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Abstract: Watershed characteristics such as patterns of land use and land cover (LULC), soil structure
and river systems, have substantially changed due to natural and anthropogenic factors. To adapt
hydrological models to the changing characteristics of watersheds, one of the feasible strategies is to
explicitly estimate the changed parameters. However, few approaches have been dedicated to these
non-stationary conditions. In this study, we employ an ensemble Kalman filter (EnKF) technique with
a constrained parameter evolution scheme to trace the parameter changes. This technique is coupled
to a rainfall-runoff model, i.e., the Xinanjiang (XA]) model. In addition to a stationary condition, we
designed three typical non-stationary conditions, including sudden, gradual and rotational changes
with respect to two behavioral parameters of the XAJ. Synthetic experiments demonstrated that the
EnKF-based method can trace the three types of parameter changes in real time. This method shows
robust performance even for the scenarios of high-level uncertainties within rainfall input, modeling
and observations, and it holds an implication for detecting changes in watershed characteristics.
Coupling this method with a rainfall-runoff model is useful to adapt the model to non-stationary
conditions, thereby improving flood simulations and predictions.

Keywords: non-stationary condition; parameter change; parameter tracing; ensemble Kalman filter;
rainfall-runoff model; uncertainty

1. Introduction

Watershed characteristics, which determine hydrological processes, have been significantly
reshaped by climate change and human activities [1]. Climate warming and extreme events have led
to the gradual melting of glaciers, the shift of vegetation succession and the reconstruction of soil
structure and soil biology [2-5]. Human activities, such as urbanization, deforestation, agricultural
planting and infrastructure development substantially alter land use and land cover (LULC) from
watershed to regional scales [6-10]. These environmental changes necessarily result in non-stationarity
with regard to the hydrological behavior and pose great challenges to hydrological simulations and
predictions [11-13].

To pursue reliable simulations or predictions, the hydrology community has developed a
large number of sophisticated hydrological models of either a physical or a conceptual physical
type. The frameworks of these models are constructed based on mathematical descriptions of the
underlying physical processes, and model parameters are defined to describe the specific physical
characteristics regarding the LULC, soil properties and river systems. Even the parameters of a
conceptual hydrological model define key relationships between rainfall and runoff in a spatially
aggregated manner, these relationships are associated with the underlying watershed characteristics [1].
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For simplicity, model parameters are to be assumed constant during a simulation period to represent
stationary conditions. They can be prescribed with a priori estimates in terms of the catchment
characteristics [14] or calibrated by matching the simulations and the past observation data [15,16]. For
example, one of the calibration methods, the Shuffled Complex Evolution (SCE-UA) [17,18], attempts
to directly search the optimal estimates of parameters by minimizing the difference between simulated
and observed variables.

The assumption of fixed parameters likely introduces considerable uncertainties to simulations
and predictions in the case of environmental changes [19]. In practice, this stationary assumption is
not suitable to water management and would result in risks to the water infrastructure [20]. Thus,
the International Association of Hydrological Sciences (IAHS) has acknowledged a new initiative
for “predictions under change (PUC)” [11,21-23]. In this initiative, estimating model parameters for
changed conditions is the particular concern to modeling a changing world [19].

From a modeling perspective, two strategies could be employed to improve the predictions
under changing conditions. The first strategy is to couple dynamic drivers (e.g., climate, LULC, soils,
topography and human infrastructure) to hydrological models [22]. For example, a dynamic LULC
module can quantify the contribution of land use change to river flooding [24]. The other approach is
to adapt physical or conceptual hydrological models to changing conditions by estimating parameter
travel in real time or near real time [19]. In this strategy, the fixed-parameter assumption should be
relaxed, and the temporal change of model parameters is considered to reflect the impact of dynamic
drivers [12,25,26].

At least two optional methods are applicable to estimate the model parameter change/travel
under non-stationary conditions: segmented calibration and real-time data assimilation. The first
method estimates model parameters in different non-overlapping periods and attempts to obtain their
optimal values in each period [26]. Thus, different optimal estimates of parameters can be achieved
for different periods. However, this strategy generally attributes all uncertainties to the parameters
and tends to compensate model structure and data problems by calibrating parameters. Moreover,
this approach may lead to over-fitting problems [27-29]. In contrast to the segmented calibration,
the strategy of data assimilation can update the model state and parameters and account for various
uncertainties [30]. Sequential data assimilation methods, such as the ensemble Kalman filter (EnKF),
are especially attractive, partly due to their real-time updating strategy.

As a typical methodology of sequential data assimilation, EnKF has been widely used in hydrology
to estimate soil moisture (e.g., Kumar, et al. [31]) and forecast floods (e.g., Li ef al. [16]). EnKF and
its variants have been successfully applied to estimate parameters or combined state-parameter
estimation [32-35]. However, these studies all focused on parameter estimation under stationary rather
than non-stationary conditions; nevertheless, they considered the uncertainties from model input,
model structure and observed data.

In this study, we attempted to trace the dynamics of the model’s parameters using EnKF and
a parameter evolution scheme. We also examined the robustness of this method at different levels
of uncertainties. Four synthetic cases were designed for parameter travel with different conditions.
To the best of our knowledge, this study is the first to explicitly estimate parameters under changing
conditions in real time despite some cases concerning parameter estimation under stationary conditions.
However, we do not focus on identifying either the impact of environmental changes on model
parameter travel or the non-stationarity of the rainfall-runoff relationship, even though these topics
are important in PUC. Instead, we intended to detect the parameter changes directly using available
runoff observations based on synthetic cases.

In the following section, the rainfall-runoff model and the data assimilation method used in this
study are presented. The study area, hydrological data, and the design of the four synthetic cases are
also described. Section 3 presents the results of the four cases of tracing parameter travel. For each
case, the uncertainty magnitudes of modeling and observations are discussed. Section 4 provides the
discussion and Section 5 presents the conclusions.
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2. Methods and Data

2.1. Rainfall-Runoff Model

As a conceptual rainfall-runoff model, the Xinanjiang (XAJ]) model was primarily developed for
humid and semi-humid regions [36,37]. It has been widely used for flood forecasting, water resource
evaluation, hydrological station design and water quality accounting [38—41]. The XAJ assumes that
the net rainfall complements the soil water without producing runoff until the soil water reaches the
field capacity. Its water balance equation can be expressed as follows:

R, = PE+W - WM 1)

where R, is the runoff, PE is the net rainfall which is equal to the precipitation minus evaporation, W

is the initial soil moisture, and WM is the areal mean tension water capacity. The spatial variability of

the climate and underlying surface before modeling often leads to an uneven soil water distribution

in a watershed. This spatial distribution of soil water is described by a basin storage capacity curve,

which indicates the relationship between the storage capacity and the proportion of the total area.
This storage capacity curve is expressed as follows:

wMm B

x=1-=7mr)

@
where « is the proportion of area where the capacity of the aeration zone is less than WM’ to the
whole basin, WM’ is the water-storage capacity of the aeration zone, WMM is the maximum value of
WM’, and B is an exponent of the tension water-capacity distribution curve. Based on this equation,
runoff is generated when the sum of the initial soil moisture and the net rainfall exceeds the soil water
storage capacity.

To reasonably represent the evapotranspiration process, the soil profile is divided into three
layers. The soil water in the lower layer will be evaporated if the upper layer is less than the potential
evapotranspiration. The generated runoff is divided into the surface flow, interflow and groundwater
using steady infiltration. The total runoff can be routed by a linear system before arriving at the outlet
of the catchment. The river flow routing uses the Muskingum algorithm. The catchment in this study
(see Section 2.3) is small, and the time required for routing is less than a time step (daily). Therefore,
we do not employ the routing process and assume that the daily runoff can be directly drained to the
catchment outlet. For detailed formulations of the XAJ] model, readers are referred to the associated
literature [36,37].

This model includes sixteen parameters, but only a few of these parameters influence the
simulations [36,37]. We selected five of them in terms of the studies for the parameter sensitivity
analysis [42-44]. The five parameters and their reasonable ranges are presented in Table 1 according to
the formulations of XA]J [36,37,43]. The parameter B in the storage capacity curve (i.e., Equation (2))
determines the runoff generation process. The parameter SM represents the spatial distribution of
the free water storage capacity [42]. The other three parameters represent the three-layer tension
water-storage capacity and they constrain the evapotranspiration process in the three layers. Moreover,
the parameters B and SM are sensitive to the environmental conditions of a watershed and are expected
to temporally change in response to the dynamics of watershed characteristics [36,37,41]. Thus, we
intend to trace the changes of these two parameters while assume the other three parameters are
constant during the period of interest. Although these five parameters have different changing
characteristics, they are estimated simultaneously in this study to demonstrate the effectiveness of the
data assimilation method.
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Table 1. Description of the five sensitive parameters of the XAJ] model and their ranges: Minimum
(Min) and Maximum (Max).

Parameter Description Min Max
B Exponent of the tension water-capacity distribution curve 0.1 0.6
SM Free water-storage capacity (mm) 10 50
WUM Averaged soil moisture storage capacity of the upper layer (mm) 20 50
WLM Averaged soil moisture storage capacity of the lower layer (mm) 60 120
WDM Averaged soil moisture storage capacity of the deep layer (mm) 10 40

2.2. EnKF with Real-Time Parameter Update

Over the past decades, sequential data assimilation methods, which aim to update the states
of dynamic systems, have garnered significant attention and have been successfully applied in
meteorology, oceanography and hydrology [32,45-49]. As a typical sequential data assimilation
method, the EnKF is applicable to nonlinear problems in hydrological systems [45,50,51]. Moreover, its
formulation holds the advantage for model parameter estimation [44]. A few studies have successfully
used it to estimate model parameters under stationary conditions [32,33]. Therefore, the EnKF was
used in this study to update the parameters and state variables of the XAJ model.

The EnKF method includes two steps, i.e., forecasting and updating. In the forecasting step, the
model generates the forecasting vector, which consists of the state variables based on the analysis
vector at the previous time step. In the updating step (i.e., analysis step), the state vector is updated by
minimizing the error variances of the model and observations. This recursive progress quickly shrinks
the ensemble of parameters and leads to ensemble collapse. This means the ensemble samplings
contract to a small ensemble spread. The ensemble of parameters is not effectively updated in data
assimilation because of the small ensemble spread [34]. Especially for non-stationary conditions, the
estimates of parameters do not easily track the parameter trends. Therefore, we propose a constrained
perturbation scheme for parameter evolution to avoid this ensemble collapse:

0 _ 9:“_1, Var(0) > y?(max — min)? 3)
! 0, +e, & ~N[0, ¥*- Var(0)], Var(0) < y?(max — min)?

where 0 is the parameter vector consisting of the five parameters listed in Table 1; “+/—" denotes the
forecasting and analysis, respectively; t is the time step; ¢ is the perturbation vector of Gaussian noise;
Var(0) is the variance of the parameter, which is computed based on the ensemble of parameters after
updating; max and min indicate the reasonable ranges of the five parameters as shown in Table 1;
and v is a coefficient used to determine the perturbation, which should be predefined in the data
assimilation according to the uncertainty of modeling and observations.

Using this evolution scheme, the parameter ensemble spread is expanded when necessary, thereby
maintaining the standard deviation not less than y (max — min). Similar approaches have also been
used to estimate parameters with the EnKF, such as the kernel smoothing technique [34,52]. Moreover,
this parameter evolution is similar to model state forecasting used to generate a new ensemble of
parameters for model integration at the next time step. The model forecasting is expressed as follows:

x; =M(x} 0, u) +wr wr ~ N0, W) (4)

where x is the model state vector, which consists the three-layer soil moisture and generated runoff;
M is the forecasting model operator, i.c., the XAJ] Model; u is the input forcing data that includes
precipitation and evapotranspiration; and w denotes the model error, which is assumed to be Gaussian
white noise. The uncertainty of the precipitation is considered in this study by setting different
scenarios for general modeling conditions (see Section 2.4 and Table 2).
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To simultaneously estimate the model state and parameters, the state vector is extended to contain
the following parameters:
X =[x, 6] @)

where T denotes the transpose of a matrix. Thus, the updating process can be expressed as follows:
X" = X; +Ki[ys — HX[ ] (6)

where H is the observation operator and y is the observation, i.e., the runoff data in this study; K is the
Kalman gain matrix, which is written as follows:

Ky = Py HT(HP HT + R, @)
where P is the forecasting error covariance with respect to the extended states of X, which can be
calculated from the forecasted ensemble realizations; and R is the measurement error covariance.
Based on this forecasting-updating procedure, the model parameters are estimated in real time along
with the state variables.

The uncertainties from the rainfall observations, runoff observations and the modeling are
represented using added Gaussian noises in which the standard deviations are assumed to be
proportional to the magnitudes of the rainfall, the observed runoff and the modeled runoff.

ot = fo- 0t 8)

where oy is the standard deviations at time step t; v refers to the variables of the rainfall input, the
modeled and the observed runoff; f, is the perturbation factor, representing the magnitude of the
uncertainties of each variable, which are rewritten as f;, f,; and f, for the rainfall input, the modeled
runoff and the observed runoff, respectively (Table 2). This representation is based on an experiential
and practical perspective in hydrological measurement and modeling, and this strategy has been
successfully used in hydrological data assimilation [33,34,53]. Please note that the synthetic runoff
observations (described in Section 2.4) generated from the XA] model are also applied in the data
assimilation experiments; thus, the model and the rainfall input are free of uncertainty except for
that induced by inaccurate estimates of model parameters. Here, we intentionally prescribe the
uncertainties with different combinations of the proportions for rainfall input, the modeled runoff and
the observed runoff to represent a general application for streamflow simulations.

2.3. Dataset

The Leaf River watershed in southern Mississippi in the United States was selected in this study
because it has been investigated intensively for model parameter estimation [29,54-56]. The Leaf River
drains an area of 1944 km? and is a principal tributary of the Pascagoula River, which flows to the Gulf
of Mexico. This watershed experiences an annual mean precipitation of approximately 1300 mm, and
produces a mean flow discharge of approximately 30 m3/s [54]. Because of the humidity in this area,
the runoff generation process is consistent with the assumption in the XAJ model. So we used the XAJ
model to identify the parameter estimation under non-stationary conditions.

For this watershed, the dataset used includes the daily precipitation and potential
evapotranspiration for a ten-year period 1 January 1951-31 December 1960. The precipitation
was processed at the NWS Hydrology Laboratory and the potential evaporation was based on the
evaporation atlas [54]. Please note that our study is based on synthetic experiments in which synthetic
streamflow data, instead of the real observations of streamflow, are used to examine the performance
of the data assimilation method. Irrespective of the age of the data, the method and conclusions can be
extended to any watersheds if real-time or near real-time data available.
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2.4. Synthetic Experiment Design

2.4.1. Synthetic Cases

We estimated parameters for the XAJ model using synthetic experiments. The program codes
regarding the XAJ] model and the EnKF were edited and compiled with the Compaq Visual Fortran.
A set of constant and/or changing values of the five parameters were randomly selected from their
previously defined ranges (Table 1), regarded as reference or truth, and then fed into the XA] model to
simulate a runoff time series. This runoff series was considered to be a true response of rainfall events
in the Leaf River basin, and it was perturbed with added Gaussian noises to represent measurement
uncertainties. This perturbed runoff was considered as the observations to be assimilated. Based on
these synthetic true parameters and runoff time series, the performance of parameter estimation in
data assimilation was evaluated. Similar synthetic experiments are usually used in hydrological data
assimilation [32,33], because the known true values of model parameters are favourable to examine
the performance of data assimilation.

We designed four cases of different parameter changes: one stationary and three non-stationary
cases. The parameters are constant for the stationary case, which represents a conventional case
for model simulations. The three non-stationary cases have typical behaviors of parameter changes,
including sudden, gradual and rotational changes [26]. We focused on two of the five parameters
of non-stationary travel, B and SM, because they are sensitive to the underlying land surface and
dominate the surface runoff generation, whereas the other three parameters (i.e., WUM, WLM and
WDM)) relate to the soil profile and may experience trivial changes compared with B and SM. Therefore,
these three parameters were assumed to be constant during the entire period. The case of the sudden
change has parameter B change from 0.25 to 0.35 and SM from 33 to 38 mm at the 1500th time
step. Gradual changes linearly increase parameter B from 0.25 to 0.35 and SM from 33 to 38 mm
during the 1500th-3000th time-step. Rotational changes, increase parameter B change from 0.25 to
0.35 and SM from 33 to 38 mm at the 1200th time step, and both parameters return to their original
values by the 2800th time step. The lines of true values in Figures 1 and 2 indicate the four cases of
parameter changes.

Based on these trends, a sudden change in the model parameters may represent a significant
modification in the land surface (e.g., damaging floods) or changes in the of river system (e.g., dam
construction). A gradual travel may be driven by slow modifications, such as climate variations,
whereas a rotational change of the model parameters can be caused by periodic agriculture planting.

2.4.2. Uncertainty Design

To reflect the uncertainty in observations, the standard deviations (f, in Equation (8)) of the
observed runoff was set to 0.02 (i.e., f, = 0.02), whereas the input rainfall and model forecasting were
assumed to be free of uncertainties when examining the capability of the EnKFE. This setting is referred
to as a scenario of low level errors in observations and modeling (the Low_Level scenario in Table 2).
The effect of errors on tracing parameter changes is specifically discussed in Section 3.3. Based on
these settings, the ensemble of parameters is updated at each time step by assimilating the runoff
observations after one year (365 days) of model warming.

Table 2. Uncertainty prescription for the factors of standard deviations for rainfall (f;), and modelled
(fm) and observed runoff (f,).

Scenarios fr fm fo
Low_Level 0.00 0.00 0.02
Medial_Level 0.05 0.10 0.10

High_Level 0.10 0.20 0.20
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The initial ensemble of model parameters was sampled using uniform distributions, whose
ranges are given in Table 1, because the uniform distribution is general and applicable for parameter
estimation [34]. The ensemble size was set to 200, because this size is computationally affordable and
appropriate for hydrological data assimilation [33]. The coefficient v is set to 0.03, unless otherwise
stated, and its impact is discussed in Section 3.4.

3. Results

3.1. Stationary Case

For the stationary case, model parameters do not change temporally. In data assimilation,
the ensemble mean at each time step is considered to be the optimal estimate of each parameter
(Figure 1). The estimates of the five parameters approach their true values after 365 assimilation
updates, indicating that short-term observations may be used to estimate model parameters. The grey
lines represent the trajectories of the 200 ensemble members. The spreads of the ensembles are clearly
broad at the beginning of the data assimilation, whereas the ensemble spreads shrink and stabilize
as the observed runoff is assimilated, even after the estimates approach their true values. This stable
ensemble spread partly benefits from the parameter evolution scheme as expressed in Equation (3),
and it favors the estimation of changing parameters because it avoids ensemble collapse. Similar
results have also been shown in other studies of constant parameter estimation [32,33].
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Figure 1. Parameter estimations under the stationary condition with the Low_Level uncertainty as
shown in Table 2 (The grey lines represent the ensemble members).
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3.2. Non-Stationary Cases

3.2.1. Tracing Changed Parameters

Figure 2 shows the estimates of parameters B and SM for the three non-stationary cases. Although
their initial estimates are biased, their sequential estimates can change with the true values when
assimilating runoff observations. For instance, parameter B requires approximately 365 assimilation
updates. Subsequently, its temporal estimates agree well with the true trajectory. Even when the
true trajectory suddenly changes at the 1500th time step for the sudden change case, the estimates
immediately respond and arrive at the new stage near the true value of 0.35. For gradual changes,
the estimates of the two parameters gradually increase during the 1500th-3000th period to trace their
changes. Moreover, the data assimilation provides satisfactory estimates with relative biases less than
5% for the rotational change case, because the true temporal changes of the parameters have been
successfully captured, although the pattern is more complex than that of the sudden change case.

0.6
Trug value EnCl=89.35% 60 True value EnCl=85 85%
Estimate -~ Estimate
04
- A
[aa]
0.2
0.6
True value EnCl=85.71% 6ol True value EnCl=99.37%
Estimate — Estimate
04
o P
0.2 ) ]
0.6
True value EnCl=90.01% 60k True value
Estimate Estimate ENESERa AT
04
o rw —
0.2 | |
0 8é0 1600 2400 3200 0 800 1600 2400 32‘00
Time step (day) Time step (day)

Figure 2. Tracing parameter changes for the three non-stationary cases of the sudden (top panel), the
gradual (middle panel) and the rotational changes (bottom panel).

In addition to the ensemble mean, the ensemble spread should be examined when tracing the
parameter changes. To quantify the coverage of the ensemble spread, we define an ensemble coverage
index (EnCI) which is the percentage of the true trajectory of a parameter contained in the 95%
ensemble simulation intervals [35]. The EnCI can be visually indicated using the ratio of the blue lines
in Figure 2 covered by the grey areas during a specific period. We computed the EnCI for the period
of the 366st time step until the end of the simulation, because the first 365 time steps (one year) are
generally required to achieve stable estimates.

Figure 2 also shows the EnClIs for the two parameters. For B, the EnCls in the three cases are
approximately 85%; therefore, the ensembles have satisfactory coverage during 85% of the period. For
SM, the performance of the coverage depends on the type of change. The EnCI exceeds 90% for the
gradual changes, whereas it is less than 70% for the rotational changes. Thus, the estimation of B is
more stable than that of SM due to the strong relationship between B and the surface runoff process.
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3.2.2. Estimation of Fixed Parameters

In addition to the changing parameters B and SM, we examined the estimation of the other three
constant parameters. Figure 3 presents the estimates of WUM, WLM and WDM for gradual and
rotational changes. The results of the sudden change case are not shown, because similar or better
estimates were obtained for the three parameters. Like the stationary case (Figure 1), the ensemble
means of the three parameters acceptably approach their true values. Especially for gradual changes,
the estimate of WUM is most accurate among the three parameters even after the 365-step updating,
and its EnCI exceeds 99%. For WDM, the estimates are biased to the true trajectory with small EnClIs,
because the soil moisture storage capacity of the deep layer (i.e., WUM) has a weak correlation with
the surface runoff which is assimilated in this study.

True value = % 5 9
60} —Estimate EHESOlaes | 60| E:Juf;‘n‘;at'eue EnCI=34.30% |
£ £
- w — P —
=3 | 2 -
20 . - - - 20 - -
100 True value EnCI=99.97% 100 ———True value EnCl=99.15%
= Estimate 1 i Estimate
g 80 £ 80} ]
£ [ E e ' =
= 60f = 60f .
2 12
40 : - : - 40 - : : ;
45} True value EnCl=59.65% J 451 True value EnCl=14.21% J
—_ Mean — Estimate
E E
E 30f — E 30f T
= =
g 15 4 g 15 E
0 800 1600 2400 3200 0 800 1600 2400 3200
Time step (day) Time step (day)

Figure 3. Estimations for WUM, WLM and WDM for two non-stationary cases: the gradual (left) and
the rotational (right) changes. The results for the sudden change are not shown. Please note the three
parameters do not temporally change since they are more stable than B and SM.

3.3. Effect of the Level of Uncertainties

In addition to the above scenario of low-level uncertainties, we designed two other scenarios
characterized by larger levels of uncertainties to examine the robustness of the EnKF scheme. These
two scenarios feature medial and high levels of errors for rainfall input, modeling and observations
(see the Medial_Level and the High_Level scenarios in Table 2).

For the four cases (i.e., one stationary and three non-stationary cases), which are characterized
by different levels of uncertainties, we calculated the relative absolute biases based on the estimate
series of parameters and their true values. The results of this calculation are shown in Figure 4. The
mean relative biases in all cases are below 15%. This is smaller than the levels of uncertainties (Table 2),
indicating that data assimilation results in favorable estimates. The bias of parameter estimates directly
correlates with the magnitude of uncertainties. Generally, the estimates for the stationary case are
more accurate than those for the non-stationary cases. The mean relative bias of the parameter B for
the gradual change case do not present the same behavior of other cases. This may be because the
estimation of parameter B is not so sensitive to the levels of uncertainties. However, the pattern of
biases for the three scenarios is consistent with the other cases. Figure 5 shows the estimates for the
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three cases under the Medial_Level scenario. In this scenario, the ensemble mean of the parameter B
acceptably follows the true trajectories. The estimates for the parameter SM are not so satisfactory with
low EnClIs, but its patterns have been successfully depicted. Similar results (not shown) were obtained
for the High_Level scenario. Therefore, the EnKF robustly estimates the changes in parameters, but
its performance, to some degree, will depend on various levels of uncertainties within modeling

and observations.

20 20
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Figure 4. Relative bias of parameter B (a) and SM (b) estimation under different levels of uncertainties

as shown in Table 2.
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Figure 5. Tracing parameter changes regarding the three non-stationary cases for the scenario of
Medial_Level uncertainty: the sudden change (top panel); the gradual change (middle panel) and the

rotational change (bottom panel).

3.4. Impact of y

The coefficient v in Equation (3) dominates the perturbation of model changes and thereby
impacts the accuracy of estimating tracing temporal changes in model parameters. We used four other
experiments with y = 0.02, 0.04, 0.06 and 0.1 to examine the impact of y. The four experiments were
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based on the Medial_Level scenario described in Section 3.3, and the other settings were the same as
those indicated in Section 2.4.

The rotational changes of the two parameters are shown in Figure 6. The ensemble spread directly
correlates with v, thereby improving the ensemble coverage with respect to the variation of parameters.
When vy = 0.02, the ensemble members poorly capture the parameter changes, with low EnCls (38.32%
and 58.91% for parameters B and SM, respectively, as shown in Figure 6). When y = 0.06, the ensembles
achieve acceptable coverage, with EnCls of 92.52% and 86.15% for parameters B and SM, respectively.
In addition to rotational changes, we also examined the sudden and the gradual changes and obtained
similar results (not shown).

0.6 60

True value ¥ =0.02 I True value V=0.02 J
——Estimate RB=13.68% EnCI=38.32% 45 ——Estimate RB=8.22% EnCl=58.91%
04 T |
o> £
= ~ 30
= = f
0.2 0]
15 F 1
L L i L 1 i L I i I i 1
0.6 60
True value Y =0.04 I True value 7 =0.04 |
Estimate RB=6.22% EnCl=90.86% ast—— Estimate RB=7.59% EnCl=73.47%
5 0.4 E |
byl ~ 30
| b=
02 7]
L L L 'l 15
06 60
—— True value 7 =0.06 | — True value 7 =0.06 ]
——Estimate RB=9.80% EnCl=92.52% 45 _—Estimate RB=9.55% EnCl|=86.15%
04 1 E I
g £ 39
=
02 7]
L L 1 15
0.6 60
True value 7 =0.1 | — True value ¥ =0.1
- ——Estimate . | RB=21.63% EnCI=88.23% o AR Estimate RB=9.24% EnCI=99.01%
04} - I
& E
ot % 30
02
15
0 800 1600 2400 3200 0 800 1600 2400 3200
Time step (day) Time step (day)

Figure 6. Tracing parameter changes under different values of y for the case of the rotational change.

Large values of v improve the coverage of temporal variations of parameters, but this setting
may substantially perturb model parameters and consequently cause significant fluctuations in the
trajectories of estimates (see Figure 6). For example, when y = 0.1, sharp fluctuations appear in the
estimation of B, with a relative bias of up to 21.63%. Therefore, we recommend a moderate setting for
v (e.g., v = 0.05) if adequate information regarding the parameter travels and the uncertainties within
modeling and observations are not available.
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4. Discussion

4.1. Comparison with SCE-UA

The EnKF-based method with a constrained perturbation for model parameters suggests that
the parameter travel can be traced under stationary and non-stationary conditions. This method is
favorable partly due to its real-time tracing. Moreover, it can account for uncertainties from input
forcing, modeling and observations [30]. These merits allow it outperform other optimization methods,
which are primarily used for stationary problems. To further distinguish the advantages of this method,
we herein employed a widely used global optimization method, i.e., the SCE-UA method [17,18], to
estimate the five parameters. We only present the results for the stationary condition, because the
SCE-UA is only suitable for parameter estimation under this condition, not the changing condition.
In this comparison, please note the EnKF is especially used to estimate model parameters, although
it is originally applied to model dynamical processes in a Bayesian framework. In this sense, the
comparison between the EnKF and the SCE-UA is reasonable.

To ensure a fair comparison, this estimation was based on the three scenarios (Table 2) in which
we intentionally added the uncertainties to the rainfall input, modeling and observations. Please note
that these uncertainties are very common in simulation practices. The synthetic observations, i.e.,
the generated ten-year runoff data, were adopted in this estimation. The SCE-UA method provides
optimal estimates for the ten-year period. To evaluate the performance of the SCE-UA, we calculated
the relative errors with respect to their true values.

As shown in Figure 7b, the relative errors of the parameters increase with the magnitudes of
uncertainties. Especially for High_Level uncertainties, the relative error for WDM is as high as 40%.
However, the data assimilation provides very small relative errors (Figure 7a), because the estimates
after the 500th updating step are similar to their true values (Figure 1). Although the increasing
uncertainties from the rainfall input, modeling and observations decrease the accuracy of the data
assimilation to some degree, the relative errors are smaller than those from the SCE-UA method.
Notably, the SCE-UA searches the optimal values for model parameters to match the simulated and
observed hydrological response, i.e., the runoff in this study, and it attributes all uncertainties in the
simulations to the parameters.

40 40 40 40
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B¢ B m r m— - g EE -
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Figure 7. Comparison between the the EnKF method (a) andSCE-UA method (b) for
parameter estimation.

4.2. Implications for Detecting Changes in Watershed Characteristics

Model parameters represent watershed characteristics, such as the soil, topography, LULC
and river systems [11]. Although most hydrological models are conceptual, model parameters
describe the watershed characteristics in a spatially aggregate manner and are expected to change in
response to the dynamics of the watershed behavior [1]. Changes in watershed behavior are usually
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complex and difficult to be formulated [26]; therefore, changes in the model parameters may show
great variety depending on the variability of physical characteristics. This study only focuses on
three typical types of parameter changes within synthetic cases. These typical parameter changes
could be combined to reflect more complex changes under non-stationary conditions. Thus, the
performance of the EnKF-based method indicates that this method may be used to detect the changes
in watershed characteristics.

Estimating model parameters for changing conditions remains a significant challenge [19].
Andréassian, et al. presented a distribution-free statistical test to trace gradual changes [57]. Merz et al.
employed a consecutive calibration scheme to detect changes in model parameters [26]. During each
consecutive period, the model parameters were assumed to be time invariant. However, these studies
may not be able to accurately capture sudden changes [57]. The EnKF-based method used in this study
has the advantage of updating model parameters in real time or near real time if observations are
available, although its performance, to some degree, is impacted by the uncertainties of models and
observations. This updating is based on the correlation between hydrological variables and model
parameters [34]. Through the sequential updating of model parameters, the timing and magnitudes of
changes in watershed characteristics are effectively quantified. Therefore, the hydrological models
can adapt to the changing environment and provide more reliable streamflow predictions. Moreover,
this real-time updating strategy has the potential to be used in ungauged basins. In such basins, by
assimilating a limited number of relevant data from in-situ observations or remote sensing, the model
performance could be substantially improved and reaches a reliable hydrological prediction [33-35].
This data assimilation strategy is easily used as a continuous simulation for flood frequency predictions
since it accounts for various uncertainties and it employs a continuous rainfall-runoff model [58-60].

5. Conclusions

Model parameters can change in response to the evolution of watershed characteristics. Estimating
changed parameters is important to ensure reliable hydrological predictions under non-stationary
conditions. This study employed an EnKF-based method with a constrained parameter evolution
scheme to estimate changes in the parameters of the XAJ model based on synthetic experiments. This
method features real-time or near real-time updating, accounting for various uncertainties in modeling.
In addition to a stationary case, we focused on three typical non-stationary cases and examined the
robustness of the EnKF-based method at different levels of uncertainties.

For the stationary case, the ensemble parameter estimates approach their true values after 365
time steps of updating. For the non-stationary cases of the sudden, gradual and rotational changes,
the estimates can successfully trace the temporal trends of parameters. Even for a high level of
uncertainties, the EnKF-based method yields acceptable results, although the uncertainties from
modelling and observations are influential to the performance of data assimilation. We compared
the results obtained with the EnKF-based method and the SCE-UA algorithm. SCE-UA shows poor
performance to obtain acceptable parameter estimates for the stationary condition if the level of
uncertainties increases and it cannot accurately estimate the non-stationary drift of parameters.
Although only three typical changes in parameters are discussed in this paper, the real and complex
travel of parameters could be reflected by combining these changes. This advantage benefits from
real-time updating within the EnKF-based method. Moreover, the parameter estimation can be
significantly improved if accurate uncertainties are quantified for rainfall input, modeling and
observations [61,62]. The coefficient y in Equation (3) may influence the ensemble perturbation.
We generally suggest specifying a moderate value (e.g., v = 0.05) when the uncertainties for the rainfall
input, modeling and observations are significant.

This study demonstrated the potential of using an EnKF-based method to detect the hydrological
impacts of environmental change and adapt the rainfall-runoff model to non-stationary conditions.
Despite the success in the four synthetic cases, the EnKF-based method needs to be examined in real
watersheds characterized by distinct non-stationarity in the hydrological behavior. Examining the
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parameter stability of both lumped and physical models and analyzing the rainfall-runoff relationship
for such watersheds would be interesting.
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