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Abstract: There are many models that have been used to simulate the rainfall-runoff 

relationship. The artificial neural network (ANN) model was selected to investigate an 

approach of improving daily runoff forecasting accuracy in terms of data preprocessing. 

Singular spectrum analysis (SSA) as one data preprocessing technique was adopted to deal 

with the model inputs and the SSA-ANN model was developed. The proposed model was 

compared with the original ANN model without data preprocessing and a nonlinear 

perturbation model (NLPM) based on ANN, i.e., the NLPM-ANN model. Eight watersheds 

were selected for calibrating and testing these models. Comparative study shows that the 

learning and training ability of ANN models can be improved by SSA and NLPM techniques 

significantly, and the performance of the SSA-ANN model is much better than the NLPM-ANN 

model, with high foresting accuracy. The SSA-ANN1 model, which only considers rainfall 

as model input, was compared with the SSA-ANN2 model, which considers both rainfall 

and previous runoff as model inputs. It is shown that the Nash-Sutcliffe criterion of the 

SSA-ANN2 model is much higher than that of the SSA-ANN1 model, which means that the 

proper selection of previous runoff data as rainfall-runoff model inputs can significantly 

improve model performance since they usually are highly auto-correlated.  
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1. Introduction 

Real-time hydrological forecasting plays an important role in flood control and reservoir operation, 

and higher forecasting precision can increase the utilization efficiency of water resources. Traditionally, 

hydrological simulation modeling systems are classified into three main groups, namely empirical black 

box, lumped conceptual, and distributed physically-based models [1]. The last two groups focus on 

understanding hydrological processes and involve various physical phenomena. Owing to the 

complexity of the rainfall-runoff process, these physical process simulations and model calibrations 

require large amounts of hydrological data. On the contrary, black-box modeling does not require a deep 

knowledge of the underlying physics and also can solve the problem of the scarcity of the data. Several 

black-box models have been developed and used in hydrological forecasting, such as fuzzy theory [2,3], 

artificial neural network [4,5], chaos [6], genetic programming [7], support vector machine [8], and so on. 

Artificial neural network, inspired by research into the biological neural networks, has a flexible 

structure, and self-learning and self-adaptive features. In 2000, the American Society of Civil 

Engineering (ASCE) Task Committee explicitly reviewed the application of artificial neural networks in 

hydrology [9,10]. Hsu et al. [5] mentioned that the artificial neural network (ANN) model can identify 

the complex nonlinear relationship between runoff and rainfall time series, even though the model 

structure and parameters cannot represent the physical process of the catchments. Maier and Dandy [11] 

reviewed using ANN models to deal with water resource variables prediction, outlined the steps that 

should be followed in the development of ANN models, and concluded that the ANN model has 

advantages in hydrological forecasting. Currently, ANN is still a research hot point and has been 

successfully applied in hydrological forecasting [12–22]. 

Due to the highly seasonal variation, and nonlinear and noisy characteristics of hydrological time 

series, preprocessing input data becomes an effective way to improve model precision [23–28]. 

Considering the highly seasonal variation of rainfall and runoff time series, Nash and Brasi [23] 

developed the linear perturbation model (LPM) based on the assumption that subtraction of the seasonal 

means from the original series would remove much of the non-linearity of the rainfall-runoff process. 

The relationship between the departures is simulated by the linear response function, but only part of the 

nonlinearity of the rainfall-runoff process can be removed by subtracting the seasonal means.  

Pang et al. [16] used the ANN model to replace the linear response function and proposed a nonlinear 

perturbation model (NLPM) based on ANN (NLPM-ANN). The advantage of the NLPM-ANN model is 

that it is capable of obtaining satisfactory results even if the explicit form of the relationship between 

the involved variables is unknown.  

Considering that the hydrological time series can be viewed as a combination of quasi-periodic 

signals contaminated by noises to some extent [29], the singular spectrum analysis (SSA) proposed by  

Vautard et al. [30] can decompose the time series into a sum of a small number of interpretable components, 

such as a slowly varying trend, oscillatory components, and a “structureless” noise [31]. By performing a 

spectrum analysis on the input data, eliminating the noises, and inverting the remaining components to 
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yield a “filtered” time series, the model performance could be improved. Sivapragasam et al. [25] proposed 

a prediction technique based on SSA coupled with support vector machines to predict runoff and rainfall, 

and showed that the proposed technique yields a significantly higher prediction accuracy than that of the 

nonlinear prediction method. Wu and Chau [29] also found that SSA can considerably improve the 

performance of the rainfall-runoff model and it is promising in hydrological forecasting. 

In this paper, an approach of improving daily runoff forecasting accuracy in terms of data 

preprocessing and the selection of predictive factors is discussed. The artificial neural network (ANN) is 

used for rainfall-runoff simulation. The SSA and LPM techniques are adopted to deal with data 

preprocessing. Then SSA-ANN models are developed and compared with the NLPM-ANN model based 

on the daily data from the eight watersheds used by Pang et al. [16]. A comparative study is also 

conducted involving two different types of model inputs, namely considering rainfall as an input and 

considering both rainfall and runoff as inputs.  

2. Data-Driven Models 

2.1. NLPM-ANN Model 

The structure of the NLPM-ANN model as shown in Figure 1 was proposed by Pang et al. [16] to 

consider the influence of seasonal changes and the nonlinearity of the rainfall-runoff process. The 

model input is divided into two parts. The first is the series of the seasonal expectations of the input 

(pd) that is transformed to the series of the seasonal expectations of the output (qd) through an 

undefined relation. The second part, which is the input perturbations (Pi-pd), is transformed into the 

output perturbations (Qi-qd) through ANN. The total output is the sum of the seasonal expectations of 

the output and the output perturbations.  

 

Figure 1. Schematic diagram of the NLPM-ANN model. 

2.2. Singular Spectrum Analysis 

Singular spectrum analysis (SSA) is a suitable analysis method for researching the period 

oscillatory behavior. It is also a statistical technique starting from a dynamic reconstruction of the time 

series and is associated with empirical orthogonal function (EOF). Generally, SSA can be considered 

as a special application of EOF decomposition. The main purpose of SSA is converting a 

one-dimensional time series into a multi-dimensional matrix with a given window length, and then the 

orthogonal decomposition of this matrix is obtained. If the obvious pairs of eigenvalues are produced 

and the corresponding EOF is almost periodic or orthogonal, this corresponding EOF can be 

considered the oscillatory behavior of the time series. 

Brief operating procedures of SSA are summarized as follows. Assume that the series is a nonzero 

series F = {f0, f1, …, fN−1} (fi ≠ 0), the length of series is N (>2). Given a window length L, the  
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one-dimensional time series can be transferred into a sequence of L-dimensional vectors  

Xi = {fi−1, …, fi+L−2}T, (I = 1, …, K = N−L+1). The K vectors Xi will form the columns of the (L × K) 

trajectory matrix: 
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Then the singular value decomposition (SVD) of the trajectory matrix X is conducted. Let S = XXT. 

The eigenvalues and eigenvectors of S can be calculated, and these eigenvalues range in the decreasing 

order of magnitude. According to the conventional computation of EOF, an expansion of the matrix X 

is represented as: 
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Equation (3) produces an N-length time series Fk, thus the initial series F is decomposed into the sum of 

L series: 

1

L
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k

F F
=

=  (4)

If the number of contributing components is p, then the filtered series is the sum of p series: 

1

p

k
k

F F
=

=  (5)

The sum of the remaining series is noise. As mentioned above, these reconstructed components can be 

associated with the trend, oscillations, or noise of the original time series with proper choices of L and p. 
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2.3. Artificial Neural Network 

ANN can be categorized as single-layer, bilayer, and multilayer according to the number of layers, 

and as feed-forward, recurrent, and self-organizing according to the direction of information flow and 

processing [9]. Among these different architectures, the multilayer feed-forward networks, which 

consist of an input layer, several hidden layers, and an output layer, have been widely used. Each layer 

has different nodes, and the number of hidden layers and the hidden nodes of each hidden layer are 

usually determined by trial-and-error method.  

Assuming the three-layer ANN denoted by m × h × 1, where m stands for the number of input 

nodes, namely the number of predictive factors, and h is the number of nodes in the hidden layer, the 

ANN prediction model can be formulated as: 


0

1 1

( , , , , ) ( )
h m

out
t T t j ji t j

j i

Q f w m h w w+
= =

= θ = θ + ϕ + θ X X  (6)

where Xt is the input data; T is the length of lead time; φ denotes transfer functions; wji are the 

weights defining the link between the ith node of the input layer and the jth of the hidden layer; 
θj are biases associated with the jth node of the hidden layer; out

jw  are the weights associated 

with the connection between the jth node of the hidden layer and the node of the output layer; 

and θ0 is the bias at the output node. The Levenberg–Marquardt algorithm is chosen to adjust the 

values of w and θ in this study [32]. 

2.4. Proposed SSA-ANN Models 

The SSA-ANN models are proposed with the aim of analyzing the effect of data processing. The 

flowchart of SSA-ANN models is illustrated in Figure 2, where the original series is decomposed into 

oscillations and noise by SSA, firstly. Then the reconstructed series is selected as the ANN model 

input. If the input is the rainfall data series only, the SSA-ANN1 model is built to simulate the 

relationship between rainfall and runoff. If the input contains both the rainfall and runoff data series, 

the SSA-ANN2 model is built to simulate the relationship between rainfall and previous runoff with 

forecasting runoff. 

 

Figure 2. Schematic diagram of SSA-ANN models. 

2.5. Evaluation of Model Performances 

Two criteria are selected to evaluate the prediction performance based on Chinese Hydrological 

Forecasting (or prediction) guidelines (2008), they are: 
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(1) Determination coefficient (or Nash-Sutcliffe criterion) (R2) 
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(2) Water balance coefficient (WB) 
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where n is the number of year, tQ  and '
tQ  are the observed and forecasted inflows, respectively, 

tQ  is the average value of observed flow; if the values of R2 and WB are closer to one, the better the 

prediction results that are obtained.  

3. Comparative Study 

3.1. Data 

To compare the proposed SSA-ANN models with the NLPM-ANN model, eight watersheds in China 

used by Pang et al. [16] were selected as case studies in this paper. The data include the daily rainfall and 

runoff data. Each of data series is divided into three parts, i.e., training set, cross-validation set, and 

testing set. The training set is used to train the network and the cross-validation set is used to check the 

progress of the network and implement an early stopping approach in order to avoid the over-fitting of 

the training set. The testing set serves as model evaluation. Table 1 lists statistical information about all 

watersheds, including mean (μ), standard deviation (Sx), maximum (Xmax), and minimum (Xmin). As 

shown in Table 1, the training data does not cover the cross-validation or testing data totally. In order to 

ensure the extrapolation ability of ANN and avoid numerical difficulties during calculation, all data are 

scaled to the interval [−0.9, 0.9] by normalization. 

Table 1. List of the watershed statistical information. 

Watershed and Datasets 
Statistical Parameters 

Data Period 
μ Sx Xmax Xmin 

Jiahe area:  
5578 km2 

rainfall 
(mm) 

whole data 2.3 5.9 71.4 0 

January  
1980–

December 
1990 

training data 2.3 6.0 68.9 0 
cross-validation data 2.3 6.2 71.4 0 

testing data 2.1 5.3 44.2 0 

runoff 
(m3) 

whole data 58.7 125.1 2620 6.5 
training data 61.9 141.6 2620 6.5 

cross-validation data 55.3 99.6 1220 7.9 
testing data 50.7 76.4 1080 10.1 

Laoguanhe 
area: 4217 km2 

rainfall 
(mm) 

whole data 2.2 6.4 69.4 0 

January  
1980–

December 
1990 

training data 2.3 6.8 69.2 0 
cross-validation data 2.0 5.8 56.0 0 

testing data 2.0 5.7 69.4 0 

runoff 
(m3) 

whole data 27.1 73.6 1460 0.1 
training data 33.5 84.1 1460 0.4 

cross-validation data 16.8 50.6 586 0.1 
testing data 14.8 46.1 793 0.2 
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Table 1. Cont. 

Watershed and Datasets 
Statistical Parameters 

Data Period 
μ Sx Xmax Xmin 

Baohe area: 
3415 km2 

rainfall 
(mm) 

whole data 2.5 6.9 80.6 0 

January  
1980–

December 
1990 

training data 2.5 7.1 80.6 0 

cross-validation data 2.2 6.0 51.3 0 

testing data 2.6 6.8 80.5 0 

runoff 
(m3) 

whole data 46.5 129.4 4020 0 

training data 49.7 150.7 4020 1.2 

cross-validation data 31.4 54.8 523 3.8 

testing data 50.3 96.8 2010 0.0 

Mumahe area: 
1224 km2 

rainfall 
(mm) 

whole data 3.2 8.8 132.8 0 

January  
1980–

December 
1990 

training data 3.2 8.6 132.8 0 

cross-validation data 3.3 9.3 98.6 0 

testing data 2.9 9.1 94.4 0 

runoff 
(m3) 

whole data 39.3 80.3 1270 1.2 

training data 41.0 80.8 1270 1.2 

cross-validation data 40.6 82.1 796 4.6 

testing data 32.1 76.4 990 2 

Nianyushan 
area: 924 km2 

rainfall 
(mm) 

whole data 3.8 11.6 269.5 0 

January  
1975–

December 
1999 

training data 3.9 12.2 269.5 0 

cross-validation data 3.3 9.3 102.5 0 

testing data 3.7 10.8 144.7 0 

runoff 
(m3) 

whole data 18.5 62.1 2095 0 

training data 19.8 68.3 2095 0 

cross-validation data 13.5 33.2 508 0 

testing data 17.6 55.9 822 0 

Gaoguan area: 
303 km2 

rainfall 
(mm) 

whole data 4.2 12.5 179.1 0 

January  
1984–

December 
1999 

training data 4.4 12.8 179.1 0 

cross-validation data 3.5 11.3 143.8 0 

testing data 4.2 12.7 116.0 0 

runoff 
(m3) 

whole data 5.8 15.1 246 0 

training data 5.7 14.2 237 0 

cross-validation data 5.1 13.5 246 0 

testing data 7.7 20.5 214 0 

Shimen area: 
271.25 km2 

rainfall 
(mm) 

whole data 3.8 11.4 141.3 0 

January  
1989–

December 
1999 

training data 3.5 10.1 114.9 0 

cross-validation data 5.1 15.1 141.3 0 

testing data 3.8 11.8 116.8 0 

runoff 
(m3) 

whole data 4.9 15.2 296 0 

training data 3.7 9.9 150 0 

cross-validation data 8.7 25.1 296 0 

testing data 5.5 17.9 172 0 
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Table 1. Cont. 

Watershed and Datasets 
Statistical Parameters 

Data Period 
μ Sx Xmax Xmin 

Tiantang area: 
220 km2 

rainfall 
(mm) 

whole data 3.7 12.1 193.4 0 

January  
1973–

December  
1984 

training data 3.6 11.6 175.0 0 

cross-validation data 3.7 11.4 151.7 0 

testing data 4.2 14.7 193.4 0 

runoff 
(m3) 

whole data 6.1 18.4 535 0 

training data 5.6 16.5 400 0 

cross-validation data 5.6 16.5 378 0.3 

testing data 8.2 25.6 535 0.3 

3.2. Determination of Model Inputs 

The suitable predictive factors have an important impact on model performance. If the model 

input is only rainfall, it can be expressed as: 

1 1( , , , )i i i i ny f x x x− − +=   (9)

where x is the rainfall series, y is the runoff series, and n is the number of antecedent rainfall 

components. In Pang et al.’s paper [16], only rainfall was selected as model input, so the 

SSA-ANN1 model, which only uses rainfall as model input, was developed. In order to ensure the 

comparability of model performance, the same n values for the SSA-ANN1 model and the 

NLPM-ANN model were selected. From Pang et al.’s results of the NLPM-ANN model [16], the 

values of n are 8, 6, 6, 8, 10, 8, 6, and 10 for Jiahe, Laoguanhe, Baohe, Mumahe, Nianyushan, 

Gaoguan, Shimen, and Tiantang, respectively.  

As we know, the autocorrelation of the runoff series is strong and the impact of previous runoff 

on current runoff cannot be ignored, so the SSA-ANN2 model which uses rainfall and runoff as 

model inputs was developed in this paper. It can be expressed as: 

1 1 1 1( , , , , , , )i i i m i i i ny f y y x x x− − + − − +=    (10)

where m is the number of previous runoff data. The values of n for the SSA-ANN2 model are the 

same as the SSA-ANN1 model. In view of the convenience of operation and simplicity of 

computation, the autocorrelation function (ACF) is used to determine m. The smaller the values of 

correlation, the poorer the relationship is. Figure 3 plots the ACF values of the runoff series at the 

one-step prediction horizon. Then the number of model inputs can be taken with the values of 5, 5, 

5, 3, 2, 3, 2, and 1 for Jiahe, Laoguanhe, Baohe, Mumahe, Nianyushan, Gaoguan, Shimen, and 

Tiantang, respectively. It can be seen that the number of previous daily runoff is obviously related 

with the watershed area.  
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Figure 3. Autocorrelation function (ACF) values of runoff series for all watersheds. 

3.3. Data Preprocessing 

According to the theory of the SSA, the decomposition procedure requires identifying the parameter L. 

The value of an appropriate L should be able to clearly resolve different oscillations hidden in the original 

signal. In the current study, a small interval of [2,12] is examined to choose L [28]. L is considered as the 

target only if the singular spectrum can be markedly distinguished [33]. Figures 4 and 5 present the relation 

between singular values and singular numbers for the rainfall and runoff series, respectively, where the 

singular values associated with the appropriate L are highlighted by the dotted solid line. It can be seen that 

L is selected as 8, 8, 8, 8, 9, 10, 9, and 7 for the rainfall series, and L is set as 9, 8, 9, 10, 9, 10, 9, and 7 for 

the runoff series in the Jiahe, Laoguanhe, Baohe, Mumahe, Nianyushan, Gaoguan, Shimen, and Tiantang 

watersheds, respectively. 
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Figure 4. Singular values as a function of different window length L for rainfall series. 

Once the original series is decomposed into L components, the subsequent task is to identify 

noise, choose the contributing components and reconstruct a new series as model inputs. This paper 
applied the cross-correlation function (CCF) to find the number of contributing components p (≤L). 

From the perspective of linear correlation, the positive or negative CCF value indicates that the 

component makes a positive or negative contribution to the output of model. Table 2 listed all CCF 

values between each decomposed component and original series for all watersheds. Take Jiahe rainfall 

series as an example; the last four components have positive CCF values, which mean that they have 

positive correlation with the original series. So the number of contributing components p is equal to 4 

and the sum of the last four components is reconstructed series. Meanwhile, the reconstructed series of 

other time series can be obtained by the same way. 
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Figure 5. Singular values as a function of different window length L for runoff series. 

Table 2. Cross-correlation function (CCF) values between each decomposed component 

and original series. 
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Table 2. Cont. 

Watershed 
Decomposed Components 

L p 
1 2 3 4 5 6 7 8 9 10 

Baohe 
rainfall −0.26 −0.26 −0.18 −0.04 0.14 0.35 0.50 0.60 – – 8 4 

runoff −0.18 −0.20 −0.16 −0.08 0.04 0.16 0.33 0.54 0.76 – 9 5 

Mumahe 
rainfall −0.34 −0.32 −0.22 −0.06 0.13 0.34 0.47 0.52 – – 8 4 

runoff −0.15 −0.18 −0.14 −0.09 −0.01 0.11 0.25 0.41 0.56 0.71 10 5 

Nianyushan 
rainfall −0.33 −0.33 −0.26 −0.13 0.02 0.19 0.35 0.47 0.51 – 9 5 

runoff −0.22 −0.22 −0.16 −0.03 0.15 0.34 0.54 0.68 – – 8 4 

Gaoguan 
rainfall −0.32 −0.37 −0.30 −0.18 −0.07 0.09 0.23 0.37 0.46 0.43 10 5 

runoff −0.14 −0.19 −0.17 −0.12 −0.03 0.09 0.23 0.42 0.58 0.67 10 5 

Shimen 
rainfall −0.34 −0.34 −0.32 −0.28 0.01 0.19 0.35 0.47 0.48 – 9 5 

runoff −0.21 −0.23 −0.18 −0.09 0.04 0.19 0.39 0.58 0.66 – 9 5 

Tiantang 
rainfall −0.32 −0.34 −0.19 0.03 0.28 0.46 0.53 – – – 7 4 

runoff −0.31 −0.31 −0.16 0.03 0.25 0.46 0.62 – – – 7 4 

4. Results Analysis 

Table 3 summarized the model performances for each watershed during calibration and testing 

periods. The ANN model is the benchmark in which the input is the original rainfall series without data 

preprocessing. It is shown that the model performance is improved significantly by data preprocessing 

techniques. During the testing period, the mean values of R2 and WB of eight watersheds are 70.16% and 

0.879 by ANN, and are increased to 75.86% and 1.155 by NLPM-ANN, and 80.62% and 1.04 by 

SSA-ANN1, respectively. In the Tiantang watershed, the performance of the NLPM-ANN and  

SSA-ANN1 models is improved significantly, so the R2 value increased from 59.79% to 81.96% and 

79.54%, respectively, during the testing period. 

Table 3. Summary of model performances during calibration and testing periods. 

Watershed 
ANN NLPM-ANN SSA-ANN1 SSA-ANN2 

R2 (%) WB R2 (%) WB R2 (%) WB R2 (%) WB 

Jiahe 
calibration 68.19 1.023 85.46 1.015` 80.97 0.982 96.09 1.013 

testing 61.48 0.866 61.31 1.119 74.91 0.975 92.40 1.013 

Laoguanhe 
calibration 69.72 1.048 85.66 1.042 82.29 0.972 96.31 1.186 

testing 60.42 1.058 68.25 1.412 78.44 1.464 93.20 1.407 

Baohe 
calibration 64.75 0.975 70.93 1.039 88.50 1.029 94.01 1.006 

testing 68.62 0.667 69.38 0.893 74.03 0.927 94.31 0.956 

Mumahe 
calibration 80.64 0.950 90.18 1.050 87.86 0.976 95.08 1.019 

testing 80.17 0.913 85.6 1.410 92.41 1.108 94.71 1.053 

Nianyushan 
calibration 75.8 0.941 83.44 1.084 84.89 0.910 85.86 1.020 

testing 82.38 0.803 85.39 1.329 88.30 0.939 88.39 1.077 

Gaoguan 
calibration 66.16 1.035 77.6 1.045 80.17 1.002 93.24 1.005 

testing 76.38 0.957 77.97 0.894 80.43 0.840 89.85 0.962 

Shimen 
calibration 65.03 0.848 64.85 1.068 73.85 1.141 94.53 1.084 

testing 72 0.772 75.72 1.281 76.90 1.089 87.99 1.055 

Tiantang 
calibration 65.47 0.985 73.06 1.049 78.08 0.960 88.66 1.131 

testing 59.79 0.895 81.96 0.956 79.54 1.015 91.32 1.043 

Mean 
calibration 69.47 0.976 78.41 1.046 82.08 1.00 92.97 1.06 

testing 70.16 0.879 75.86 1.155 80.62 1.04 91.52 1.07 
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The mean values of R2 and WB for the SSA-ANN1 model are 82.08% and 80.62%, and 1.0 and 1.04, 

during calibration and testing periods, respectively, which are much better than that of the NLPM-ANN 

model. It means that the reconstructed series obtained by SSA has a strong regularity and is easy to 

simulate. It also demonstrated that the impact of noise in hydrological time series on model performance 

is bigger than the seasonal hydrological behavior. Therefore, SSA is an effective way to improve runoff 

forecasting accuracy. The mean values of R2 for the SSA-ANN2 model are 92.97% and 91.52%, which 

are much better than those of the SSA-ANN1 model. It is concluded that considering previous runoff as 

a model input can improve model efficiency greatly. 

 

Figure 6. Observed and simulated runoff hydrographs by three models for Jiahe. 

 

Figure 7. Observed and simulated runoff hydrographs by three models for Laoguanhe. 
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In order to compare the NLPM-ANN model, SSA-ANN1 model, and SSA-ANN2 model clearly and 

deeply, we selected one year during the testing period of four watersheds as an example, and the 

observed and simulated runoff hydrographs created by these three models for the Jiahe, Laoguanhe, 

Baohe, and Shimen watersheds are plotted in Figures 6–9, respectively. These figures show that the 

runoff hydrograph simulated by the SSA-ANN2 model is much closer to the observational one. The 

peak and minimum flows simulated by the SSA-ANN2 model are the best among these models. 

Therefore, the SSA-ANN2 model can predict daily runoff very well in practice. 

 

Figure 8. Observed and simulated runoff hydrographs by three models for Baohe. 

 

Figure 9. Observed and simulated runoff hydrographs by three models for Shimen. 
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5. Summary and Conclusions 

The objective of this study is to investigate the approach of improving daily runoff forecasting in 

terms of data preprocessing and model input selection. The black-box model ANN is selected as the 

benchmark. Considering the subtraction of the seasonal means from the original series can remove the 

nonlinearity of the rainfall-runoff process, the NLPM method was used to preprocess model inputs. 

Considering the hydrological time series can be viewed as a combination of quasi-periodic signals 

contaminated by noises, the SSA method was used to filter the noise and choose reconstructed series as 

model inputs. These two data preprocessing techniques were compared and analyzed. Main findings and 

discussions were summarized as follows: 

(1) The performance of the ANN model can be improved by data preprocessing techniques. SSA is 

more effective and it can improve the learning and training ability of the ANN type model 

significantly. Results also show that the impact of noise in hydrological time series on model 

performance is bigger than the seasonal hydrological behavior.  

(2) Comparing the SSA-ANN1 model with the NLPM-ANN model, the mean values of R2 and WB 

for the SSA-ANN1 model are 82.08% and 80.62%, and 1.0 and 1.04, during calibration and 

testing periods, respectively, which are much better than that of the NLPM-ANN model.  

(3) The SSA-ANN2 model performs best for daily runoff forecasting for all selected watersheds. 

The effective way for increasing daily runoff forecasting accuracy is to preprocess data series by 

SSA and select both previous related rainfall and runoff as predictive factors. 

(4) There are some limitations in this study. The method to select the contributing components relies 

on liner correlation analysis, which disregards the existence of nonlinearity in the hydrologic 

process. The sensitivities and uncertainties of model parameters are not analyzed. All of these 

will be the focus in our future research. 
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