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Abstract: For over a century there have been many studies that describe the use of rain drop
measurement techniques. Initial manual measurement methods evolved due to improved technology
to include photographic and, more recently, automated disdrometer and laser measurement
techniques. Despite these numerous studies, there have been few comparative reviews of the range
of methodologies, and their relative performance. This review explores the raindrop measurement
techniques available, and summarizes and classifies the techniques according to the method or
principle involved. The requirements of a robust raindrop measurement technique are suggested,
and these are reviewed against existing rain drop measurement techniques to provide a comparative
guide to the use of the range of techniques available for any research study. This review revealed
that while advances in technology have allowed many of the deficiencies of early techniques to be
eliminated, challenges remain in relation to the precision of the measurement of the size, shape,
and velocity of rain drops.

Keywords: raindrop measurement techniques; impact and optical disdrometers; laser precipitation
monitor; pluviometer

1. Introduction

An appreciation of rain drop characteristics such as size, shape, velocity, kinetic energy, and drop
size distribution is crucial for many scientific, commercial and industrial applications. Some examples
of these include remote sensing, meteorology (weather prediction), telecommunications (signal
distortion), and agriculture and horticulture (crop yield) radar meteorology, atmospheric physics,
cloud photodetection, and measurement of tropospheric precipitation microstructure [1-3].

The characteristics of rain drops are also important for stormwater management purposes,
particularly in relation to understanding how pollution wash off processes affect stormwater quality.
For example, larger rain drops that possess more kinetic energy are known to result in higher pollution
concentrations being washed off impervious surfaces and into downstream aquatic environments [4].

The objective of this review is to provide a summary of the development of rainfall measurements
techniques, and to review and compare the different rain drop measurement techniques used in
previous research studies. The scope of this review has been limited to include only those measurement
techniques with the ability to measure rain drop size, shape, distribution, velocity, kinetic energy,
and intensity. Different raindrop measurement techniques have been characterised according to the
method used, and the relative merits of each method are discussed. In order to compare the merits of
each technique, rain drop measurement methods included in this review have been broadly categorised
into manual and automated techniques.

Manual rain drop measurement techniques include the stain method (measurement of stains on
dyed absorbent paper), flour pellet method (measurement of rain drops that fall into finely sieved
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flour and produce dough pellets), and oil immersion method (measurement of rain drops in a vessel
containing oil). Despite these manual methods being simple, they are time consuming, have limited
measurement accuracy, and do not give real time data records. Also, these manual techniques cannot
provide terminal velocity data, which is required to estimate the kinetic energy of rainfall [5]. Manual
techniques are reviewed in the first part of this article.

Recent advances in technology and electronics have enabled an exploration of automated rain
drop measurement techniques. These are reviewed in the second part of this article and include
techniques such as the using devices to measure the displacement and mechanical energy caused
by raindrops hitting a surface, optical imaging to measure the velocity, diameter, and shape of the
raindrops using camera technology, acoustic techniques which measure the noise produced by rain
drops hitting a diaphragm and optical scattering, whereby rain drop size, shape, velocity, and diameter
are measured passing through a light or laser beam.

In the final section of this article, the essential characteristics required for an accurate rain drop
measurement technique are suggested and explained. A summary and conclusions of the review
are presented.

2. Manual Rain Drop Measurement Techniques

Early studies (ca. 1900-1960) attempted to describe rain drop size and velocity using manual
measurement techniques such as chemically treated paper, and sugar or soot coated nylon screen [6-8].
These very early, functional techniques were found to provide inaccurate results, and have been
superseded due to technological advancement over the last century.

2.1. Stain Method

The stain method was one of the earliest accepted techniques to be developed and it is still in
use today. First described by Lowe [9], this method involves the use of chemically treated paper to
measure the size of raindrops. For a short period of time rain drops are allowed to land on a sheet
of absorbent paper covered with a water-soluble dye. A variety of absorbent papers have previously
been used including filter paper, blotting paper, blueprint paper, paper towelling, photographic paper,
and adding machine tape. Upon impact, the embedded dye reacts with the rain drops and this leaves
permanent marks on the paper. The marks are then carefully measured and counted to provide
information about the rain drops. One of the limitations of this method is that during prolonged
sampling, the rain drop stains can overlap, which can make it difficult to accurately measure and count
individual drops.

Several iterations of this method over time improved measurement accuracy, and increased
size range measurement capacity including developments of the method described by Marshall
and Palmer [10], and Marshall et al. [11] who used dyed filter paper. Two filter papers were used
simultaneously to increase the accuracy of rain drop measurement. Ink blotters dusted with potassium
manganese used by Anderson [12] and known water densities used by Abudi et al. [13], incorporated
weights of raindrops to infer size. Several studies [14-22] used Whatman’s No. 1 filter paper, which was
identified as yielding the most accurate results.

Bowen and Davidson [23] trialled an improvement to the stain method by using a semi-automated
technique which produced a continuous record of the drop size distribution. The improved method
involved deflection of rain drops onto moving absorbent paper embedded with dye. The diameters of
the stains were categorised into five different size classes, from which drop size distributions were
calculated. A similar recording instrument in which paper tape was used to record rain drops was
developed in conjunction with an equation which described drop size in relation to stain size and
time lag between sampling and analysis [24-27]. Calculations resulted in a calibration chart which
translated the stained area caused by rain drops into raindrop diameter [14,15]. Limitations of this
methodology included the uncertainty of allowing for terminal velocity of the rain drop prior to
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measurement [15,28,29], and maintenance of paper temperatures, which were both found to influence
stain sizes [30].

2.2. Flour Pellet Method

First developed in 1904 by Bentley [31], the flour pellet method (Figure 1) was used to study
drop size distributions of rain events in Washington D.C., USA. A number of studies have since used
slightly different versions of the flour pellet method to successfully analyse rainfall (Table 1).

Figure 1. (a) Raindrop flour pellet samples collected in a pan filled with 2 cm depth of plain flour;
(b) Flour pellets after oven drying.

Compaction of the flour over time was found to affect measured pellet size, and large sample
numbers are usually required to account for the high variability in the number of rain drops observed
during testing [32]. Test area should be restricted to the centre of the chosen collection tray to avoid
splash effects. The test duration should also be brief (1-2 s) to avoid duplicate drop counts [4,33-39].

The chief technological advance to the flour pellet method was developed by Arnaez et al. [40],
who used digital analysis of photographs to determine drop sizes. The main fields that still currently
use the flour pellet method include soil erosion, and stormwater quality research studies [4,35,36,38—46].

Table 1. The research studies used the flour pellet method.

Research Study and Location Purpose of Use Method used

After sampling with raindrops, the formed
pellets were dried in an oven. Pellets were
sized with sieves and weighed. The size
was calibrated by weighing dried pellets
produced by drops of a known size.

To measure drop sizes from

Laws & Parsons (1943) [47] natural storms

A tray (0.05 m?) of flour was exposed to

simulated rainfall for a period of 1 s.

The flour was then dried for 24 h at ambient
To measure drop sizes from  temperature (28-30 °C) and the pellets
natural storms formed were passed through a series of sieves

(4.75, 3.35, 2.36, 1.18 and 0.85 mm).

The pellets were then dried for 24 h at 105 °C,

weighed and measured.

Hudson (1963) [33]

Circular pans 21 cm in diameter and 2 cm
deep were filled with flour and made level
with a straight edge. After exposure to rain
drops, the flour was dried (24 h at 38 °C).
An 18.3 cm diameter sample was taken from
the centre of the pan to avoid splash effects.
The pellets were sieved (U.S. series 5 to

50 mesh) and weighed.

To verify the nozzle
Kohl (1974) [32] produced drop sizes in the
rainfall simulation studies
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Table 1. Cont.

Research Study and Location Purpose of Use Method used

Carter et al. (1974) [48]

To study drop size
distribution of
natural rainfall

A circular pan (31 cm diameter) of flour

(1.6 cm deep), was exposed in a rain for a
short period of time. The pellets formed were
first air- and later oven-dried and weighed.
Raindrop diameter was estimated from the
weight of the pellets.

Navas et al. (1990) [49]

To verify the nozzle
produced drop sizes in the
rainfall simulation studies

A 25.4 cm diameter plate containing an
uncompacted, layer of flour (2.54 cm thick) is
exposed to rainfall for 1-4 s. The small flour
balls are dried for 24 h at 105 °C, and sieved
(5000, 3000, 1000, 630, 500 and 250 um) the
fractions are weighed. Calibration of drops
is required.

Ogunye and
Boussabaine (2002) [35]

To verify the simulated drop
sizes in the rainfall
simulation studies

Exposure time is restricted to 1 s to minimise
coalescence of the pellets in the flour. A large
sample size is required to minimise the
variability in counts of the rare large drops.

Arnaez et al. (2007) [40]

To verify the nozzle
produced drop sizes in the
rainfall simulation studies.

Rain drops formed small pellets in the flour
that were photographed and analysed by
computer.

Herngren (2005) [4];
Egodawatta (2007) [44];
Miguntanna (2009) [38]

To verify the nozzle
produced drop sizes in the
rainfall simulation studies.

A tray (diameter 240 mm) of uncompacted
flour was exposed to simulated rainfall for a
period of 2 s. Flour was dried for 12 h at

105 °C, and the pellets sieved (4.75 mm;
3.35 mm; 2.36 mm; 1.18 mm; 0.6 mm;

and 0.5 mm).

Pérez-Latorre et al. (2010) [39]

To verify the nozzle
produced drop sizes in the
rainfall simulation studies.

A flour layer (1 cm depth) was placed over a
surface of 50 cm x 50 cm and compacted
using a ruler. The flour surface was covered
to protect it from rainfall except when the
cover was removed for 2 s during the
simulation to collect drop samples.

The diameter of pellets was measured using
a calibre (0.1 mm).

Asante (2011) [45]

To verify the nozzle
produced drop sizes in the
rainfall simulation studies.

A thin layer of cassava flour, and wheat flour
were spread on separate trays and passed
through a rain shower. The flour was dried
and the pellets separated according to their
size ranges using a nest of sieves. The size

of raindrops was calculated from the size

of pellets.

Parsakhoo et al. (2012) [46]

To verify the nozzle
produced drop sizes in the
rainfall simulation studies.

The drop impact on flour was estimated
using a ruler.

2.3. Oil Immersion Method

An early manual rain drop measurement method first developed by Fuchs and Petrjanoff [50],
the oil immersion method involves the collection of drops on a glass trough containing a fresh mixture
of lightly viscose liquids, such as Vaseline®and light mineral oil which prevents evaporation and
condensation [51-58]. Using a camera and microscope, this technique does not require calibration or
special equipment [55].

The low viscosity and hydrophobic nature of the oil causes rain drops to form discreet spherical
shapes, allowing drop counting and measurement by microscope [59] or via photograph [57,58,60].
Generally any low viscosity oil can be used [61], and several alternative liquids have been utilised in
a range of studies, including Apiezon oil A, Shell 33, vacuum pump oil, paraffin oil and hydraulic
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fluid mixture, hydro carbon solvent, silicone oil, anisole mineral oil mixture, cold hexane, and grease
(—20 °C) [57-60,62-67]. Courshee and Byass [59] found that the use of two oils of different densities
improved drop shape measurement. Using a microscope or a photograph, they found it easier to
identify the drops trapped at the liquid interface (two liquids) rather than one.

2.4. Photographic Method

The photographic method has been used extensively to measure rain drop size and velocity, and
undergone many iterative improvements since its development by Mache in 1904 [68] (Table 2). Initially,
Laws [69] measured drop sizes using a 9 cm x 12 cm still camera mounted behind a chopper-disc
driven by a small synchronous motor (Figure 2).

Light infiltration problems have restricted some use of the photographic method to night time
sampling [7,70,71]. Use of the Illinois camera resulted in drop count errors due to superimposition of
multiple drops [70]. Digital pixilation also limited the accuracy of several photographic techniques [72].
In addition, photographic techniques are subject to environmental influences such as wind which
may cause drop drift and measurement errors [73]. The time consuming nature of some experimental
photographic techniques were found to limit their practical use [74].

Table 2. Range of photographic methods used in rainfall measurements studies.

Research Study Methodology and other Comments

A Motion-Scope® PCI-800sc camera (Redlake Imaging Corp., San Diego,
CA, USA) was used in conjunction with special software capture
falling drops. Calibration of images resulted in drop velocity and

size measurement.

Abudi ef al. (2012) [13]

A Canon Powershot® camera (Canon Inc., Tokyo, Japan) was with a
Stopshot® module (Cognisys Inc., Traverse City, MI, USA) which

De Jong (2010) [73] triggered two successive flashes. The process was activated by an
infrared sensor passed by a raindrop drop. Drop images were captured
twice allowing velocity measurement (Figure 3).

Low shutter speeds result in drops appearing as cylinders in a
Salvador et al. (2009) [72] photograph. Drop diameter and velocity were calculated based on the
selected shutter speed.

High resolution photographs were digitised using a scanner. A digital
single lens reflex (SLR) camera produced digital images converted by a

Sudheera and Panda (2000) [75] CCD (charge couple device) camera connected to a MVP /AT computer
system. Pixel aggregation was used to partition images to allow drop
size and count measurement.

A Sony® TR50BR handycam video (Sony, Minato, Tokyo) and a
MATROX® PIP-640B (Matrox, QC, Canada) were used in conjunction
with oil immersion to calculate drop sizes.

Cruvinel et al., & Cruvinel et al.
(1996, 1999) [58,61]

Drops were photographed using a 35 mm Fujichrome® 100 (Fujifilm,
Eigel and Moore & Kincaid et al. Tokyo, Japan) and illuminated with a circular fluorescent light. Slides
(1983, 1996) [57,76] projected on a screen resulting in a 30:1 magnification, supporting small
drop measurement (0.1 mm diameter).

An Tllinois camera was used to capture raindrops in an area of 1 m? of
air every 10 s. This involved two synchronised cameras at perpendicular
angles. The three-dimensional image of the shape of the raindrops was
then calculated. The accuracy of this method was limited to >0.5 mm in
drop size [81].

Mueller (1966) [77],

Jones (1959) [78],

Jones and Dean (1953) [79],
Jones (1956) [80]

A still camera was used mounted behind a chopper-disk driven by a
small synchronous motor (Figure 2). A collimating lens resulted in

Laws (1941) [69] accurate drop size measurement. Dark field illumination and the
chopper-disk made it possible to obtain multiple images of a drop on a
single film.
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Figure 2. Schematic still camera setup developed to measure the velocity of falling drops [68].

Figure 3. Vaisala Rain Cap disdrometer (Vaisala, Vantaa, Finland)[82].

3. Automated Rain Drop Measurement Techniques

3.1. Impact Disdrometers

The kinetic energy of rain drops is critical to soil erosion and stormwater pollutant wash off
studies because it is indicative of the potential of drops to displace particles normally bound to a
surface, causing to soil particles to enter surface water flows. The combination of drop size distribution
and drop velocity can provide an estimation of kinetic energy, however there have been several
previous attempts to take measurements directly [83-85]. This has been done using either acoustic or
displacement methods.

3.1.1. Acoustic Disdrometers

Acoustic disdrometers involve the generation and recording of an electric signal via a piezoelectric
sensor when drops fall on a specialized diaphragm. Based on the relationship between kinetic energy
and drop size calculations [53,69], this electrical signal is converted to kinetic energy via the measured
acoustic energy [73,83-95].

Modifications to the sensors used in acoustic disdrometers by Nystuen et al. [96] enabled use
in marine environments, however difficulties remained during high rainfall intensity measurement.
Jayawardena and Rezaur [83] also successfully modified the acoustic disdrometers, and improved
drop size distribution, rain intensity and kinetic energy measurement accuracy. Other commercial
devices have been successfully developed by Salmi and Ikonen [97], Salmi and Elomaa [84],
Winder and Paulson [86], Bagree [98] and Vaisala [82] (Figure 3).
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Limitations to accuracy in drop size estimation arise using acoustic disdrometers due to the
difficulty in obtaining a uniform acoustic response over the entire diaphragm. Difficulties in the
accurate measurement of smaller drop sizes also remain because of insensitive diaphragms, and splash
effects. In addition, higher intensity storms are not able to be measured due to background noise
which decreases measurement accuracy.

3.1.2. Displacement Disdrometers

Energy generated by drops falling on the top surface of a displacement disdrometer is translated
via magnetic induction, and converted via electrical pulse to estimate the size of a rain drop (Figure 4).

/Raindrop
© Q } Displacement
.-‘-"——-__-__._.___n-—"‘—-"

| Magnet

‘ ; . > Qutput E

current

~~Coil Magnetic
Induction

o ————

(a)Normal Condition (b) When drop impinges on the surface

Figure 4. Schematic of the principle of operation of displacement disdrometers [98].

In addition to magnetic induction, several mechanisms have previously been trialled to
accurately measure drop size including elastic springs [98], bonded strain gauges [99], and pressure
transducers [84,100-103]. Arguably the most widely used displacement disdrometer is the
Joss-Waldvogel Disdrometer [85] (Figure 5) which has been commercially available for past 45 years.
This unit has undergone several iterations to improve the composition of the cone which is the
principle measurement component. Successful modifications have included the addition of a digital
converter [104-106] (Table 3). Although this disdrometer may have provided advantages such as
measurement over a wide range of drop sizes, and the ability to continuously sample over longer
durations, limitations remain including accurate drop counting, and accurate measurement of velocity,
kinetic energy, intensity, and drop shape.

Figure 5. Joss-Waldvogel impact disdrometer (Distromet Ltd., Basel, Switzerland) [106].
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Table 3. Capability summary of a range of optical disdrometers.

8 of 20

. s Sampling Area
Device Name Study II;:;T;:I Drop Size Fall Speed Ié::tlc (Thickness of
y 8y Light Beam)
Thies Clima® Laser Blc?emmk &
Precipitation Lanzinger (2005)
“'P [107]; Clima (2007)
Monitor (LPM) . 2
. [108]; Upton &Brawn Not 45.6 cm
(Adolf Thies <250 mm/h <8.5 mm <l1m/s
(2008) [109]; Measurable  (22.5 cm x 2 cm)
GmbH & Co. KG,
e Anderson (2009) [110];
Gottingen,
G de Moraes Frasson
ermany) (2011) [111]
OTT Parsivel® Krajewski et al. (2006)
disdrometer [112]; Thurai et al. 54 em?
(OTT Hydromet, (2009) [113]; <1200 mm/h 0.2-5 mm 0.2-20 m/s <30KJ om
L (18 cm x 3 cm)
Loveland, Friedrich et al.
Colorado, USA) (2013) [114]
Particulate
Measurement
System (PMS) 2DG 0.15-9.6 mm
spectrometer Not (in 64, >
(Particle Measuring Hawke (2003) [115] Measurable 0.15 mm size <25m/s Measurable 100 mm
Systems, Airport categories)
Blvd Boulder,
Colorado, USA)
Cylindrical
Paired-pulse optical volume with
disdrometer Gr((isgsglgl)a Flslth] al Meaft(l):able 0.35-6.4mm  Measurable MeaI;TL?:able 120 mm length
(P-POD) and 22 mm
diameter
. . 0.2-13 mm in
Particle Measuring Solomon et al. (1991) Not 5
System GBPP-100S [117] Measurable . 0.2 mm Measurable Measurable 13 x 500 mm
increments
0.72-3.62 mm
Paired pul tical in 0.21 mm
! 2. g:;: (:pr e Illingworth and Not steps, Measurabl Not Measurabl
1saromete Stevens (1987) [118] Measurable <0.72 and cas € Measurable cas €
(P-POD)
>3.62 mm also
detectable
VIDIAZ spectro Donnadieu Not Not 2
Pluvio meter (1980) [119] Measurable >0.6 mm Measurable Measurable 80 cm
Picca &Trouilhet
(1964) [120], <35 mm/h 0.3-4.7 mm
Donnadieu et al. underestimates (+6%) (Larger
(1969) [121], Klaus intensity drops are
Optical spectro (1977) [122], by 12%. detected but . Not
pluviometer (OSP) Hauser et al. >35 mm/h, without 0.2-10m/s Measurable Not reported
(1984) [123], Salles &  underestimates quantification
Poesen (1999) [124]; intensity of their
Salles et al. by 38%. diameter)
(1999) [125]

3.2. Optical Disdrometers

Optical technologies (optical imaging or optical scattering) are non-intrusive rain drop
measurement techniques. These methods do not influence drop behaviour during measurement,
and have successfully resolved drop break up, and drop splatter problems experienced by other
measurement methods [126,127].
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3.2.1. Optical Imaging

Recent imaging techniques developed have involved two motion cameras (2DVD) to show
raindrop microstructure, including front and side drop contours, fall velocity, drop cant and horizontal
velocity. General rainfall parameters such as rain intensity and drop size distributions have also been
accurately measured [128]. Two motion cameras record images of drops which have been used to
accurately measure drop velocity, diameter, and shape (including oblateness, Figure 6). Measurement
errors arising from drop drift caused by the tall unit design have led to design modifications, including
the development of an indoor model [129], and one specifically designed for outdoor use [127].

4 4 ' T
2+ - &= = —
ok i ol
-2k 5 i -2 e ok oww -
(a) ‘ - (b) ‘
—4 8 , | Z ] 1 —4 — A PP PR .
-4 2 0 2 + -4 -2 a 2 4
log10(Prob. %) log{Prob. %)
32 -28  -28 -23 20 1.7 -4 _40  -38 -38 -34 -32 -30 -28

Figure 6. Drop shapes in terms of probability of (a) 4 mm and (b) 5 mm obtained from 2DVD [113].

Liu et al. [130] developed a video system capable of accurate drop shape and velocity measurement
(Figure 7). The set up consists of optical and processing units, and a unique imaging unit comprised
of a planar array charge-coupled device (CCD) sensor. The shape, size, and velocity of drops can be
accurately measured by a single CCD sensor.

Imaging unit

Particlese | Optical
Lens filter Lens

Optical unit

Light pensl [ V-----------
source

___________ {I CCD camera

Acquisition and control unit

Sampling volume

(b)

diaphragm

diaphragm
Data processing unit

Figure 7. (a) Video setup; (b) Schematic of imaging process [129].
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3.2.2. Optical Scattering

Optical scattering techniques involve the generation of a horizontal light beam which travels to a
receiver where electrical measurements are taken. Drops that pass through the light beam cause the
light to scatter. The attenuation of the light caused by each drop is converted to an electrical pulse
by the receiver which is then successfully converted to accurate drop velocity measurement [108]
(Figure 8).

Raindrops

Laser Beam

Figure 8. Schematic of optical disdrometer [108].

Since the mid-20th century, optical disdrometers have been used to successfully count and size
individual rain drops [114,119-123,131-134] (Table 4). Performance evaluations have suggested that
optical disdrometers may be limited to measuring larger drop sizes and that the rainfall intensity
measurements were inaccurate [9,124]. Although optical disdrometers have also been found to be
sensitive to wind effects [116], a modified version [118] included a paired pulse and was successfully
used in windy conditions (wind speeds up to 20 m/s). Several models are also capable of successfully
differentiating between solids and liquids, enabling use in the snow [135,136].
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Table 4. Summary of the Characteristics of Rain Droplet Measurement Techniques.

11 of 20

Stain oil . Photography JWDRD 80 & VR—WXT520 2 Dlm.e nsional OTT Parsivel Laser Optical
FPM Immersion . RD 69 . Video . .
Method . Technique . Disdrometer . Disdrometer Disdrometer
Technique Disdrometer Disdrometer
. Impact Impact . . .
Principle Manual Manual Manual Te(c)hl:;:z)ciil Displacement Acoustic TecO}Fr:(l)Cl?)l Qrfgzlﬁii){jser %zziilifser
&Y Technology Technology &Y &Y &Y
Measurability of 2.0 mm 5mm 2.1 mm Not reported 5.0-5.5 mm 5.0 mm Yes Range not 5.0-5.5 mm 8.5 mm
larger drops reported
Measurability of 0.3 mm 0.75mm  Notreported  Not reported 1.0 mm 0.8 mm Yes Range not 0.2 mm 0.125 mm
smaller drops reported
Measurability of
counting the Yes Yes Yes No No No Yes Yes Yes
number of droplets
Mea‘surablhty o.f the No No No Yes No No Yes 20m/s 11m/s
rain fall velocity
Me'asu}rab{hty of the No No No No No No No Yes up to 30 kJ No
rain kinetic energy
Meas?lretblhty .Of the No No No No No No Yes Yes Yes
rain intensity
Ability to account No No No No No No Yes No No
the oblateness
Ability to sampling
continuously for No No No No Yes Yes Yes Yes Yes
longer durations
Re51.11ence to the No No No No No No No No No
wind effects
1014 430 classes
" .
Resolution 127 classes 8 classes (32size x 32 velocity) (23 x 20)
Temporal resolution 1 min 1 min 10 s to 60 min 1 min

* The resolution is defined as the number of classes into which the drops can be classified.
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4. Characteristics of a Robust Rainfall Droplet Measurement Technique

For a realistic prediction and monitoring of droplet characteristics, a robust rainfall measurement
instrument must be able to:

e  Measure both larger (up to 10 mm) and smaller (down to 0.3 mm) drop sizes precisely;
e  Count the drop sizes accurately;

e  Measure the fall velocity precisely;

e  Measure the rainfall intensities across all expected ranges;

e  Sample continuously; and

o  Tolerate wind effects while retaining drop measurement precision.

The possibility of achieving these target characteristics using the full range of available techniques
is discussed below.

4.1. Precise Measurement of Larger Rain Drops

Because larger rain drops (>6 mm) are correlated with larger pollution wash off from urban
areas [110], their accurate measurement is essential to stormwater quality studies that utilise rainfall
simulation. Accurate manual rain drop measurement is limited to a maximum of approximately
2 mm in diameter due to splashing effects distorting results [7,17,137]. Large size drops are often
overestimated due to the drop size growth over time on absorbent paper during use of the stain
method [138]. The flour pellet method is limited to measurement of drops larger than about 0.5 mm
due to sieve size limitations [5]. The measurement of larger drops using the oil immersion method is
limited to 2.1 mm diameter due to drop splatter and amalgamation of drops [7,53,59].

Automated measurement techniques such as the impact disdrometers are also limited to
the measurement of drops less than 5.5 mm because of a reliance on calculations using the
relationship between velocity-diameter which plateaus beyond this diameter range using current
formulae [53,113,139]. Although the two dimensional video and laser particle methods claim to have
the capacity to precisely measure drop sizes as large as 10 mm, peer reviewed studies to confirm this
are yet to be published.

4.2. Precise Measurement of Smaller Rain Drops

The accurate measurement of small raindrops is challenging using both manual and automated
techniques. Manual raindrop measurement techniques are restricted to precise measurement of drops
of greater than 0.3 mm diameter [15,33,44,59,61,66,140]. Automated measurement techniques are also
restricted to measurement of drops greater than 1 mm in size [141].

Several studies reported difficulties in relation to impact disdrometers and the measurement
of smaller raindrop diameters [85,134,142,143]. Intense rainfall causes splashing and vibrations is
also reported to distort the measurement of smaller drop sizes [142,144,145]. Measurement accuracy
difficulties caused by laser technology recovery time (dead time error), and noise distortion that
affect the measurement of smaller drop sizes are known to restrict precise measurement to 1 mm
effects [145-148].

Acoustic disdrometers have limitations arising from the duration of the decaying waveform
which when measured leads to distorted results [94,149]. Optical disdrometers claim to measure
smaller drops with more precision, however, the reliability of these measurements remains unreported.

4.3. Accurate Measurement of the Number of Rain drops

Accurate measurement of the number of drops is critical for the generation of a drop size
distribution for any given rainfall event. This is the most widely used characteristic used to describe
rainfall [150,151]. Manual measurement techniques have a good capacity to accurately count drop
numbers over short durations. Automated disdrometers such as laser precipitation monitors have the
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capacity to accurately sample over the longer durations required by rainfall sampling studies. However,
limitations on the measurement accuracy of drops below 0.2 mm remain due to drop splatter [152]
and background noise [112]. Optical disdrometers claim to accurately count drop numbers, however,
the reliability of these measurements has also not been verified or reported.

4.4. Precise Measurement of Rain Drop Velocity

Manual techniques are not capable of measuring drop velocity with an adequate level of
precision [153]. Although limited to static measurements, and defined by frame capture rate per
second, photographic techniques are capable of precise drop velocity measurement. Video technique
measurement (2DVD), laser precipitation monitors, and optical spectral pluviometers can also provide
precise, continuous drop velocity measurements.

4.5. Ability to Measure a Wide Range of Rainfall Intensities

Because of the particular features of each technique, none of the manual rain drop measurement
techniques, nor the impact disdrometer methods are capable of measuring rainfall intensity reliably.
Although overestimation of higher rainfall intensities (>20 mm/h) is common, optical laser and video
(2DVD) measurement of rainfall intensity are generally accepted as more accurate [154]. Due to the
limitations regarding accurate measurement of high rainfall intensities, it is recommended that optical
laser techniques are used in combination with a conventional pluviometer to enable measurements to
be verified and to ensure accurate rain intensity measurement.

4.6. Precise Measurement of Rain Drop Shape (Oblateness)

Initially spherical due to surface tension forces, with increasing size, fall velocity and drag forces,
rain drops tend to flatten out at the base, and sometimes develop a concave shape (Figure 6). The degree
of oblateness may affect the kinetic energy of the drop, and thus the potential wash-off process caused
by drop impact. Efforts to precisely measure the oblateness of larger drops have been limited, and it
has been suggested that as yet, it may not be accurately described [155].

4.7. Capacity to Accurately Sample Rainfall over a Long Duration

Restricted sampling durations are synonymous with manual raindrop measurement
techniques [156,157]. Automated disdrometers (laser, optical, acoustic, and impact) are known to
measure rain drops in real time with virtually no time duration limitation. However, as discussed
above, the accuracy of these devices can be limited.

4.8. Capacity to Perform Precise Rain Drop Measurement during Adverse wind Conditions

Because sampling time is usually quite brief, all of the manual measurement techniques are known
to be accurate (within their individual output limitations) during windy conditions. Air movement and
wind noise around automated samplers (disdrometers, video, and acoustic) are known to influence
rain drop trajectory and sound filtering, which have been shown to lead to inaccuracies in drop size
measurements in previous studies [86,152,158]. Wind effects were reduced to an acceptable level in one
previous study by tilting an acoustic disdrometer parallel to wind direction [114]. However, this does
not offer a reliable or permanent solution.

5. Summary and Conclusion

Every rainfall measurement technique has strengths and weaknesses and these generally result in
some limitation in the accuracy of rain drop characteristic measurements. The precise requirements
of any proposed study will determine the most appropriate method or combination of methods that
should be used to produce the most suitable and accurate raindrop measurements. This is particularly
the case for stormwater management purposes, particularly in relation to understanding how different
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raindrop characteristics affect pollution wash off processes and how this influences stormwater runoff
quality from urban areas.
The main findings of this review have been:

e The use of manual rain drop measurement techniques have been successfully used in studies
involving drop size measurements. However, these methods are generally not suitable for the
measurement of smaller and larger drop sizes outside the normal range (0.3-6 mm), they are not
capable of precise drop counts, they are not suitable for continuous rainfall monitoring studies,
and they are less effective during intense and windy storm conditions. In addition, manual rain
drop measurement techniques cannot be used to measure or report drop velocity.

e Automated (impact and optical) disdrometers are generally able to sample continuously
over long durations. However, inaccuracies in drop size and velocity measurements are
likely during heavy rain. It is recommended that optical disdrometers should be used in
combination with a conventional rain gauge to enable validation of results and ensure precise
rain intensity measurement.

The common limitations of all the rain drop measurement techniques includes their inability
to precisely measure both the smaller, and the larger drop sizes outside the normal size range,
their inaccuracy during high intensity rainfall events, and their reduced measurement precision during
windy conditions. With improvements in technology occurring on a nearly daily basis, it is anticipated
that the accuracy and precision of automated rainfall measurement techniques will significantly
improve in the near future. This will enable more precise measurements to be undertaken and result
in a much better understanding of real rainfall characteristics.
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