respectively, for 1-3-11 structure (Levenberg–Marquardt); and were 0.869, 1.481, 0.723, and 21.553, 

respectively, for 1-5-11 structure (quickprop). Figure 5a–d shows that spatial disaggregated rainfall at 

Euiheung (No.8) station yielded the best results among the 11 rainfall stations for the MLP model. For 

Hwasu (No.9) station, the values of NS, RMSE, MAE, and APE were 0.378, 3.515, 1.817, and 52.021, 

respectively, for 1-5-11 structure (conjugate gradient); were 0.388, 3.492, 1.795, and 51.431, respectively, 

for 1-3-11 structure (Levenberg–Marquardt); and were 0.373, 3.531, 1.805, and 51.680, respectively, for 

1-5-11 structure (quickprop). Figure 5a–d shows that spatial disaggregated rainfall at Hwasu (No.9) station 

yielded the worst results among the 11 rainfall stations for the MLP model. In this study, the MLP model 

is capable of disaggregating areal rainfall into individual point rainfall. 

  

(a) (b) 

  

(c) (d) 

Figure 5. Influence of individual rainfall stations for three training algorithms of MLP  

(test period). (a) NS; (b) MAF; (c) RMSE; (d) APE. 
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4.3. Evaluation for Spatial Disaggregation of Areal Rainfall Using KSOFM Model 

The KSOFM model was used and compared with the MLP model for spatial disaggregation of areal 

rainfall. The KSOFM model classifies each input node and determines as to which node in the hidden 

layer it must be routed for spatial disaggregation of areal rainfall for the output layer. Six different 

KSOFM models, including (1) [5-by-5] and [7-by-7] matrices in the Kohonen layer; and (2) 11-5-1 

(conjugate gradient), 11-3-1 (Levenberg–Marquardt), and 11-5-1 (quickprop) in the hidden layer, were 

used for spatial disaggregation of areal rainfall. Figure 6 shows the developed structure of the KSOFM 

(1-[5-by-5]-5-11) for spatial disaggregation of areal rainfall. Results of the KSOFM output layer with  

1-[5-by-5]-5-11 structure can be written as: 

11 5

d 2 lk 1 kj j 1 2

l 1 k 1

R =Φ ( W Φ ( W S B ) B )
 

      (2) 

where i, j, k, l = the input, Kohonen, hidden, and output layers, respectively; dR  = the disaggregated 

rainfall (mm) for individual rainfall station; Wkj = the connection weights between the Kohonen and 

hidden layers; Sj = the results calculated from the Euclidean distance (dj) and the Kohonen layer;  

)(
1
  = the linear sigmoid transfer function of hidden layer; )(

2
  = the linear sigmoid transfer function 

of output layer; B1 = the bias in hidden layer; B2 = the bias in output layer; and Wlk = the connection 

weights between the hidden and output layers. The Euclidean distance between the input and Kohonen 

nodes can be written as: 





n

1i

2

jiij
)Wx(d  (3) 

 

Figure 6. Structure of KSOFM (1-[5 X 5]-5-11) developed for spatial disaggregation of  

areal rainfall. 

Figure 7 shows the influence of individual rainfall station on the performance evaluation criteria  

(NS, RMSE, MAE, and APE) for the three training algorithms of the KSOFM model based on [5-by-5] 

matrice (KSOFM1) during the test period. The three training algorithms were generally sensitive to 

individual rainfall station, as seen from large fluctuations with respect to the individual rainfall station. 
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The spatial disaggregated rainfall using the three training algorithms yielded similar values on the 

performance evaluation criteria (NS, RMSE, MAE, and APE) for individual rainfall station. For 

Euiheung (No.8) station, the values of NS, RMSE, MAE, and APE were 0.847, 1.615, 1.174, and 35.129, 

respectively, for 1-5-11 structure (conjugate gradient); were 0.885, 1.402, 0.884, and 26.462, 

respectively, for 1-3-11 structure (Levenberg–Marquardt); and were 0.877, 1.436, 0.738, and 22.035, 

respectively, for 1-5-11 structure (quickprop). Figure 7 shows that spatial disaggregated rainfall at 

Euiheung (No.8) station yielded the best results among the 11 rainfall stations for KSOFM1 model.  

For Hwasu (No.9) station, the values of NS, RMSE, MAE, and APE were 0.358, 3.573, 1.885, and 

53.953, respectively, for 1-5-11 structure (conjugate gradient); were 0.408, 3.432, 1.778, and 50.907, 

respectively, for 1-3-11 structure (Levenberg–Marquardt); and were 0.388, 3.492, 1.736, and 49.732, 

respectively, for 1-5-11 structure (quickprop). Figure 7 shows that spatial disaggregated rainfall at 

Hwasu (No.9) station yielded the worst results among the 11 rainfall stations for KSOFM1 model. 

  

(a) (b) 

  

(c) (d) 

Figure 7. Influence of individual rainfall stations for three training algorithms of KSOFM1  

(test period). (a) NS; (b) MAF; (c) RMSE; (d) APE. 
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Figure 8 shows the influence of individual rainfall station on the performance evaluation criteria  

(NS, RMSE, MAE, and APE) for the three training algorithms of the KSOFM model based on [7-by-7] 

matrice (KSOFM2) during the test period. The three training algorithms were generally sensitive to 

individual rainfall station, as seen from large fluctuations with respect to the individual rainfall station. 

The spatial disaggregated rainfall using three training algorithms yielded similar values on performance 

evaluation criteria (NS, RMSE, MAE, and APE) for individual rainfall station. For Euiheung (No.8) 

station, the values of NS, RMSE, MAE, and APE were 0.845, 1.622, 1.130, and 33.806, respectively, 

for 1-5-11 structure (conjugate gradient); were 0.895, 1.334, 0.791, and 23.680, respectively, for 1-3-11 

structure (Levenberg–Marquardt); and were 0.888, 1.371, 0.715, and 21.354, respectively, for 1-5-11 

structure (quickprop). Figure 8 shows that spatial disaggregated rainfall at Euiheung (No.8) station 

yielded the best results among the 11 rainfall stations for the KSOFM2 model. For Hwasu (No.9) station, 

the values of NS, RMSE, MAE, and APE were 0.317, 3.687, 2.176, and 62.290, respectively, for 1-5-11 

structure (conjugate gradient); were 0.427, 3.378, 1.702, and 48.680, respectively, for 1-3-11 structure 

(Levenberg–Marquardt); and were 0.385, 3.496, 1.726, and 49.398, respectively, for 1-5-11 structure 

(quickprop). Figure 8 shows that spatial disaggregated rainfall at Hwasu (No.9) station yielded the worst 

results among the 11 rainfall stations for the KSOFM2 model. In this study, the KSOFM1 and KSOFM2 

models were capable of disaggregating areal rainfall into individual point rainfall. However, because of 

strong nonlinearity of rainfall, it is difficult to conclude with confidence which model is superior to other 

models. The specific rainfall stations did not generally show the satisfactory results in the evaluation 

criteria for the three training algorithms of the MLP, KSOFM1, and KSOFM2 performances. It can be 

found that the spatial distribution of rainfall stations can affect the performance of ANNs models from 

this observation. 

  

(a) (b) 

Figure 8. Cont. 
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(c) (d) 

Figure 8. Influence of individual rainfall stations for three training algorithms of KSOFM2 

(test period). (a) NS; (b) MAF; (c) RMSE; (d) APE. 

Figures 9 and 10 show the box plots for spatial disaggregated rainfall during the test period at 

Euiheung (No.8) and Hwasu (No.9) stations. The box plots show the distributions of basic statistics for 

performances of MLP, KSOFM1, and KSOFM2 with three training algorithms. Figures 9 and 10 show the 

centerline (median) dividing the rectangular box defined by 25th and 75th percentiles, and lines extend 

from maximum to minimum data point at Euiheung (No.8) and Hwasu (No.9) stations. The basic 

statistics of spatial disaggregated rainfall for performances of the MLP, KSOFM1, and KSOFM2 models 

yielded similar behaviors compared with observed rainfall at Euiheung (No.8) and Hwasu (No.9) stations 

except for the maximum rainfall values. 

 

(a) 

Figure 9. Cont. 
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(b) 

 

(c) 

Figure 9. Rainfall box plots for Euiheung (No.8) station (test period). (a) Conjugate 

gradient; (b) Levenberg–Marquardt; (c) Quickprop. 

 

(a) 

Figure 10. Cont. 
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.
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(b) 

 

(c) 

Figure 10. Rainfall box plots for Hwasu (No.9) station (test period). (a) Conjugate gradient; 

(b) Levenberg–Marquardt; (c) Quickprop. 

5. Conclusions 

This study develops and evaluates artificial neural network (ANN) models for spatial disaggregation of 

areal rainfall in the Wi-stream catchment, an IHP representative catchment, in South Korea. A three-layer 

MLP is used to estimate areal rainfall. Areal rainfall estimated using the kriging method is assumed as 

observed areal rainfall. Based on training data, the MLP models employ three training algorithms, 

conjugate gradient, Levenberg–Marquardt, and quickprop. 

The influence of number of hidden nodes for the three training algorithms is evaluated to estimate 

areal rainfall using the MLP model. The Levenberg-Marquardt training algorithm is more sensitive to 

the number of hidden nodes than are the conjugate gradient and quickprop training algorithms. It is seen 

from large fluctuations with respect to the number of hidden nodes. The Mann-Whitney U test is 

performed to compare observed and estimated areal rainfall values to evaluate the confidence level of 

the MLP model. The null hypothesis is accepted for areal rainfall using the MLP model. The structures 

.

.
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of 1-5-11 (conjugate gradient and quickprop) and 1-3-11 (Levenberg–Marquardt) are identified for 

spatial disaggregation of areal rainfall using the MLP model. 

Three different MLP models are employed for spatial disaggregation of areal rainfall. The influence 

of individual rainfall station to disaggregate areal rainfall using the MLP model is evaluated. Three 

training algorithms are generally sensitive to individual rainfall station, as seen from large fluctuations 

with respect to the individual rainfall station. The spatial disaggregated rainfall using the three training 

algorithms yields similar values for individual rainfall station. The spatial disaggregated rainfall at 

Euiheung (No.8) station yields the best results, whereas spatial disaggregated rainfall at Hwasu (No.9) 

station yields the worst results among the 11 rainfall stations using the MLP model.  

The KSOFM model is compared with the MLP model for spatial disaggregation of areal rainfall. Six 

different KSOFM models are employed for spatial disaggregation of areal rainfall. The spatial 

disaggregated rainfall at Euiheung (No.8) station yields the best results, whereas spatial disaggregated 

rainfall at Hwasu (No.9) station yields the worst results among the 11 rainfall stations using the KSOFM1 

and KSOFM2 models, respectively. 

It can be found that the MLP, KSOFM1, and KSOFM2 models can disaggregate areal rainfall into 

individual point rainfall. However, because of strong nonlinearity of rainfall, it is difficult to conclude 

with confidence as to which model is superior. Continuing studies, including data extension and new 

model application, are needed for aggregation and disaggregation of rainfall. 
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