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Abstract: Industrial tomatoes are cultivated in about 4000 ha of the Pinios river basin (central Greece),
providing significant income to the farmers. In this study, the water footprint (WF) of industrial
tomatoes between planting and harvest was estimated in 24 different farms for three consecutive
years. The selected farms were representative of the main agro-climatic zones and soil textural
classes within the river basin. Green, blue and grey WF calculations were based on datasets of the
experimental plots for each farm, including irrigation water volume, meteorological, soil, and crop
yield data. The results showed that the WF of tomatoes ranged from 37 to 131 m3 water/ton tomatoes
with an average of 61 m3/ton. The WF variation depended mainly on crop yield, local agro-climatic
and soil conditions. The green, blue, and grey WF components averaged 13, 27 and 21 m3/ton,
respectively. The results reveal the importance of WF in understanding how tomato production
relates to the sustainable use of freshwater and pollution at local level.
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1. Introduction

Agriculture is the most significant water user in the European Union, consuming up to 80% of
the total water in some parts of the Mediterranean region [1]. In Greece, irrigation of crops accounts
for almost all agricultural water use and in some cases, has reached unsustainable levels [2]. In the
catchment of the Pinios River, which is the most important region of Greek agricultural production,
agriculture represents 90%–95% of the annual water demand of the area [3]. Irrigated land (200,000 ha)
covers half of the total cultivated area and corresponds to about 18% of irrigated land in the country.
Irrigation water is derived mostly from groundwater sources which have been over-exploited for
many years. This has led to a lower groundwater table, costly pumping from bigger depths and
enhanced saline water intrusion in coastal areas [4]. Cotton is the main crop of the region, covering
~150,000 ha, and is followed by corn, alfalfa, and tomatoes. Recently, farmers have become more
sensitive to environmental problems being caused by agricultural practices including water scarcity
issues. Due to the high economic value of industrial tomatoes, farmers are interested in adopting
progressive production systems, such as the integrated management system promoted by the Greek
Ministry of Rural Development and Food. Industrial tomatoes are an important agricultural crop in
Greece covering an area of ~15,000 ha that corresponds to a production of 1 million tones/year. In the
Pinios River basin, industrial tomatoes cover an area of ~4000 ha with an annual irrigation demand of
~24 billion m3 of irrigation water.
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The water footprint (WF) is one of the analytical tools employed in order to understand the impact
of tomato production on the sustainable use of freshwater and pollution. The WF is an indicator
of freshwater use that examines not only the direct water use of a consumer or producer, but also
the indirect water use. In agricultural production, the WF can be regarded as a comprehensive
indicator of fresh water resources appropriation next to the traditional and restricted measure of water
withdrawal. WF could be used to identify water-related hot-spots and to guide actions for better water
management, including its use and allocation by supporting decisions on different alternative processes
and products [5–9]. The WF of a product is the volume of freshwater used to produce the product
measured over the full supply chain [5]. It is a multidimensional indicator of water consumption
volumes by source and polluted volumes by type of pollution; all components of the total WF are
specified geographically and temporally. The blue water footprint (WFblue) refers to consumption of
surface and groundwater resources along the supply chain of a product. The green water footprint
(WFgreen) refers to consumption of rainwater resources in so far as it does not become run-off. The grey
water footprint (WFgrey) refers to pollution and is defined as the volume of freshwater that is required
to assimilate the load of pollutants given natural background concentrations and existing ambient
water quality standards. As a tool, a water footprint assessment provides insight; it does not tell people
“what to do”, rather it helps people to understand what can be done.

Estimations of tomato WF products across the life cycle vary depending on the determination
methods and specific characteristics of each study. According to Life Cycle Assessment (LCA)-based
approaches, the WFblue of the tomato supply chain in Australia ranges from 5 to 50 litres (L) per
kilogram (kg) of fresh product [10], while the freshwater use of tomatoes produced in unheated
greenhouses in Morocco and consumed in France equals 28 L of water per kg of tomatoes [11].
Although many WF estimations refer to the full supply chain, most of the water use for tomato
products occurred in the agricultural stage of the life cycle [12]. In the Mediterranean region, tomato
cultivation occurs in the hot and dry summer conditions and WF values have significant differences
among different regions and countries. In Italy, for example, WF values have been reported to vary from
37 to 137 m3/ton for WFblue, from 26 to 51 m3/ton for WFgreen and from 19 to 31 m3/ton for WFgrey [13].
In Spain, the percentages of WF components to the total WF reported by Chico et al. [14] vary from 0.3%
to 3% for WFgreen, from 4% to 68% for WFblue and from 12% to 68% for WFgrey. However, WF reliability
and robustness is affected by the lack of proper data that can bias the results [15–17] and increase
uncertainty. In addition, only 46% of studies relevant to agricultural production include WFgrey [18].
In many of those studies, the quantification of fertilizer impact on fresh water pollution relies on
simplified assumptions, i.e., they use a constant fraction of 10% of the N application rate which is
subject to leaching and run-off [19,20], or 15% in the case of Manzardo et al. [21]. This approach,
however, inherently implies that reduction of fertilizer inputs is the only management option to
minimize pollution. The application of high quantities of nitrogen, without taking into account
between-farm differences in soil properties and the period of greater nitrogen demand, leads to
decrease of nitrogen use efficiency (NUE). The tomato crop generally does not exceed 50% in NUE
and generates a substantial increase of mineral nitrogen remaining in the soil that could be subject to
leaching [22].

Nowadays, the focus at field level is to decrease the field consumptive water footprint [5],
increasing thus the water productivity [23,24].

Studies on WF estimation of industrial tomato cultivation in Greece are missing. The purpose of
the present study was to estimate the WF of industrial tomatoes at the field level in representative areas
of Thessaly plain and to explore possible correlations with individual soil properties that regulate soil
water retention capacity. Another objective was to compare the WF values obtained by the estimation
of WFgrey component by using the constant leaching fraction approach (10% of applied fertilizer N)
with the technique of soil samplings for the determinations of real N losses.
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2. Material and Methods

The study area (10,600 km2) was in the Thessaly plain of central Greece at the Pinios river basin
(Figure 1). The catchment is the most extensive agricultural area in Greece with fertile soils but
very dry climate during the summer. The unfavorable climatic conditions adversely affect both the
natural vegetation and the agricultural production resulting in irrigation cutbacks; over-exploitation of
groundwater and significant losses of crop yields [25].
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Figure 1. Study area of the research.

For the research needs, 24 farms were selected in representative flat areas cultivated with industrial
tomatoes in 2013, 2014 and 2015 growing seasons. Some properties of the soils under study, cultivated
following the protocol of the integrated management system [26], are presented in Table 1. The soils
are classified as Entisols, Inceptisols, and Vertisols. Clay content ranged widely from 13% to 66%,
pH was neutral to slightly alkaline (6.9–8.4) and above the optimum recommended level of 5.5–6.8 for
tomato cultivation, electrical conductivity (EC) ranged from 132 to 549 µS/cm, the amount of calcium
carbonate was small (0%–7.9%) and organic matter content was very low to medium (0.7%–2.4%) [27].

The climate is continental at the western and central side of Thessaly and Mediterranean at
the eastern side. Winters are cold and wet and summers are hot and dry with a large temperature
difference between the two seasons. Mean annual precipitation over the Thessaly region is about
700 mm and it is distributed unevenly in space and time. The mean annual precipitation varies from
about 400 mm in the central plain area to more than 1850 mm at the western mountain peaks. Generally,
rainfall is rare from June to August. The mountain areas receive significant amounts of snow during
the winter months. The mean annual temperature and mean monthly rainfall of the broader area for
the period 2013–2015 are presented in Figure 2.
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Table 1. Selected soil properties of the experimental fields.

Farms
Soil Properties *

Sand (%) Silt (%) Clay (%) pH EC (µS/cm) CaCO3 (%) SOM ** (%) WHC (%)

Growing season 2013

1 71 16 13 6.9 289 0.0 2.0 48.78
2 39 27 34 8.0 437 7.7 2.4 63.92
3 39 26 35 7.9 426 4.0 2.4 64.53
4 45 36 19 7.8 177 0.2 0.7 45.41
5 12 35 23 8.0 328 9.0 1.0 49.51
6 33 44 23 7.6 132 0.9 0.8 48.42
7 33 40 27 8.4 408 3.1 1.6 55.41
8 33 14 53 8.1 388 4.0 1.7 71.83
9 41 33 26 8.0 389 0.9 1.9 56.59

Growing season 2014

10 40 39 21 7.5 130 1.8 1.0 48.28
11 18 16 66 8.1 549 2.2 1.8 80.40
12 60 23 17 8.5 143 7.9 1.0 45.81
13 43 21 36 8.1 209 2.2 2.2 64.06
14 17 33 50 8.1 432 3.5 2.4 73.79
15 71 16 13 6.9 289 0.0 2.0 48.78

Growing season 2015

16 53 18 29 8.4 319 3.7 1.0 53.27
17 26 32 41 7.6 377 0.3 1.4 62.79
18 46 25 29 8.2 310 0.9 1.2 54.30
19 35 26 39 7.4 465 0.7 1.5 60.76
20 20 44 36 7.1 346 0.9 1.5 60.76
21 18 36 46 8.0 397 9.7 1.6 67.48
22 21 23 56 8.3 482 2.9 1.8 74.41
23 14 26 60 8.1 462 1.1 1.6 75.97
24 22 19 59 8.1 585 1.9 1.6 74.99

Notes: * Determined according to procedures described by Page et al. [28] (1982); ** SOM: soil organic matter;
WHC: Water holding Capacity.
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Green, blue and grey WF of 1000 kg of tomato fruit produced in the three growing periods were
determined by the method described by Hoekstra et al. [5]. The study focuses on the production stage
from sowing to harvest of the integrated management system. The total water footprint during the
growing season in water volume per mass (m3/ton) is calculated as the sum of the green, blue and
grey components:

WFproc = WFproc, green + WFproc, blue + WFproc, grey (volume/mass) (1)
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The green and blue component of the water footprint (WFproc, green, m3/ton) was calculated as
the green and blue component in crop water use (CWUgreen, m3/ha, CWUblue, m3/ha) divided by the
tomato yield (Y, ton/ha). The green and blue component (WFproc, m3/ton) are calculated as follows:

WFgreen = CWUgreen/Y (m3/ton) (2)

WFblue = CWUblue/Y (m3/ton) (3)

The green and blue components of crop water use (CWU, m3/ha) were calculated by accumulation
of daily evapotranspiration (ET, mm/day) over the whole growing season:

CWUgreen = 10 ×
d=harvest

∑
d=1

ETgreen (volume/area) (4)

CWUblue = 10 ×
d=harvest

∑
d=1

ETblue (volume/area) (5)

ETgreen represents green water evapotranspiration and ETblue blue water evapotranspiration.
The factor 10 was used to convert water depths in millimeters into water volumes per land surface in
m3/ha. The summation is done over the period from the day of planting (day 1) to the day of harvest.
The green and blue water evapotranspiration has been estimated by using the CROPWAT model
developed by the Food and Agriculture Organization of the United Nations [29] which is based on the
method described by Allen et al. [30]. Within this model, the ‘irrigation schedule option’ was applied
that includes a dynamic soil water balance and keeps track of the soil moisture content over time.
The actual evapotranspiration (Eta) during the entire growing season is partly fulfilled by the rain and
partly by irrigation. The blue water evapotranspiration (ETblue) is equal to the ‘total net irrigation’ as
specified in the model. The green water evapotranspiration (ETgreen) of the tomato crop is equal to the
difference between the total actual evapotranspiration and the net irrigation. The calculations have
been done using climatic data from meteorological stations located near the experimental fields and
irrigation volumes data from hydrometers established in each field. Tomato fruits were harvested by
hand in three different plots of each farm and the yield (kg tomatoes/ha) was estimated just before
harvest (between the middle of August and the end of September). Tomato samples were transferred
to the laboratory and air dried at 65 ◦C to determine water content.

The grey water footprint of the cultivation was estimated as the volume of freshwater that is
required to assimilate the load of pollutants based on existing ambient water quality standards.

As it is generally the case, the production of tomato concerns more than one form of pollution.
In this study, the grey water footprint was estimated only for nitrogen (N). The total volume of water
required to assimilate a ton of N was calculated considering the surplus N negligible in the selected
farms. The natural concentration of N in the receiving water body was assumed to be negligible
whereas the maximum allowable concentration in the ambient water system was considered 50 mg
NO3-/L (EU Nitrates Directive, 91/676/EEC). This value is very close to the limit for drinking water
set by the Environmental Protection Agency [31], i.e., 10 mgN/L equating to ~45 mg NO3/L. In this
study, the standard of 10 mg/L was used to calculate the water volume required for the dilution of the
N loads to acceptable levels.

The final equation that calculates the grey WF was:

WFgrey =
Excess N / (Cmax − Cnat)

Y
(6)

where:

� WFgrey, the grey WF in m3/ton,
� Excess N, the quantity of N that escapes from the tomato rhizosphere in kg/ha,
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� Cmax, the maximum allowable N concentration,
� Cnat, the N concentration of the environment in kg/m3 and,
� Y, the crop yield in ton/ha.

Nitrogen losses were estimated by two methods: (a) by assuming that 10% of the total nitrogen
applied was lost [17] for the 24 farms studied; and (b) at farm level by NO3-N determination through
soil analysis in the effective rooting depth (60–90 cm). The second method was used for only the
nine farms in 2015 in order to compare the estimated values of N losses to the constant leaching
fraction approach.

Different methods have been employed to assess N leaching in unsaturated soils [32–35]. The soil
core method used in this study is simple, relatively inexpensive, widely used and applicable to most
soils [36]. The amount of nitrate-N that remains below root zone at 60–90 cm depth after tomato
harvest was estimated in each experimental field. Potential nitrate losses (kg·N/ha) were calculated
as the difference in nitrate-N concentration between harvest and before N fertilization in the same
depth of 60–90 cm. It is assumed that the surplus N below the root zone will reach the aquifer by
leaching during next fall and winter rainfall. Soil analysis was performed according to Page et al. [11].
Statistical analysis was performed by softwear package SPSS.

3. Results and Discussion

The estimated WF and its components, as estimated by the constant leaching fraction of 10% N
applied, are presented in Table 2. Total WF for industrial tomato cultivations ranged widely from about
37 to 131 m3 water/ton with an average of 61 m3/ton tomato. WFgreen ranged from 2 to 50 m3/ton
with an average 13 m3/ton and WFblue from 6 to 68 m3/ton with an average 27 m3/ton. WFgrey ranged
from 10.2 to 42.7 m3/ton with an average 21 m3/ton.

Table 2. Tomato yield, irrigation volumes and values of estimated water footprint components.

Fields Yield
(ton/ha)

Irrigation
(mm)

WFgreen
(m3/ton)

WFblue
(m3/ton)

WFgrey
(m3/ton)

WF
(m3/ton)

1 101.07 200.91 6.99 19.79 23.29 50.07
2 118.40 450.00 3.14 36.67 23.66 63.47
3 152.80 503.50 5.77 27.08 10.24 43.09
4 171.02 590.70 1.84 21.56 13.40 36.80
5 170.67 310.70 9.53 18.16 12.81 40.50
6 108.80 376.90 10.13 34.65 14.38 59.16
7 178.72 325.00 6.02 17.84 14.55 38.41
8 66.67 290.00 29.95 43.50 24.15 97.60
9 174.13 388.00 6.62 19.21 12.93 38.76
10 77.86 378.53 6.37 42.02 37.25 85.64
11 144.33 182.15 3.31 38.69 20.39 62.39
12 156.03 316.90 8.82 24.07 16.92 49.81
13 194.94 212.02 2.10 24.58 11.98 38.66
14 141.28 268.40 13.08 24.94 24.60 62.62
15 143.74 500.00 9.18 31.39 18.73 59.30
16 150.00 91.54 19.36 6.10 17.33 42.79
17 163.00 132.00 17.88 7.81 15.89 41.58
18 120.00 431.01 12.03 27.14 24.13 63.30
19 90.00 123.03 28.17 10.70 24.77 63.64
20 52.00 200.54 49.71 38.46 42.65 130.83
21 85.00 300.00 21.69 35.29 20.24 77.22
22 125.00 126.72 17.13 8.86 13.73 39.71
23 120.00 396.09 6.49 28.70 25.83 61.02
24 60.00 420.20 11.38 68.23 41.22 120.83
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WF values of this study are comparable to those reported in other studies carried out in the
Mediterranean region. For example, Chapagain and Orr [37] reported 14 and 60 m3/ton and Aldaya
and Llamas [38] reported 6 and 113 m3/ton for WFgreen and WFblue, respectively, in Spain. In Italy,
Aldaya et al. [39] reported 35 and 60 m3/ton for green and blue WF, respectively. Proportionally,
Chico et al. [14] estimated the WFgrey between 10 and 68 m3/ton with an average of 35 m3/ton for
industrial tomatoes cultivated in different regions of Spain while Aldaya et al. [39] estimated the
WFgrey between 19 and 31 m3/ton in Italy. Differences in estimated WF values of tomato cultivation
among studies reflect the different agro-climatic conditions, the overall management practices that
affect yields and the assumptions adopted by the models used.

WF values estimated in this study are significantly different from those reported by Mekonmen
and Hoekstra [19] as global averages for WFtotal (214 m3/ton), WFgreen (108 m3/ton), WFblue
(63 m3/ton), and WFgrey (43 m3/ton). The WFgreen component of our study presents the most
significant deviation from the global average, indicating the different growing conditions of tomato
cultivation in Mediterranean dry and hot summer where rainfall is rare.

WF values and the contribution of the green, blue and grey components to total WF varied
significantly between fields (Table 3, Figure 3). Highest variability was found in the WFgreen component
that ranged from 5% to 45.2%. WFblue ranged from 14.3% to 63.6% and WFgrey from 23.8% to 46.5% in
regard to WFtotal.

Table 3. Contribution of green, blue and grey footprints to total WF of industrial tomatoes, % to the
total WF.

Farms WFgreen %WF WFblue %WF WFgrey %WF

1 14.0 39.5 46.5
2 5.0 57.8 37.3
3 13.4 62.8 23.8
4 5.0 58.6 36.4
5 23.5 44.8 31.6
6 17.1 58.6 24.3
7 15.7 46.4 37.9
8 30.7 44.6 24.7
9 17.1 49.6 33.4

10 7.4 49.1 43.5
11 5.3 62.0 32.7
12 17.7 48.3 34.0
13 5.4 63.6 31.0
14 20.9 39.8 39.3
15 15.5 52.9 31.6
16 45.2 14.3 40.5
17 43.0 18.8 38.2
18 19.0 42.9 38.1
19 44.3 16.8 38.9
20 38.0 29.4 32.6
21 28.1 45.7 26.2
22 43.1 22.3 34.6
23 10.6 47.0 42.3
24 9.4 56.5 34.1

Average 20.6 44.6 34.7
CV % 65.41 32.93 17.34

The high variability of WFblue among different farms reveals the significant potential for
improving the efficiency of water management. The WFgrey had the lowest variability that could be
attributed to the similar N fertilizer management of industrial tomatoes in the Pinios River Basin,
although many farmers use an empirical and inefficient way of N management. The method of WFgrey

estimation with the 10% constant fraction, however, does not include field specific soil properties and
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N losses potential and it is anticipated to lower the variability between different fields. Nonetheless,
the high WFgrey values of the study imply a pressure to water resources that is related to N pollution
as was found in other relevant studies for tomato cultivations [15,40]. The use of N-based fertilizer in
tomato production was found to be particularly significant in terms of grey water [7].
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Between farms, differences in WF values are attributed to the combined effects of soil type, yield,
climate parameters (mainly precipitation and atmospheric evapotraspiration demand) and irrigation
management practices followed by each one farmer. This combined effect is clearly shown in the
correlation matrix of WF with yield, soil properties related to water retention and irrigation volumes
(Table 4). Apart from the correlation with yield, and irrigation volume, WF values were not correlated
to soil properties. This indicates the multidimensional character of WF as an index for sustainable
water management in crop production. Clay content showed a better (yet not significant) correlation
with WFblue relative to WFgreen.

More research is needed on the effect of different management practices on WF values.
Chukala et al. [41], for example, found an 8% to 28% reduction of green and blue WF in tomato
cultivation in regards to combinations of different irrigation management and use of mulching at
arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively.
Any crop management that increases irrigation use efficiency can decrease WF values. In the Pinios
river basin, site specific management that reduced water use by 5%–35%, without affecting yields in
cotton as reported by Evangelou and Tsadilas [42] could be an alternative crop management to improve
WF in agricultural production. The water footprint indicator, however, should be used together with
other irrigation management indicators as a diagnostic tool to determine the efficiency of an irrigated
agricultural system.

Water footprint in this study refers to “virtual water” used for the cultivation of tomato and does
not include the incorporated water in tomato fruits. The average percentage of water concentration
in tomato fruits harvested from the experimental fields amounts to 94.3% or 0.94 m3/ton of water
incorporated in tomato fruits without significant differences between fields. This value represents
a percentage ranging from 1.5% to 4.0% of WFtotal associated with the evapotranspirated water in the
tomato cultivation during the entire growing season.
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Table 4. Pearson Correlations of Water Footprint component with yield, irrigation volumes and selected soil properties.

Variables Yield Sand Silt Clay SOM WHC Irrigation WFgreen WFblue WFgrey

Sand 0.199
Silt 0.005 −0.367

Clay −0.280 −0.734 ** −0.248
SOM 0.047 −0.021 −0.343 0.327
WHC −0.236 −0.656 ** −0.308 0.971 ** 0.545 **

Irrigation 0.076 0.215 0.186 −0.294 −0.032 −0.269
WFgreen −0.603 ** −0.282 0.136 0.205 −0.087 0.159 −0.471 *
WFblue −0.598 ** −0.170 −0.043 0.302 0.090 0.291 0.427 * 0.025
WFgrey −0.815 ** −0.200 0.053 0.251 −0.025 0.216 −0.031 0.465 * 0.645 **
WFtotal −0.870 ** −0.284 0.054 0.340 0.003 0.303 0.019 0.607 ** 0.780 ** 0.900 **

Notes: ** Significant correlation for p < 0.01; * Significant correlation for p < 0.05.
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Table 5 presents the amounts of nitrogen losses and the resulted WFgrey according to both
estimations used for the nine farms of 2015 growing period i.e., the constant leaching fraction approach
and the determination of N losses by soil samplings at farm level.

Table 5. N losses and resulting WFgrey according to the method used for N losses estimation.

Farms N Losses 10% of Applied
Fertilizer, kg/ha

N Losses Soil
Samplings, kg/ha

WFgrey 10% of Applied
Fertilizer, m3/ton

WFgrey Soil
Samplings, m3/ton

1 26.0 21.28 17.33 28.37
2 25.9 27.58 15.89 4.39
3 28.9 48.02 24.13 17.73
4 22.2 1.12 24.77 21.12
5 22.1 7.84 42.65 11.20
6 17.2 7.42 20.24 32.45
7 17.1 9.10 13.73 33.58
8 31.0 42.56 25.83 40.38
9 24.7 55.72 41.22 15.17

CV % 18.7 77.2 39.1 48.9

The constant leaching fraction approach, overestimated N losses by 18%–64% in five farms
compared to the soil N losses determination through the soil samplings approach. In contrast,
by the constant leaching fraction approach, N losses were underestimated by 6%–125% in four farms,
indicating a significant uncertainty of the WFgrey determination when specific field characteristics are
disregarded. The soil sampling method resulted in a 25% higher coefficient of variation (CV %) in N
losses compared to the constant leaching fraction approach (Table 5). Besides the amount of nitrogen
fertilizer applied, N losses at field level were also affected by all other N sources such as N content
of irrigation water, soil N at the beginning of the crop cycle, and soil N mineralized during the crop
period. Castellanos et al. [43] reported that if only the amount of N fertilizer is considered, WFgrey is
underestimated in some cases and overestimated in others. Therefore, more research is needed for the
development of a more precise method of determination of N losses to be involved in the estimation of
the WFgrey.

The estimations of the two approaches, however, were strongly correlated (r = 0.573, p < 0.01).
Differences in N losses estimations by the two approaches resulted in different WFgrey values and

subsequently in different total WF values. Higher WF values were estimated in five of the nine farms,
when the constant leaching fraction approach was used (Figure 4). It is widely accepted that the WFgrey

in agricultural production systems must be calculated by using a more detailed methodology which
should consider site-specific parameters such as daily precipitation, field slope, soil characteristics
(e.g., texture, carbon content) and run-off [18].
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The overall correlations of total WF values obtained by calculating WFgrey by the different
approaches, however, was strong (R2 = 0.73 ***, Figure 5) suggesting that in the case that N losses
cannot be estimated by measurements in the field, the constant leaching fraction approach of 10%
losses of total N applied may give a satisfactory estimation of the total WF for industrial tomato
cultivations in the Pinios river basin. Estimation of N losses for each field with soil samplings however,
is more precise, resulting in more realistic WF values.
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4. Conclusions

Under the integrated management system protocol, the total water footprint of industrial tomatoes
produced in the Pinios river basin of central Greece is about 60 L/kg tomato and ranges from 37 to
130 L/kg. The average values of the different WF components were 20.6% green, 44.6% blue and 34.7%
grey. Still, these averages vary greatly depending on soil properties, local climatic conditions and water
management systems although no significant correlation was found with any individual soil property
related to water retention. The high variability of WF values highlights the importance of considering
water issues at the local scale level. Soil-based assessment of N losses at the farm level leads to a more
precise estimation of WF. When contextualized in space and time, the water footprint can identify best
practices for an integrated water resource management with economic and environmental benefits.
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