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Abstract: This paper presents a new methodology of combined use of the nondominated sorting
genetic algorithm II (NSGA-II) and the approach of successive elimination of alternatives based
on order and degree of efficiency (SEABODE) in identifying the most preferred multireservoir
water supply rules in dry years. First, the suggested operation rules consists of a two-point type
time-varying hedging policy for a single reservoir and a simple proportional allocation policy
of common water demand between two parallel reservoirs. Then, the NSGA-II is employed to
derive enough noninferior operation rules (design alternatives) in terms of two conflicting objectives
(1) minimizing the total deficit ratio (TDR) of all demands of the entire system in operation horizon,
and (2) minimizing the maximum deficit ratio (MDR) of water supply in a single period. Next,
the SEABODE, a multicriteria decision making (MCDM) procedure, is applied to further eliminate
alternatives based on the concept of efficiency of order k with degree p. In SEABODE, the reservoir
performance indices and water shortage indices are selected as evaluation criteria for preference
ordering among the design alternatives obtained by NSGA-II. The proposed methodology was tested
on a regional water supply system with three reservoirs located in the Jialing River, China, where the
results demonstrate its applicability and merits.

Keywords: efficiency of order k; hedging policy; multireservoir system; water supply; NSGA-II;
preference ordering

1. Introduction

At present, China is facing a serious situation with increasing frequency of water shortage caused
by high population growth and limited water resources. The problem gets even worse in dry years and
has become a major bottleneck inhibiting sustainable economic and social developments. As is known
to all, reservoirs play a significant role in regulating the fluctuant surface runoff to stably supply water
for human needs. Actually, the design and optimization of reservoir water supply operation rules can
yield the greatest benefit and least loss under drought conditions.

In previous studies, several types of water supply operation rules for guiding reservoir releases
to meet planned demands have been suggested, such as the standard operating policy (SOP) [1,2],
the linear decision rule (LDR) [3], the parametric rule [4], and diverse forms of hedging policy [5–8].
Among the operation rules mentioned above, the hedging policy can avoid one potential catastrophic
deficit of large magnitude that may occur in future by allowing a sequence of smaller deficits in
current periods [9] and has been widely applied for managing single reservoir water supply operations
during drought periods [5,8–12]. However, multireservoir systems with water supply tasks often have
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complex structures of more than one reservoir in series or parallel topologies and numerous parameter
variables. The design of multireservoir operation rules is a challenging work. In this study, a kind of
multireservoir water supply rules integrating the hedging policy and a proportional allocation policy
of downstream common water demand between two parallel reservoirs is designed for management
of a multireservoir water supply system.

Additionally, it is necessary to consider different objectives simultaneously in reservoir operation
models; it is noteworthy that multiobjective evolutionary algorithms (MOEAs) especially the NSGA-II
algorithm, have shown excellent performance in extracting the optimal reservoir operation rules [11,13].
However, former researchers focused most of their attentions on the reservoir optimal operations [14,15]
or techniques for obtaining the noninferior set that contains numbers of various multireservoir
operation rules [11,13,16–18]. Few works on further preference ordering to reduce the scope of
choices for decision makers were carried out. Therefore, the main purpose of this paper is to propose a
new framework that tries solving such problems. The proposed framework includes two parts: (1) a
multireservoir optimization model employing the NSGA-II for deriving a set of noninferior design
alternatives of operation rules; and (2) a preference ordering procedure based on Pareto domination
theories and evaluation criteria to further eliminate alternatives and determine the most preferred
alternatives. Two categories of evaluation criteria are introduced: the reservoir performance indices
and the shortage indices of water supply.

The remainder of this paper is organized as follows. Firstly, the problem of operation rules
optimization of a multireservoir water supply system is formulated in Section 2.1. The NSGA-II
algorithm and its implementation to solve the problem are also specified in this section. Secondly,
the SEABODE approach is illustrated in details in Section 2.2. Thirdly, Section 2.3 shows the clear
framework of the proposed methodology. Thereafter, Sections 3 and 4 demonstrate the application
study and result analysis. Finally, the paper concludes with Section 5.

2. Methodology

2.1. Optimization of Multireservoir Water Supply System

2.1.1. Hedging Policy for Single Reservoir Operations

Hedging policies are primarily designed for reservoirs to rationally allocate the limited water
resources in drought conditions. By water rationing in filling or emptying or both phases of the
reservoir water supply operation, the hedging policy can smooth fluctuations in water deficits and
avoid unacceptable single period shortages of high percentage that may occur in future. The three
most common forms of hedging policy are: (1) continuous hedging, where the slope of the hedging
portion can vary continuously [7]; (2) zone-based hedging, where hedging values are a series of
discrete proportions of target demands for different zones of water availability [9]; and (3) two-point
type hedging, where a linear hedging policy (slope < 1) connects a first point somewhere up from
the origin on the shortage portion of the SOP rule to a second point occurring on the target release
line [6,19]. However, whatever the form of hedging rules, the following two critical questions must
to be answered: (1) when to hedge? and (2) how much to hedge? A two-point type hedging policy,
developed by Srinivasan and Philipose [6], which is characterized by three constant parameters (fixed
values for the whole year), namely, starting water availability (SWA, above which the release is to be
hedged), ending water availability (EWA, at which hedging is stopped) and hedging factor (HF, degree
of hedging), gives an ideal answer to the two questions. In this section, an extended version of the
two-point type hedging policy that considers the temporal variation (i.e., parameters SWA, EWA, and
HF are varying with time) is employed as the operation rules for guiding releases of a single reservoir,
as illustrated in Figure 1.
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Figure 1. Two-point type time-varying hedging policy for a single period.

For a reservoir with water supply purpose, the water availability in period t is defined as

WAt “ St `Qt ´ Et (1)

where WAt = water availability in period t; St = active storage in reservoir at the beginning of
period t, which is constrained between empty and the reservoir active capacity K, i.e., 0 ď St ď K;
Qt = predicted inflow to reservoir in period t; and Et = water loss volume in period t due to evaporation
and seepage. As is shown in Figure 1, the reservoir release volume in each time period t is determined
according to what phase WAt is in and the three time-varying parameters (SWAt, EWAt, HFt). The
mathematical expressions of the employed hedging rules for a single reservoir are as follows.

For WAt ă Dt, i.e., in the emptying phase

Rt “ WAt, SPt “ 0, ifWAt ă SWAt,

Rt “ SWAt ` rp1´ HFtqDt ´ SWAts
WAt ´ SWAt

Dt ´ SWAt
, SPt “ 0, otherwise.

(2)

For Dt ď WAt ď Dt ` K, i.e., in the filling phase

Rt “ p1´ HFtq ˆDt, SPt “ 0, ifDt ď WAt ď EWAt,
Rt “ Dt, SPt “ 0, otherwise.

(3)

For WAt ą Dt ` K, i.e., in the spilling phase

Rt “ Dt, SPt “ WAt ´ Rt ´ K (4)

where Dt = planned or target water demand in period t; Rt = reservoir water supply volume in period
t, 0 ď Rt ď Dt; SPt = reservoir spill flow (unused release) in period t; SWAt = starting water availability
at period t, 0 ď SWAt ď Dt; EWAt = ending water availability at period t, Dt ď EWAt ď Dt ` K;
and HFt = hedging factor, i.e., the reduction percentage, 0 ď HFt ď 1, 0 denoting a null hedging
(no rationing) and 1 denoting a full hedging (no release).

The storage at the end of period t is computed using the continuity equation:

St`1 “ St `Qt ´ Et ´ Rt ´ SPt (5)
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in which St`1 “ K, if St`1 ą K. Other basic constraints that should be considered in the optimization
model are: mass balance equation for each reservoir, reservoir minimum storage constraint, and the
minimum reservoir release for downstream ecological requirements.

2.1.2. Allocation Policy of Common Water Demand between Parallel Reservoirs

Hedging policy can normally guide the operation of a single reservoir only when the target
delivery is specified beforehand. However, for a complex multireservoir water supply system, there
are always some reservoirs in parallel topology and they jointly provide downstream common water
demand, which means the total amount of water supply to downstream is the summation of releases
from all parallel reservoirs. It is difficult to implement hedging policy in this special configuration
because the task assignment of common water demand between parallel reservoirs is inconstant and
uncertain. Therefore, a proportional allocation policy is put forward to deal with this issue, shown in
Figure 2. Figure 2a is the simplest two-reservoir in parallel connection; where R1,t and R2,t are releases
from Reservoirs 1 and 2, respectively. Assume that the percentage of target demand allocated for each
reservoir are PE1 and PE2, which are determined according to the reservoir storage capacities and
respective inflow conditions. For example, PE1 = 0.4 and PE2 = 0.6. Then the water supply target for
Reservoir 1 is D1,t = PE1 ˆ Dt and D2,t = PE2 ˆ Dt for Reservoir 2 shown as Figure 2b. For a parallel
configuration with more than two reservoirs, the allocation policy of Dt is also in proportion.

Figure 2. (a) The parallel two-reservoir system; (b) allocation policy of common water demand.

2.1.3. Objective Functions

Suppose a system with NM water supply reservoirs and i denote the reservoir index, i = 1, 2, ...,
NM. The allocation policy helps determine the allocated demand task Di ,t for each parallel reservoir i
by the coefficient PEi and planned common water demand. Then reservoirs could operate in order
according to their respective time-varying hedging rules, represented by a parameter vector (SWAi ,t,
EWAi ,t, HFi ,t). So, in optimization of a multireservoir water supply system, our purpose is to find the
optimal hedging policy that makes the system perform best. Two objective functions are concerned:
(1) minimizing the total deficit ratio (TDR) of all demands of the entire system in operation horizon
and (2) minimizing the maximum deficit ratio (MDR) of water supply in a single period.



Water 2016, 8, 28 5 of 18

A deficit occurs when the reservoir releases for water supply is insufficient. The total deficit ratio
of the system is defined as the ratio of total water supply deficits to the total projected demands over
the operation horizon, which is expressed as

TDR “

T
ř

t“1

NM
ř

i“1

`

Di,t ´ Ri,t
˘

T
ř

t“1

NM
ř

i“1
Di,t

ˆ 100% (6)

where T is the length of operation periods.
To guard against unacceptable deficits of large magnitude, minimizing single-period deficit is

also important during droughts.

MDR “ Max
@i,t

"

Di,t ´ Ri,t

Di,t
ˆ 100%

*

(7)

Actually, objectives TDR and MDR are conflicting: reservoir release for water demand at each
time period should be as full as possible to minimize MDR, but no hedging would induce frequent
deficit events and sacrifice long-term water supply reliability, which may increase TDR; conversely,
satisfying the TDR would enlarge the MDR [11,18].

2.1.4. Solution Technique to Extract Design Alternatives

The NSGA-II, developed by Deb et al. [20], is one of the most efficient and steady population-based
MOEAs and has been widely reported by various investigators in solving water resource
systems-related problems. Some recent applications are: parameter calibration of hydrologic
models [21,22], optimal design and management of flood control on watershed scale [23,24], reservoir
systems optimization [14,25–27], and extraction of optimal operation policies [13]. Figure 3 shows the
flowchart of applying the NSGA-II to derive a noninferior set of operation rules for a multireservoir
water supply system. The main steps are summarized as follows:

Step 1: Create initial parent population P0 of size N and set the generation number g “ 0; the
jth individual indj represents a scheme of hedging policy, i.e., variables SWAj

i,t, EWAj
i,t, HFj

i,t with
t “ 1, ..., T and i “ 1, ..., NM.

Step 2: For different indj in P0, implement the water supply operations of reservoirs one by one,
then calculate objectives TDRj and MDRj.

Step 3: Sort P0 based on non-domination and assign a rank to each individual equal to its
non-domination level (1 is the best level, 2 is the next-best level, and so on).

Step 4: Generate an offspring population Og of size N using binary tournament selection,
crossover, and mutation operators.

Step 5: Evaluate offspring population Og; the same as step 2.
Step 6: Combine the parent and offspring population to form a mating pool Mg of size 2N,

Mg “ Pg YOg.
Step 7: Sort Mg by the fast non-dominated sorting algorithm to identify all non-dominated

fronts F1,F2, . . .
Step 8: Estimate the crowding distance of each individual in different non-dominated fronts

(crowding-distance-assignment).
Step 9: Perform the crowded comparison operator on Mg to generate a new parent

population, Pg` 1.
Step 10: Set g “ g` 1, and go to Step 4. Repeat steps 4–9 until the stopping criterion is satisfied

(g “ maxgen).
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Figure 3. Flowchart to optimize a multireservoir water supply system using the NSGA-II.

2.2. Preference Ordering according to Quantitative Criteria

Now a set (the decision space) that includes N noninferior design alternatives of operation rules
in terms of objectives TDR and MDR will be presented to decision makers. However, the size is too
large to choose. Further eliminating some alternatives and setting up a preference ordering among the
remainder are necessary. In general, none of these alternatives can be pronounced better than others in
the absence of more information. Therefore, it is practicable to consider several relevant quantitative
criteria so as to evaluate and rank them.

2.2.1. Evaluation Criteria

Two types of quantitative evaluation criteria are used for assessing different design alternatives:
reservoir performance indices mainly contain reliability α, resiliency γ, and vulnerability υ [7]; shortage
indices of water supply such as shortage index (SI) or modified SI (MSI) [28], deficit percent day index
(DPD), and generalized shortage index (GSI) [29].

Reservoir Performance Indices

Reliability α describes how likely a system is to fail; resilience γ indicates how quickly it recovers
from failure; and vulnerability υ measures how severe the consequences of failure may be. They are
defined as Equations (8)–(10).

α “ 1´

TN
Π

t“1
pDt ą Rtq

TN
(8)
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γ “

TN´1
Π

t“1
pDt`1 ď Rt`1 |Dt ą Rt q

TN
Π

t“1
pDt ą Rtq

(9)

υ “
TN

max
t“1

ˆ

Dt ´ Rt

Dt
|Dt ą Rt

˙

(10)

where TN = length of periods in counting;
TN
Π

t“1
pDt ą Rtq = count of periods in which target demands

are not fully satisfied;
TN´1

Π
t“1

pDt`1 ď Rt`1 |Dt ą Rt q = count of events that reservoir success to supply

target demand after a failure state; and
TN

max
t“1

ˆ

Dt ´ Rt

Dt
|Dt ą Rt

˙

= maximum relative deficit in the

failure periods.

Shortage Indices

The shortage index (SI), introduced by the U.S. Army Corps of Engineers to indicate the degree
of water shortage [30], and the modified shortage index (MSI) are defined in Equations (11) and
(12), respectively.

SI “
100
Y

ÿ

ˆ

Annualwaterdeficit
Plannedannualdemand

˙2
(11)

MSI “
100
T

T
ÿ

t“1

ˆ

TSt

TDt

˙2
(12)

where Y = the number of sample years;
ř

= the summation of the indicated values for all deficit
periods; TSt = shortage in period t; TDt = demand in period t; and T = number of periods.

The deficit duration is the total time of a continuous drought event; the deficit intensity is the
average of deficit in the event. They are also vital to water resources planning. The deficit percent day
index (DPD) includes these two characteristics:

DPD “
ÿ

rDailydeficitrate p%q ˆNumberofdaysinacontinuousdeficits (13)

where
ř

represents the summation of the indicated values for all deficit events in the period under
consideration. The generalized shortage index (GSI) not only incorporates all essential aspects of SI
and DPD, but also emphasizes the consequential socioeconomic impacts of water supply. It can be
expressed as follows:

GSI “
100
Y

Y
ÿ

i“1

ˆ

DPDai
100ˆDYi

˙β

(14)

where Y = number of sample years; β = coefficient, usually taken as 2; DYi = number of days in the ith
year (365 or 366); and DPDai = sum of all DPDs in the ith year.

2.2.2. The SEABODE Approach

There are a number of approaches to evaluate different design alternatives according to multiple
criteria, and they can be classified into two categories: aggregation approaches and Pareto domination
approaches. The former is to form a “scalarization” form of multiple evaluation criteria and rank the
alternatives based on this specific scalar, such as the conversion tools of weighted sum [31], distance
function [32], and utility function [33]. However, the results may be highly sensitive to the scalarization
method we used and there is no well-defined means of picking the right scalarization. Besides, due
to some subjective factors of decision makers, the aggregation approach cannot always guarantee
that all final choices are strictly reasonable. However, in contrast, a Pareto domination approach,
called successive elimination of alternatives based on order and degree of efficiency (SEABODE), does
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not need to specify weigh coefficients to any evaluation criterion and can overcome the drawbacks
of aggregation approaches [34]. The SEABODE is based on two theorems: efficiency of order k and
efficiency of order k with degree p. For a feasible set of a large number of design alternatives, the
SEABODE to select the preferred alternatives involves two steps: (1) find all alternatives belonging
to the same lowest order of efficiency, recorded as kmin; (2) among the result set, only retain the
alternatives that are efficient of order (kmin ´ 1) with highest degree pmax. Definitions of the two
domination theorems used in the SEABODE approach are given as follows.

Efficiency of Order k

An alternative is defined as being efficient of order k or k-Pareto-optimal, if it is not dominated
by any other alternatives for all the possible k-dimensional subspace of the original m-dimensional
criterion space C (1 ď k ď m).

Efficiency of Order k with Degree p

Assume that there are a number of (k + 1)-Pareto-optimal alternatives, but none of them
is k-Pareto-optimal. An alternative is defined as efficiency of order k with degree p if it is not
dominated by any other alternatives for the exact p k-dimensional subspaces of C and is denoted as
[k, p]-Pareto-optimal.

2.2.3. Numerical Illustration

Table 1 shows a set of 10 design alternatives (a1–a10) in a three-dimensional criterion space
C = (c1–c3) as a numerical illustration, where c1–c3 are minimized. It can be clearly seen from Table 1
that all 10 design alternatives are 3-Pareto-optimal because no one can fully dominate the others. For
example, the values of criteria c1 and c2 for a2 are both larger than those of a1, but the value of criterion
c3 of a2 is lower than that of a1, which indicates that neither a1 or a2 dominates the other totally.
Figure 4 plotted the alternatives from Table 1 in two-dimensional criterion subspace for the possible
combinations of any two of the three criteria in C. In Figure 4, alternatives surrounded by circles are
Pareto-optimal in their respective two-dimensional criterion subspace. As can be seen from Figure 4a,
a1, a3, and a7 are on the Pareto front of criteria c1 versus c2; criteria c1 versus c3 in Figure 4b has four
2-Pareto-optimal alternatives (a7–a10); c3 versus c2 in Figure 4c has six 2-Pareto-optimal alternatives
(a1, a2, a5–a8). Through the analysis, kmin = 3, pmax = 3, a7 is the most preferred choice.

Table 1. Numerical values of all three criteria for each alternative.

Alternatives
Criteria (m = 3) 3-Pareto-Optimal [k, p]-Pareto-Optimal

c1 c2 c3 [2,1] [2,2] [2,3]

a1 6.33 2.45 51.31
‘ ‘ ‘

a2 13.91 3.68 36.54
‘ ‘

a3 4.12 6.01 58.15
‘ ‘

a4 8.62 7.57 46.22
‘

a5 12.35 9.74 32.13
‘ ‘

a6 10.11 11.96 23.15
‘ ‘

a7 1.05 15.51 15.20
‘ ‘ ‘

‘

(preferred)
a8 5.71 26.53 5.22

‘ ‘ ‘

a9 2.43 31.26 13.84
‘ ‘

a10 3.57 43.22 9.01
‘ ‘
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Figure 4. Two-dimensional Pareto plots of the three criteria: (a) c1 versus c2; (b) c1 versus c3;
(c) c3 versus c2.

2.3. Framework of the Proposed Methodology in Application

As shown in Figure 5, application of the proposed methodology to determine the optimal
operation rules for a multireservoir water supply system in dry years is manipulated according
to the following three steps: (1) an input module (a process of data preparation); (2) an optimization
model using the NSGA-II algorithm to derive a number of noninferior hedging policies in terms of
objectives TDR and MDR, which forms the decision space A; (3) a MCDM procedure to further select
the most preferred alternatives according to criterion space C and the SEABODE approach.
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Figure 5. Framework to select preferred operation rules in application.

3. Case Study

3.1. System Description

Jialing River is a major tributary of the Yangtze River in China. A regional water supply system
with three reservoirs (Baozhusi, Tingzikou, and Shengzhong) located in the upper and middle reaches
of the Jialing River is employed as a case study. Figure 6 is the layout of the investigated system. As
shown in Figure 6, Tingzikou is a leading water conservancy project in the mainstream of the Jialing
River; Baozhusi and Shengzhong are two smaller reservoirs in tributaries, Bailong River and West
River, respectively. Some critical parameters of the three reservoirs are listed in Table 2. The flood
season is concentrated from June to August.

Figure 6. Sketch map of the investigated system.
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Table 2. Reservoir characteristic parameters.

Reservoir
Active Storage Capacity K (102 Million m3)

PE (Predefined)
Normal Season

(September–May)
Flood Season

(June–August)

Baozhusi 13.40 10.58 -
Tingzikou 17.32 4.72 0.7

Shengzhong 6.72 6.72 0.3

3.2. Dry Years and Water Demand Data

The Changjiang Institute of Survey, Planning, Design and Research provided all input data
including runoff records of typical years and water demand target data [35]. As inflows to reservoirs,
monthly runoff series for 50 years (from 1959 to 2008) were collected and are sufficient to characterize
the varying hydrological regime of the Jialing River.

The division of water years was based on the specific guaranteed rate (GR) of annual runoff series
at a watershed mainstream control station. Specifically, the water years were divided into exceptionally
wet years (GR < 12.5%), slightly wet years (12.5% ď GR < 37.5%), normal years (37.5% ď GR ď 62.5%),
slightly dry years (62.5% < GRď 87.5%), and exceptionally dry years (GR > 87.5%) [36]. Figure 7 shows
the annual natural runoff series in ascending rank. The first 20 dry years (five exceptionally dry years
and 15 slightly dry years) were selected for demonstration, resulting in Y = 20 hydrological scenarios
of different degrees of drought, or 240 operation periods in total for the optimization model (T = 240).
Since the 20 dry years are not continuous, the optimization model needs to be run for each (dry) year
separately (12 months) in calculations. The water demand series in different months of one dry year
are predicted data for future planning horizon (level year of 2020). The reservoir evaporation losses
are roughly equal to the average reservoir water-spread areas multiplying the evaporation rate in one
period. The seepage loss is neglected. Table 3 shows the average inflows of the demonstration dry
years and the target demands data in 2020 level for each reservoir.

Figure 7. Annual runoff series in ascending rank (1959–2008).



Water 2016, 8, 28 12 of 18

Table 3. Average natural inflows of the demonstration dry years (Y = 20) and corresponding target demands in 2020 level year (m3/s).

Reservoir
Months

January February March April May June July August September October November December

Average
Inflows

Baozhusi 202.3 180.3 185.8 289.7 472.8 532.7 754.9 684.6 681.6 512.4 318.6 222.9
Shengzhong 106.1 92.5 101.3 184.7 301.2 345.3 502.7 537.8 508.7 350.1 200.1 132.2
Tingzikou 257.7 197.1 230.3 415.9 670.6 686.1 1691.3 1266.4 1342.9 653.0 467.8 317.5

Demands
(2020)

Baozhusi 39.5 51.2 48.4 52.9 54.9 67.6 54.2 49.7 33.9 39.6 41.0 39.8
Shengzhong 106.4 111.3 114.4 98.3 291.9 237.7 179.1 169.1 78.6 72.4 86.1 127.0
Tingzikou 159.6 167.0 171.6 147.4 437.9 356.5 268.7 253.6 117.9 108.6 129.1 190.5
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3.3. Parameter Settings and Search Ranges of Decision Variables

In this study, parameters of the NSGA-II algorithm used to search various noninferior design
alternatives are set to: population size N = 100, maximum number of generations maxgen = 1000,
crossover probability pc = 0.9, mutation probability pm = 1/108, crossover and mutation distribution
indexes ηc = 20 and ηm = 20 [20,22,23]. Moreover, a genetic algorithm (GA) with real-coded pattern
and elite strategy is applied to find the extreme optimal MDR and TDR separately. The parameter
setting for GA is: population size = 200, maximum number of iterations = 1000, crossover and
mutation probabilities pc = 0.9, pm = 0.05 [11], elites to be reserved are the top 5% of individuals in
each generation.

It is not realistic to adopt a large value of HF that exceeds the allowable degree of damage
to the water supply. To avoid such an unreasonable result in practical applications, the search
ranges of decision variables SWA, EWA, and HF are reset to [0.1D, 0.9D], [1.1D, D + K], and [0.1, 0.3],
respectively [6]. In the optimization model, the time step is one month. For a single reservoir, the
number of variables of monthly varying hedging rules is 36. The total number of decision variables in
the optimization model equals to 108 (NM = 3).

4. Results and Discussion

Usually, for evolutionary algorithms in engineering applications, multiple trials are needed
depending on two aspects: (1) the randomness and initialization, which may largely influence the
performance of evolutionary algorithms; and (2) the complexity of the optimization problem. However,
for the case study in this paper, optimization results (noninferior solutions) obtained by the NSGA-II
between multiple trials are similar and have no obvious difference. This may be due to the model
structure (only including three reservoirs and 108 decision variables) and the input data used in
calculations. Furthermore, the aim of the case study is to illustrate the application process and
feasibility of the proposed methodology. So, in this section, we only choose and analyze a relatively
superior trial among many tries.

4.1. Decision Space Obtained by the Optimization Model

The Pareto front or the decision space A, derived by the NSGA-II algorithm, contains 100 feasible
design alternatives (a1, ..., a100) that are well-distributed in the area from 8.38% to 10.00% for TDR,
and from 34.59% to 63.50% for MDR, as shown in Figure 8a. The extreme values of TDR and MDR
obtained by optimizations of single-objective GA are 8.30% and 34.41%, respectively, and Figure 8b
gives corresponding convergence trajectories.

Figure 8. (a) The decision space A derived by NSGA-II; (b) results of single-objective optimizations
obtained by GA.
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4.2. Preferred Alternatives Determined by the SEABODE

A point to note is that even after eliminating all inferior alternatives and preserving the Pareto
optimal ones in terms of objectives MDR and TDR by using the NSGA-II algorithm, the decision
maker is still left with a sizeable number of options to choose from (alternatives a1, ..., a100). To
further pick out the preferred alternatives, the three performance indices (reliability α, resilience γ, and
vulnerability υ) and the generalized shortage index (GSI) are selected and constitute a four-dimensional
criterion space C for evaluating each alternative. For each reservoir in the system, variation ranges for
the four criteria by statistical results from the 100 alternatives in decision space A are listed in Table 4. It
can be seen from Table 4 that: (1) all values of the four selected criteria for Baozhusi are constant among
all the 100 alternatives, implying no preferences exist between different alternatives for Baozhusi;
(2) variation ranges of the four criteria for Shengzhong and Tingzikou fluctuate obviously, largely
affected by different alternatives. Therefore, we chose Shengzhong and Tingzikou as the analysis
objects to apply the SEABODE approach and determine the preferred alternative for each reservoir.

Table 4. Statistics of the specified evaluation criteria for each reservoir in decision space A.

Reservoir
Four-Dimensional Criterion Space C

1-α 2-γ 3-υ 4-GSI

Baozhusi
Range = 1 = 1 = 0 = 0

Std. – – – –

Shengzhong Range [0.658, 0.825] [0.297, 0.637] [0.345, 0.520] [0.203, 0.541]
Std. 0.054 0.079 0.061 0.112

Tingzikou Range [0.592, 0.842] [0.342, 0.665] [0.346, 0.635] [0.434, 1.487]
Std. 0.092 0.097 0.089 0.336

Table 5 gives the number of Pareto-optimal alternatives in the original four-dimensional criterion
space and its four subspaces of any three criteria. It can be observed from Table 5 that (1) for
Shengzhong, only 29 alternatives are Pareto-optimal if all four evaluation criteria are considered, i.e., 71
alternatives, about 71% of the decision space A are eliminated; (2) for Tingzikou, 31 inferior alternatives,
about 31% of the decision space A are eliminated. However, one must be able to sieve through these
alternatives to obtain a smaller number of representative alternatives. Table 6 shows applications
of the SEABODE approach on the remainder of 4-Pareto-optimal alternatives for Shengzhong and
Tingzikou. It is clearly seen in Table 6 that as the degree (p) of any order increases, the number of
preferred alternative decreases or does not change. Take for example Shengzhong, where we see that
the number of preferred alternatives decreases from 29 to 5 when the degree of order 3 increases from
1 to 4, while the number reduces from 5 to 1 when the degree of order 2 increases from 1 to 6. Thus the
number of alternatives becomes small but the qualities are still good (they are of the highest degree and
a high order of efficiency, i.e., [2,6]-Pareto-optimal alternative a86). The same analysis can be applied
for Tingzikou and the finally selected preferred alternative is a54 ([2,4]-Pareto-optimal alternative).

Table 5. Number of Pareto-optimal alternatives in all possible three-dimensional subspaces of C.

Reservoir
C Three-dimensional subspaces

(1-2-3-4) (1-2-3) (1-2-4) (1-3-4) (2-3-4)

Shengzhong 29 15 7 28 29
Tingzikou 69 18 2 63 63

Note: 1-α, 2-γ, 3-υ, 4-GSI.
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Table 6. Preferred alternatives resulting from the SEABODE approach.

Reservoir 4-Pareto [3,1] [3,2] [3,3] [3,4] [2,1] [2,2] [2,3] [2,4] [2,5] [2,6]

Shengzhong 29 29 28 14 5 5 5 5 5 2 1
Tingzikou 69 68 60 17 0 17 15 9 1 0 0

Table 7 shows a comparison between the results of the finally selected preferred alternatives and
the optimal results by optimizing single objective MDR or TDR. As can be expected, values of MDR
and TDR of preferred alternatives a86 and a54 are generally within the range of the corresponding
values of single objective optimizations. The preferred alternatives a86 and a54 are not only noninferior
alternatives in terms of MDR and TDR but also the alternatives that can make Shengzhong and
Tingzikou have good performance in reservoir performance indices and GSI.

Table 7. Results of the preferred alternative and single objective optimizations.

GA-MDR GA-TDR
NSGA-II + SEABODE

Shengzhong (a86) Tingzikou (a54)

Objectives MDR (%) 34.41 68.76 56.13 60.30
TDR (%) 19.16 8.30 8.51 8.42

Shengzhong

α 0.379 0.825 0.825 0.821
γ 0.159 0.529 0.529 0.504
υ 0.320 0.494 0.494 0.520

GSI 3.371 0.200 0.204 0.204

Tingzikou

α 0.296 0.842 0.804 0.842
γ 0.164 0.648 0.610 0.665
υ 0.344 0.688 0.561 0.603

GSI 4.316 0.482 0.597 0.440

4.3. Areas for Future Research

Some improved versions of NSGA, such as epsilon-NSGA-II [37] or BORG [38], have been
proposed recently. Although these newly developed evolutionary algorithms were regarded as more
efficient in theory and mathematical experiments, there are few case studies applying them in practical
engineering, especially for BORG. Moreover, the most important innovation of this research is the novel
methodology we proposed on preference ordering for the reduction of the scope of multi-reservoir
operation choices. Since NSGA-II (also an improved version of NSGA) has been widely used by
various investigators in solving water resource systems-related problems and is a mature technique,
we employed it to derive noninferior solutions. However, trying these modified algorithms in our
extensive research is a very attractive direction for us to take in the future.

Originally, when we conceived and designed the methodology, it was quite natural to consider
the allocation ratio PEi ,t (i is the reservoir index of parallel reservoirs, t is the time index)
as decision variables. However, we noted that the variation ranges of the decision variables
SWAi ,t (0 ď SWAi ,t ď Di ,t) and EWAi ,t (Di ,t ď EWAi ,t ď Di ,t + Ki) are associated to PEi ,t because
Di ,t = PEi ,t ˆ Dt (Dt is the water demand in period t and its value is known beforehand). That way, the
boundaries on SWAi ,t and EWAi ,t vary with the value of PEi ,t during iterative computations of NSGA-II;
even the initial solutions are produced in different search spaces depending on the randomly generated
PEi ,t. There are correlations between some decision variables, which makes the optimization problem
very complicated and varying (violating the consistency requirement for optimization problems). This
type of problem is seldom seen in multiobjective optimizations. For most applications of multiobjective
evolutionary algorithms (MOEAs), the search spaces of decision variables are fixed. Thereupon,
fixed PEi ,t values were used in our study, which were determined according to the reservoir storage
capacities and average reservoir inflow conditions. We and maybe other researches are expecting to



Water 2016, 8, 28 16 of 18

see PEi ,t as decision variables and explore new techniques to deal with constraints of this type that are
dynamically changing. This is another interesting area for future research.

5. Summary and Conclusions

A few conclusions arising out of this paper are listed as follows:

1. A simple multireservoir operation policy includes the hedging policy for water supply operation
of a single reservoir and the proportional allocation policy of downstream common water demand
between two parallel reservoirs is suggested by the authors.

2. A new methodology, which aims at deriving a certain number of noninferior multireservoir water
supply rules in dry years or drought conditions and making a preference ordering among the
extracted alternatives according to several specified evaluation criteria, is proposed. The proposed
methodology is implemented as the following two main steps (1) an optimization model of
multireservoir operation using the NSGA-II algorithm to obtain a number of noninferior hedging
rules in terms of objectives TDR and MDR, which forms a decision space containing enough
design alternatives for decision makers to choose between; and (2) a multicriteria decision-making
procedure to further eliminate the alternatives according to the SEABODE approach.

3. In order to illustrate the application and effect of the proposed methodology, the three-reservoir
water supply system in Jialing River is employed as a case study. Results show that we can
always find the preferred alternative among a sizeable number of noninferior alternatives for
each reservoir with the help of the SEABODE approach. The proposed methodology was able to
sieve through the numerous noninferior alternatives and short-list a small number of preferred
alternatives to present to decision makers for further consideration.
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