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Abstract: Managed aquifer recharge (MAR) is the purposeful recharge of an aquifer for later
recovery or environmental benefits and represents a valuable method for sustainable water resources
management. Models can be helpful tools for the assessment of MAR systems. This review
encompasses a survey and an analysis of case studies which apply flow and transport models
to evaluate MAR. The observed modeling objectives include the planning or optimization of MAR
schemes as well as the identification and quantification of geochemical processes during injection,
storage and recovery. The water recovery efficiency and the impact of the injected water on the
ambient groundwater are further objectives investigated in the reviewed studies. These objectives
are mainly solved by using groundwater flow models. Unsaturated flow models, solute transport
models, reactive geochemical models as well as water balance models are also frequently applied and
often coupled. As each planning step to setup a new MAR facility requires cost and time investment,
modeling is used to minimize hazard risks and assess possible constraints of the system such as low
recovery efficiency, clogging and geochemical processes.
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1. Introduction

The rising water demand worldwide, caused by climate change, urbanization and population
growth, poses increasing stress on groundwater as a resource [1,2]. Especially in arid or semi-arid
regions the natural recharge is often not enough to meet the local water demand leading to
over-exploitation of the groundwater resource and as a consequence to decreasing water tables
and increasing salinization [3]. The storage of water in surface reservoirs is widespread but it
has several disadvantages such as high evaporation losses, high land area requirements, sediment
accumulation, the possibility of structural failure and high vulnerability to contamination [1,4,5].
An alternative to surface storage is storing excess water underground during periods of low demand
or high availability to use it later in times of shortages [4,6,7]. In contrast to other recharge types
such as natural or incidental recharge, managed aquifer recharge (MAR) is the intentional recharge
of water into aquifers for future recovery or environmental benefits [1,3]. Incidental or unintentional
recharge implies recharging the aquifer coincidentally by undertaking activities not directly designed
to enhance recharge such as excess irrigation or leakage from water systems [1,8]. The main objective
of MAR is to increase groundwater storage to overcome the temporal imbalance between local water
demand and availability thus securing drinking or irrigation water supply at any time of the year [1,3].
Other objectives include the reduction of saltwater intrusion in coastal aquifers, prevention of land
subsidence, improvement of the source water quality through Soil Aquifer Treatment (SAT) and
avoidance of direct potable reuse of treated wastewater by an underground passage [1,3]. Water
sources include surface water from rivers or lakes, stormwater runoff and reclaimed water [1,9,10].
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Before this water is recharged to an aquifer a pretreatment might be necessary depending on the source
water quality, the contaminant attenuation through the soil passage, the native groundwater quality
and the intended use of the recovered water.

Subject to the local conditions, a wide range of MAR methods can be used to recharge an
aquifer [8]. Usually five main MAR techniques are distinguished: well, shaft and borehole recharge;
spreading methods; induced bank filtration; in-channel modifications; and rainwater and runoff
harvesting [11,12] (Table 1). Recharge by well, shaft and borehole includes MAR methods that recharge
directly into the aquifer which is often overlain by low permeability surface structures [11]. Spreading
methods are applied at ground level where the water is infiltrated through permeable surface into the
unsaturated zone. Induced bank filtration covers infiltration of surface water through river, lake or
dune sediments caused by well pumping [8,11]. In-channel modifications are obstructions built directly
in the stream network to temporarily store stormwater and enhance infiltration into river sediments [8].
Rainwater and runoff harvesting comprises the gathering and infiltration of surface or roof runoff by
barriers, bunds and trenches [9,11]. It should not be confused with other MAR methods which often
use stormwater as a water source. For detailed descriptions of the aforementioned MAR techniques
see Dillon [3], Gale [8] or Hannappel et al. [11]. The classification of MAR techniques in this paper is
based on the classification system developed by the International Groundwater Resources Assessment
Centre [13], with the exception that ASR and ASTR are joint. In addition to these established MAR
methods, there is a rising interest in new strategies for water banking which includes using agricultural
land for surface spreading methods outside the irrigation season [14].

Table 1. Managed Aquifer Recharge (MAR) classification system stating five main methods and
associated specific MAR methods, adapted from International Groundwater Resources Assessment
Centre [13].

Main MAR Methods Specific MAR Methods

Techniques referring
primarily to getting

water infiltrated

Well, shaft and
borehole recharge

Aquifer Storage and Recovery (ASR)/Aquifer
Storage, Transfer and Recovery (ASTR)

Shallow well/shaft/pit infiltration

Spreading methods

Infiltration ponds & basins
Flooding

Ditch, furrow, drains
Irrigation

Induced bank infiltration
River/lake bank filtration

Dune filtration

Techniques referring
primarily to intercepting

the water

In-channel modifications

Recharge dams
Subsurface dams

Sand dams
Channel spreading

Runoff harvesting
Rooftop rainwater harvesting

Barriers and bunds
Trenches

Despite the apparent simplicity of MAR approaches and their large implementation
worldwide [15], the complexity of site-specific hydrogeological conditions and the processes occurring
at various scales combined with different objectives require a very good understanding of the system’s
response to the proposed measures. The characterization of the system including heterogeneities
such as preferential flow paths is best investigated by field experiments, e.g., [16,17]. Laboratory
experiments are used to investigate occurring processes in detail but are limited in representing
boundary conditions and scale-related issues may occur. On the other hand, modeling can be used
for scenario analysis and future predictions to compare different MAR techniques and operational
schemes. Despite adaptive approaches for example using trial and error, modeling is a valuable tool
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to estimate the feasibility of a MAR method at a given location. Given its flexibility, a model-based
preliminary assessment is often recommended prior to pilot field experiments [17,18]. Even though
building up a calibrated model takes up time and requires a detailed data set, the variety of possible
applications such as scenario and sensitivity analyses can make the efforts worthwhile. However,
modeling does not always lead to success and despite that fact, failures are hardly ever published.
Some countries including Australia and the USA implemented guidelines that specifically regulate the
requirements for risk assessment of new MAR facilities and advise the application of modeling during
the planning phase [19,20].

So far, only Kloppmann et al. [18] published a summary of the application of groundwater models
for the estimation and optimization of the performance of MAR schemes. They focus on different
planning phases of a MAR system including site selection, design and operation and give an overview
of data requirements and model selection.

Nevertheless, no review paper is published yet which analyzes model applications specifically
focusing on each MAR method and comprises past areas of application and the choice of modeling
software for each technique. Focus is not only restricted to groundwater models but also regards
analytical and numerical flow and transport models considering, besides groundwater, also other
components of the hydrological cycle. For this reason, case studies were collected from reviewed
articles, scientific reports and conference proceedings, all written in English language. The search
for publications was carried out via search engines and online databases but also reference lists of
already located publications were screened. The search was restricted to MAR and artificial recharge.
Only flow and transport models were included. Despite the scrupulous search, it was difficult to track
all publications in the field and further relevant modeling studies likely exist. Data was analyzed
regarding the evaluated main and specific MAR techniques, the model tools applied and the modeling
objectives. Furthermore, the country of the field site or whether the publication covers a laboratory
experiment or theoretical analysis was noted. The analysis helps to identify general trends in the
utilization of models for MAR assessment. The overview on the presented software tools and their
classification by model and MAR type can further ease the search of a suitable computer code and
can thus be used as a general reference. Furthermore, modeling studies were reviewed regarding the
different MAR methods to allow a more detailed look into modeling objectives and applications in
the various fields of MAR. Elaborative information is given on what kind of model approaches and
software tools can be applied during the planning stage, the first pilot experiments or the optimization
of existing facilities depending on the site-specific issues. The review covers most processes occurring
during MAR applications and discusses the influence of various operation and site-specific parameters
on the overall system efficiency. While this is comprehensively discussed in the literature, the added
value of the review is that it provides the reader also with the adequate tools for the quantitative and
qualitative assessment.

The overall objective of the present paper is thus the introduction and evaluation of different
modeling approaches which are used to assess MAR schemes dependent on site-specific conditions and
applied MAR method through a structured review of most commonly used software codes and tools.

2. Analysis of Managed Aquifer Recharge Modeling Case Studies

Overall, 216 studies dealing with flow and transport modeling of MAR from 37 countries were
collected from widely available literature published between 1985 and 2015 (Table S1). The papers
included 188 modeling studies which evaluate field-scale MAR schemes or sites, 10 modeling studies
which evaluate laboratory experiments and 18 assessing theoretical issues. Most studies were carried
out in the USA (45 literature studies), Australia (39), The Netherlands (20) and India (13).
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2.1. Modeled Managed Aquifer Recharge Methods

The majority of modeling studies were performed for well, shaft and borehole recharge (57%)
and spreading methods (29%) (Figure 1). A recently published global MAR inventory shows that these
are also the two most common MAR techniques applied worldwide [15,21]. However, the comparison
of the global MAR inventory with this study reveals that spreading methods are the most common
MAR techniques worldwide whereas most of the modeling studies identified were conducted for well,
shaft and borehole recharge. As this method is technically demanding and there is a high need for
information during the planning of the system, it is often accompanied by modeling. Only a few case
studies are published which deal with modeling of rainwater and runoff harvesting facilities [22,23].
This method is frequently used in rural areas and is not technically demanding. Thus, it is regularly
not accompanied by scientific or monitoring studies (in contrast to harvesting stormwater which is
injected into wells or infiltrated via infiltration ponds) [22]. Models are mostly applied for the MAR
subtypes ASR/ASTR (52%), infiltration ponds and basins (23%) and induced bank filtration (6%).

Water 2016, 8, 579  4 of 30 

 

conducted for well, shaft and borehole recharge. As this method is technically demanding and there 

is  a  high  need  for  information  during  the  planning  of  the  system,  it  is  often  accompanied  by 

modeling. Only a few case studies are published which deal with modeling of rainwater and runoff 

harvesting  facilities  [22,23]. This method  is  frequently used  in  rural  areas  and  is  not  technically 

demanding. Thus, it is regularly not accompanied by scientific or monitoring studies (in contrast to 

harvesting stormwater which is injected into wells or infiltrated via infiltration ponds) [22]. Models 

are mostly applied for the MAR subtypes ASR/ASTR (52%), infiltration ponds and basins (23%) and 

induced bank filtration (6%). 

 

Figure 1. Distribution of modeling  studies  (%)  for  the main MAR  techniques and MAR  subtypes 

used (literature studies may involve multiple MAR techniques). 

2.2. Survey of Applied Models 

Various models are applied to evaluate MAR. For this analysis models were grouped  into five 

categories  namely  groundwater  flow,  unsaturated  flow,  solute  transport,  reactive  transport  and 

watershed or water balance models. Groundwater flow models depict the saturated soil zone and are 

mainly  based  on Darcy’s  law  [24] whereas  unsaturated  flow models mostly  apply  the  Richards’ 

equation [25]. Non‐reactive or solute transport models include solute transport codes where advection, 

dispersion, diffusion, sorption and decay are considered. Reactive transport models are more complex 

and include geochemical and biogeochemical reactions. Watershed or water balance models include 

the surface water and partly apply an integrated water resource management approach. 

One of the earliest applications of modeling for the assessment of MAR dates back to 1985 [26,27]. 

An  increase  in  the number of model applications  is observed  from 1996  to 2000 reflecting amongst 

others the fast development and public availability of computer capacities and the increasing use of 

MAR worldwide [21] (Figure 2). The total number of publications continues to increase till the end of 

the study period (2015), with groundwater flow models being the most frequently applied model type 

during  the entire  investigated period. Since 2006,  the number of publications of groundwater  flow, 

unsaturated flow as well as water balance and watershed models keeps increasing. 

Figure 1. Distribution of modeling studies (%) for the main MAR techniques and MAR subtypes used
(literature studies may involve multiple MAR techniques).

2.2. Survey of Applied Models

Various models are applied to evaluate MAR. For this analysis models were grouped into five
categories namely groundwater flow, unsaturated flow, solute transport, reactive transport and
watershed or water balance models. Groundwater flow models depict the saturated soil zone and
are mainly based on Darcy’s law [24] whereas unsaturated flow models mostly apply the Richards’
equation [25]. Non-reactive or solute transport models include solute transport codes where advection,
dispersion, diffusion, sorption and decay are considered. Reactive transport models are more complex
and include geochemical and biogeochemical reactions. Watershed or water balance models include
the surface water and partly apply an integrated water resource management approach.

One of the earliest applications of modeling for the assessment of MAR dates back to 1985 [26,27].
An increase in the number of model applications is observed from 1996 to 2000 reflecting amongst
others the fast development and public availability of computer capacities and the increasing use of
MAR worldwide [21] (Figure 2). The total number of publications continues to increase till the end of
the study period (2015), with groundwater flow models being the most frequently applied model type
during the entire investigated period. Since 2006, the number of publications of groundwater flow,
unsaturated flow as well as water balance and watershed models keeps increasing.
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In the reviewed literature studies various software tools were applied which model flow and
transport (Table 2). A number of software tools were specifically developed for MAR applications
while others are also used in general hydrogeological studies. Within the first category, the NASRI-BF
Simulator assists in the design and operation of bank filtration sites and allows for a first assessment
of the feasibility and conditions of a proposed site [28]. EL-ASR is an ASR adjusted derivative of the
transport model EASY-LEACHER and able to account for various water quality issues which can arise
during ASR [29]. Five major clogging mechanisms namely physical, biological, chemical clogging as
well as the formation of gas and compaction were implemented into a numerical three-dimensional
finite element code called CLOG [30]. It can assist in the design and operation of a MAR facility
helping to prevent clogging and consequently improving the efficiency of the system [30]. Besides
analytical and numerical models, simple empirical tools were developed particularly for the utilization
as screening tools, e.g., ASRRI and the ASR Performance Index. The software ASRRI (ASR Risk Index)
is a screening tool to predict the potential for contaminant attenuation during ASR and ASTR [31].
The ASR Performance Index evaluates whether lateral flow, density effects and dispersive mixing have
negative effects on the recovery efficiency in saline or brackish aquifers [32].

The majority of models applied are not specifically developed for MAR applications. The most
commonly used groundwater flow model is MODFLOW [33]. Further frequently applied codes
for saturated flow modeling include FEFLOW [34], SEAWAT [35], HST3D [36] and PHAST [37].
Frequently applied unsaturated flow models include MARTHE [38], HYDRUS [39] and MIKE-SHE [40].
For solute transport modeling FEFLOW, MT3DMS [41], SEAWAT and CXTFIT [42] are used repeatedly.
Reactive transport modeling is conducted mainly by using PHREEQC [43], MT3DMS, PHT3D [44] and
EASY-LEACHER [45]. For the category water balance and watershed models only WaterCress [46]
was applied in more than one case study.



Water 2016, 8, 579 6 of 31

Table 2. List of modeling software tools which were applied more than once in literature studies arranged in alphabetical order including the number of applications.
The main MAR methods analyzed and the model types covered by the listed software tools are marked with “x” (note that some software tools can also be feasible for
other MAR methods and might be applicable to further model types).

Software
Number of

Applications

Model Type MAR Method

Saturated
Flow

Unsaturated
Flow

Water Balance/
Watershed

Solute
Transport

Reactive
Transport

Well, Shaft
and Borehole

Recharge

Spreading
Methods

In-Channel
Modifications

Induced
Bank

Filtration

Rainwater
and Runoff
Harvesting

CFEST [47] 2 x x x
COMSOL [48] 2 x x x x x
CXTFIT [42] 6 x x x x

EASY-LEACHER [45] 5 x x x x
Eclipse [49] 3 x x x

FEFLOW [34] 17 x x x x x x
HST3D [36] 3 x x x

HYDRUS [39] 3 x x x
MARTHE [38] 4 x x x x x
MIKE-11 [50] 2 x x x

MIKE-SHE [40] 3 x x x x x
MOCDENS3D [51] 2 x x x
MODFLOW [33] 73 x x x x x

MT3DMS (MT3D) [41] 16 x x x x x
NASRI-BF Simulator [28] 3 x x

PHAST [37] 2 x x x x
PHREEQC [43] 30 x x x x

PHT3D [44] 13 x x x x
SEAWAT [35] 11 x x x x
SUTRA [52] 5 x x x x x
SWIFT [53] 2 x x x

TOUGH2 [54] 2 x x x x x
WaterCress [46] 2 x x x
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2.3. Modeling Objectives

The objectives for conducting a modeling study are manifold and for this paper they were
classified into 13 categories. Literature studies comparing different proposed recharge methods as well
as sites show that flow modeling can help to select a MAR method and evaluate its advantages
and disadvantages at a proposed location [6,55,56]. Modeling is usually performed during the
approval or planning phase of a MAR system to evaluate its feasibility at a suggested site (Feasibility).
Further investigations may assess the optimal design of the system (Design) and whether it will meet
performance objectives prior to the construction of field-scale systems [4,17]. The optimization of MAR
systems (Optimization) which includes assessing optimal infiltration and recovery schedules is another
aspect of MAR planning. Modeling studies are also conducted to quantify the recovery efficiency
(Recovery efficiency) which is the amount of water that can be recovered with desired water quality
and the residence time (Residence time) of infiltrated water. The migration of injected water and the
mixing with natural groundwater are thus calculated to quantify the storage or infiltration capacity of
a MAR site.

Modeling studies focusing on geochemical processes (Geochemical processes) during the MAR
application mainly analyze the quality of recovered water. Metal release and mobilization, nutrient
removal and micropollutant breakthrough are the main issues evaluated. The fate of pathogens,
nutrients and chemicals such as disinfection-by-products during the soil passage are examined.
Another significant aspect is clogging which decreases the infiltration capacity of a MAR scheme
(Clogging). Studies on general assessment of water quality (Water quality) might consider water quality
changes of the injected water, the ambient groundwater or the recovered water. Soil aquifer treatment
specifically focuses on water quality improvements due to the oxidation and microbial degradation of
organic matter during the soil passage through the unsaturated zone (Soil aquifer treatment).

Modeling the impact on groundwater generally depicts the resulting groundwater level changes
and the area of impact when MAR is applied (Groundwater management). In addition, sustainable river
discharge due to economic or environmental restrictions is evaluated (River flows). Risk Assessment
is a method to evaluate possible hazards and associated risks such as pathogen breakthrough which
can arise during MAR (Risk assessment). In coastal areas, modeling is also used to assess the effect of
applying MAR against saltwater intrusion (Saltwater intrusion).

The reasons for model applications cannot be generalized for the individual MAR types. However,
some application trends can be derived from the survey and are more closely discussed in the
Sections 2.3.1–2.3.5. The different MAR methods are described separately as each method poses
diverse requirements on the modeling study and various objectives are pursued.

2.3.1. Well, Shaft and Borehole Recharge

During well, shaft and borehole recharge water is injected either directly into the aquifer or
infiltrated by gravity into the unsaturated soil zone. Various hydrogeological and operational
parameters such as the groundwater gradient, the aquifer heterogeneity and the recharged water
volume influence the success of the system. Thus, injecting water into an aquifer is quite complex and
its general feasibility is often investigated by applying a numerical groundwater flow model [7,57–64]
(Figure 3).

Not only various design scenarios such as well locations and well spacing but also operational
management options such as pumping and injections rates are being tested and optimized with the
help of simulations [7,17,57,63–68]. Water management models are applied to assist in the cost-effective
planning and design of reliable subsurface infiltration systems [7,69]. Scenario analysis incorporating
projections of climate change and effects of urbanization into MAR scheme design was also addressed
by modeling [46].
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Quantifying the resulting groundwater levels and the spreading of injected water in the aquifer
is a task often solved by groundwater flow modeling [7,55,70–74]. In addition, a groundwater
flow model can help to estimate the quantity of water which can be stored underground [71,75–77],
the impact of ASR on nearby production wells [72,78,79] and the impact of ASR on possible land
subsidence [80]. When infiltrating into coastal aquifers the extent of seawater intrusion and the
location of the freshwater-saltwater interface is of special interest and requires the application of
density-dependent groundwater flow models [58,81–83].

Groundwater flow and solute transport models were also widely used to examine the influence
of hydrogeological and operational parameters on the recovery efficiency [4,26,27,84–90] (Figure 3).
Key parameters that have been modeled and that influence the recovery rate are the dispersity of
the aquifer [32,86,88,91] and the aquifer heterogeneity [4,92,93] which can be characterized by high
variations of permeability or the presence of dual-porosity zones. Modeling these parameters may
help to understand the aquifer system and thus adapt the MAR operation scheme. Dual-porosity
flow [4,92–94] and density-driven or buoyancy-induced flow [4,32,83,89,93–99] were incorporated
into models in order to depict those complex processes. A simple screening tool developed
by Ward et al. [32] can help to assess ASR performance in brackish and saline aquifers prior to
numerical modeling.

Geochemical processes represent a major challenge as they influence not only the quality of the
recovered water but also clogging. Their occurrence is caused by the differences in the chemical
composition of injection water and ambient groundwater or water-rock interactions. Therefore, the
modeling objective assessed the most for well, shaft and borehole recharge is geochemical processes
(Figure 3). Reactive transport models are applied to identify the geochemical processes that take
place during well injection and recovery [2,100–105]. Besides complex numerical codes, analytical
transport models like EASY-LEACHER can be used to evaluate geochemical processes during deep
well injection [29,45,106]. Pyrite oxidation is one of the key geochemical reactions identified [107–112]
which often leads to mobilization of trace metals or metalloids [107–115]. Other geochemical reactions
that could be identified by modeling are the dissolution of fluoride minerals [116] and the acidification
in the aquifer [114,115]. Furthermore, scenario simulations were done to test how the dissolution of
metals can be controlled [114].

Not only the dissolution of minerals but also their precipitation has been studied by modeling as
it can affect the performance of an artificial recharge system by causing chemical clogging [117–123].
The numerical code CLOG has been used to assess different aspects of clogging taking into account
the accumulation of suspended solids, bacterial growth, chemical reactions and the generation of gas
and compaction [30,124].

Risk assessment tools were used to evaluate the fate of possible organic contaminant hazards
during ASR [31,125–130]. Incorporation of biogeochemical reactions can help to quantify bacterial
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influence on the local geochemistry [131,132] and show the removal efficiencies of organic contaminants
during successive ASR cycles [133].

About two third of the compiled studies combined several objectives in their modeling study.
An overview about the models used more than once for the specific objectives is given in Table 3. It can
be stated that MODFLOW (33 applications) and PHREEQC (21 applications) are the most commonly
used simulation tools for modeling of well, shaft and borehole recharge.

Table 3. List of models which were applied more than once for the different modeling objectives for
the MAR technique well, shaft and borehole recharge.

Modeling Objective Model Used References

Clogging
PHREEQC [118–120,123,134,135]

PHT3D [103,132,136]
CLOG [30,124]

Design FEFLOW [63,64,121]
MODFLOW [76,77]

Optimization
MODFLOW [7,68,71]
WaterCress [46,137]
FEFLOW [82,138]

Feasibility
MODFLOW [55,57,59,61,65,71,84,139–143]
PHREEQC [2,114,144]
SEAWAT [83,84]

Water quality

PHREEQC [2,7,100,101,110,111,116,134,145]
PHT3D [103,104,107–109,126,132,136,144,146]

EASY-LEACHER (EL-ASR) [29,45,126]
MODFLOW [103,108,132,136]

MT3DMS [103,132,136]

Geochemical processes

PHREEQC [2,7,100,101,110–112,114,116–121,123,134,
135,144,145,147–149]

MODFLOW [103,108,132,136,148,150–152]
PHAST [102,149,153]
PHT3D [103,104,107–109,126,132,136,146]

EASY-LEACHER (EL-ASR) [29,45,126]
MT3DMS [103,132,136,148]

CLOG [30,124]

Groundwater management

MODFLOW [55,60,61,72–78,122,154,155]
FEFLOW [63,64,82,99,138]

HYDRUS 2D [156,157]
SEAWAT [83,98]
SUTRA [81,158]

Recovery efficiency

FEFLOW [32,63,64,95,99,135,159,160]
MODFLOW [57,76–78,84,86,92,155,161]

SEAWAT [4,7,84,96–98]
HST3D [7,89,90]

MT3DMS/MT3D [78,84,86,92,161]
INTERA [26,27]
SUTRA [87,162]
PHAST [102,153]

Saltwater intrusion

FEFLOW [32,63,64,82,91,95,96,99,121,135,138,159]
SEAWAT [4,82–84,92,97,98]
SUTRA [81,87,158,162]
HST3D [7,89,90]

ECLIPSE [66,93]
MODFLOW [57,84,155]

Residence time
PHT3D [104,126,146]

FEFLOW [63,64,96]
MODFLOW [152,155]
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2.3.2. Spreading Methods

In contrast to other MAR methods, spreading methods require large areas of land as well as
certain land use types and geology. Hence, modeling is used to select and evaluate suitable sites
for the application of infiltration ponds and basins and to optimize their design [163–169] (Figure 4).
The planning of recharge basins as well as the evaluation of different management options is done by
modeling [170–174]. Modeling can be used in particular as a supporting tool to design the groundwater
monitoring network for infiltration basins and ponds [171,175–179].
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The impact of the infiltrated water on the groundwater is of interest, especially with regard to the
resulting groundwater levels [71,169,174,180–182]. Flow paths and travel times of the infiltrated
water in basins and ponds and capture zones of the abstraction wells were often estimated by
using groundwater flow models [171,175,180,183–187]. Reactive transport modeling helps to identify
the occurring geochemical processes, e.g., the interaction of the infiltrated water with the ambient
groundwater can be simulated [188,189]. Physical, chemical and biological processes occurring
during the infiltration of treated wastewater into the unsaturated soil zone are of special interest
as further water purification can be achieved through the soil passage [190–195]. The transport
and degradation of organic pollutants like pharmaceuticals or pathogens are studied with transport
models [18,131,168,176,196–198]. Consequently, understanding the biogeochemical reactions which
occur in the unsaturated and saturated zone is necessary for a thorough risk assessment of
complex SAT systems [18]. Modeling can moreover help to predict clogging of surface infiltration
systems [30,199–203].

The groundwater flow model MODFLOW is most commonly applied and used to solve almost
all identified modeling objectives (Table 4). To evaluate and identify geochemical processes and water
quality changes during spreading methods application, PHREEQC, MARTHE, CXTFIT, MT3DMS and
EASY-LEACHER are used.
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Table 4. List of models which were applied more than once for the different modeling objectives for
the MAR technique spreading methods.

Modeling Objective Model Used References

Design MODFLOW [163,204]

Optimization MODFLOW [71,168,174,205,206]
MT3DMS [168,174]

Feasibility
MODFLOW [57,71,163,164,169,182,207]

VS2DI [178,179,208]
FEMWATER [178,179]

Water quality

PHREEQC [188,193,209,210]
MODFLOW [131,177,196–198,211,212]

MARTHE [18,188,193]
MT3DMS [177,197,198]
CXTFIT [202,211,213]
PHT3D [130,196]

MOCDENS3D/MOC3D [18,212]

Geochemical processes

PHREEQC [18,188,189,193,210]
MODFLOW [196,202,212]

MARTHE [18,188,193]
EASY-LEACHER [45,200,214]

PHT3D [191,196]

Groundwater management

MODFLOW [71,142,163,164,169–171,174,180,
182,205,212,215–217]

MOCDENS3D/MOC3D [185,212]
SEAWAT [186,187]
TOUGH2 [181,218]

FEMWATER, VS2DI [178,179]

SAT

PHREEQC [193,209,210]
MODFLOW [177,197,211]

MARTHE [18,193]
MT3DMS [177,197]

Saltwater intrusion MODFLOW [57,170,171,207]

Residence time SEAWAT [186,191]

River flows MODFLOW [142,163]

2.3.3. Induced Bank Filtration

Pumping well induced infiltration from a surface water body is commonly conducted to improve
the surface water quality by an underground passage. Hence, matters of particular interest in the
course of induced bank filtration are to separate flow paths, to determine sources of the bank filtrate
and to quantify the leakage water.

Those issues are mainly evaluated by groundwater flow modeling, especially with the help of
MODFLOW [219–224] (Table 5). Solute transport modeling is also important but applied models are
more diverse, with CTXFIT [42,225], MT3D(MS) [219,220] and PHREEQC [226,227] being the most
commonly applied ones.

The NASRI-BF Simulator, a tool specifically designed for induced bank infiltration, allows a first
rough estimate of the feasibility of bank filtration and to define the optimal position and number of
wells [28,121]. Optimization of well design has been also conducted by Schafer [224].

As the improvement of water quality is the main objective of induced bank filtration, most
modeling studies found focused on transport modeling. Clogging and its evolution during long-term
operation have been modeled and the reduction of hydraulic conductivity was simulated [219,224].
Governing biogeochemical processes and redox conditions have been simulated for conceptual column
studies [227] as well as field studies [226]. Further studies were undertaken to investigate the fate and
transport behavior of contaminants [220,223], organic contaminants [220] as well as pharmaceutics
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and algae toxins [42,202,225] during riverbank filtration. The influence of microbiological activity on
the recovered water quality was also modeled [226]. With the evolution of simulation codes, very
complex chemical interactions can be studied now such as multispecies biochemical reactions [223].
Being able to simulate complex bio- and geochemical reactions holds great potential for understanding
the transport and degradation processes of solutes in the subsurface passage. This will enable MAR
scheme operators to manage their sites in a more sustainable and efficient way as they are able to
determine flow paths, infiltration sources and travel times of the bank filtrate. The identification of
geochemical processes during filtration is especially important as the quality of the abstracted water
defines the need for further treatment.

Table 5. Induced bank filtration modeling studies. The following abbreviations are used for the
covered modeling objectives: Groundwater management (GM), Residence time (RT), Design (D),
Feasibility (F), Recovery efficiency (RE), Water quality (WQ), Geochemical processes (GP), Clogging (C),
Optimization (O).

Country * Publication
Year Model Used Modeling

Objectives Reference

Austria 2006 MODFLOW, MT3D GP, C [219]
Germany 2006 PHREEQC WQ, GP [226]
Germany 2006 MODFLOW-MT3DMS, CXTFIT GP, C [202]
Germany 2002 FEFLOW RT, RE, C [228]
Germany 2014 MODFLOW, MT3DMS WQ [220]
Germany 2006 MODFLOW RT, GM [221]

Kenya 2012 MODFLOW, NASRI Bank Filtration Simulator F, WQ, GM [222]
L. E. 2006 PHREEQC GP [227]
L. E. 2006 CXTFIT WQ, GP [225]
L. E. 2006 CXTFIT GP [42]

Malawi 2012 MODFLOW, NASRI Bank Filtration Simulator F, WQ, GM [222]
T. A. 2008 NASRI Bank Filtration Simulator F, D, O [28]
USA 2006 MODFLOW, PHT3D GP, C [223]
USA 2006 MODFLOW RE [224]

Notes: * L. E. = laboratory experiment, T. A. = theoretical analysis.

2.3.4. In-Channel Modifications

Recharge and check dams are built in a river bed to enhance recharge from streams whereas
subsurface dams are designed to contain the underground flow raising the water table [13]. In general,
the prolongation of the flow length and the residence time achieved by channel spreading increases
the recharge to the groundwater.

Groundwater management is the focus of the retrieved case studies for in-channel modifications
and MODFLOW is the dominating numerical model used [217,229–231] (Table 6). It has been utilized to
test planned recharge structures [230] as well as to adjust existing structures [55] regarding their effect
on artificial recharge rates. Simulating the movement of recharged water through the underground
helped to increase the knowledge about the overall MAR system [231]. Studies testing different
in-channel modification techniques regarding their impact on the groundwater have been conducted
for Japan [56] and India [217,229] and showed the potential of modeling for scenario analyses and
MAR method selection.

Assessment and prevention of seawater intrusion is another issue that has been studied with
the help of modeling [138,158,232]. The two-dimensional variable-density flow and solute transport
model SUTRA was used in this context [158,233] as well as an integrated water resource management
approach using a coupled groundwater and surface water model (FEFLOW and MIKE-11) [138,232].
Optimization of existing MAR facilities under various recharge conditions concerning the reduction
of seawater intrusion has been studied in Australia [158,233], China [138] and India [232]. The latter
study [232] also concerned the assessment and optimization of future structures.
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Table 6. In-channel modifications modeling studies. The following abbreviations are used
for the covered modeling objectives: Groundwater management (GM), seawater intrusion (SI),
Optimization (O), Residence time (RT), Design (D), Feasibility (F), Recovery efficiency (RE).

Country Publication
Year

Specific MAR
Type Model Used Modeling

Objectives References

Australia 2002, 2007 Channel spreading SUTRA GM, SI [158,233]

China 2012 Recharge dam FEFLOW, MIKE-SHE,
SIWA, WBalMo, MIKE-11 GM, SI, O [138]

China 2015 Recharge dam FEFLOW GM [234]

India 2014 Recharge dam FEFLOW, MIKE-11, NAM GM, SI [232]

India 1998 Recharge dam MODFLOW GM [229]

India 2010 Recharge dam MODFLOW GM [217]

India 2006 Recharge dam MODFLOW, analytical
spreadsheet model RE [235]

Italy 2006 Recharge dam MODFLOW RE [55]

Japan 2006 Subsurface dam 2D FEM model D [56]

Namibia 2012 Recharge dam MODFLOW GM [230]

Russia 2006 Channel spreading hydrogeological model RT, GM [236]

Turkey 2012 Subsurface dam SEEP/W (2D) GM, D [237]

USA 2012 Recharge dam MODFLOW GM [231]

Uzbekistan 2010 Channel spreading MODFLOW F [238]

2.3.5. Rainwater and Runoff Harvesting

Rainwater and runoff harvesting is a cost-effective and easy to apply method to artificially
recharge an aquifer. It is widely implemented in rural areas but seldom accompanied by scientific
studies to monitor and manage the structures [22]. Modeling studies using water balance models
and rainfall-runoff models demonstrate that modeling can be valuable to estimate the contribution of
rainwater and runoff harvesting to the local water balance and to evaluate further implementation of
recharge structures in a catchment [22,23] (Table 7).

Table 7. Rainwater and Runoff Harvesting modeling studies. The following abbreviations are used for
the covered modeling objectives: Groundwater management (GM), Optimization (O).

Country Publication
Year

Specific MAR
Type Model Used Modeling

Objectives Reference

India 2011 Trenches water balance model GM [22]
India 2012 Trenches rainfall-runoff model GM, O [23]

3. Discussion

For this survey, 216 studies published over the past 30 years addressing modeling of MAR
have been collected and evaluated. Most modeling studies were conducted in the USA, Australia,
The Netherlands and India. A few countries implemented guidelines that regulate the requirements
for risk assessment of new MAR facilities [19,20,239,240]. The Australian guidelines explicitly advise
the application of groundwater flow, transport and geochemical models on a hazard-specific basis
during the investigation and trial phase of a new MAR facility [19]. The standard guidelines published
by the American Society of Civil Engineering (ASCE) also propose the use of modeling during the
preliminary design or feasibility study [20]. The Mexican regulations for the artificial recharge of
treated wastewater require the application of numerical models for determining physical-chemical
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reactions in the unsaturated and saturated zone and the system impact on wellfields as well as phreatic
levels [240].

Most modeling studies were conducted for well, shaft and borehole recharge and spreading
methods, which are also the most frequently applied methods to recharge an aquifer worldwide.
Planning and establishing a MAR scheme at a proposed location includes studying the often complex
hydrogeology at the site in order to mitigate hazard risks, such as low recovery efficiencies and
clogging that can lead to the failure of the facility. Typical objectives for conducting a modeling study
are therefore to optimize and plan the design and operation of MAR facilities and to quantify their
impact on the groundwater. The achievable recovery efficiency and possible geochemical processes
can be assessed using models to analyze scenarios and minimize the failure risk of a facility. Modeling
is further used to predict possible long-term impacts regarding the geochemical processes, the recovery
efficiency and the impact on the local groundwater. A specific issue often analyzed by modeling
includes the prevention of seawater intrusion through MAR. Modeling studies can reduce laboratory
and field work that is otherwise needed. Comparative studies may help to select a MAR method and
evaluate its advantages and disadvantages at a proposed location. Modeling of different scenarios
may also include: site selection, well-field and monitoring network design and the adjustment of
operational parameters. Furthermore, a sensitivity analysis can assist to identify the most important
hydrogeological and operational parameters influencing the performance of a MAR system. Best-case
and worst-case scenarios can be simulated whose reproduction in field and laboratory experiments can
be difficult. Having said this, modeling provides the distinctive possibility to include future climate
change, water use and management scenarios into the feasibility study.

Depending on the specific objective and data availability, various models are applied. As this
study confirmed, groundwater flow models, which are often combined with solute or reactive transport
models, are most widely used for MAR assessment. Furthermore, the publications on unsaturated
flow, water balance and watershed models keep increasing. Even though some software tools have
been specifically developed for MAR [28–32], mostly non MAR-specific models are being utilized.
The reviewed modeling studies show that commonly known modeling tools are mostly sufficient to
meet the general needs observed for MAR modeling. These include unsaturated and saturated flow
modeling, density-driven modeling and also geochemical modeling. Using well-established tools for
MAR modeling such as MODFLOW and PHREEQC is generally of advantage due to their existing
wide field of past applications and their comprehensive documentation. Developing MAR specific
simulation tools has been driven forwards with regard to processes that are not yet well depicted in
the common simulation tools. As clogging is a major concern during MAR application, focus has been
set on better representation of clogging processes in simulation tools [30]. Other modeling tools have
been developed to aid in the detailed MAR operation design for river bank filtration [28] or ASR [29].
Despite that, sophisticated models which include dual-porosity, account for aquifer heterogeneity or
accurately simulate reactive geochemical reactions are required to predict MAR performance more
reliable at complex sites [4,17,88]. There is a need for holistic model systems integrating not only
groundwater but also the unsaturated zone and surface water in order to represent intricate MAR
systems such as in-channel modifications. Supplementary studies should be conducted to incorporate
biological enhanced reactions into biogeochemical modeling as they occur in complex systems with
treated wastewater or stormwater [18].

However, with rising complexity of applied models additional hydrogeological parameters and
therefore a more detailed characterization of the study site is required. An accurate determination of
site-specific parameters and an uncertainty analysis is important to predict the performance, design
and operation of a MAR system more reliably by modeling [241]. As models are only a simplified
representation of a complex natural system, many sources of error and uncertainty exist. Sources
of uncertainty include the conceptual model, model parameters and uncertainties in observation
data [242]. As a result, setting up a modeling study is not always crowned by success. Although hardly
any failure in MAR modeling is communicated, some general reasons can be inferred from modeling
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studies not dealing with MAR. Insufficient data availability, incorrect interpretation of available data,
wrong conceptualization or oversimplification of a complex system and unsuccessful calibration can
lead to the fact, that a modeling study is not further pursued. Especially model calibration, which
includes sensitivity analysis, can be very demanding. Models with a high number of parameters
often need to be calibrated with the help of inverse modeling and specific tools, such as PEST [243] or
UCODE [244]. These tools not only require a reliable calibration dataset but also thorough knowledge
about the incorporated mechanisms. Thus, calibration is one of the most time-consuming and complex
parts of the modeling approach. Emphasis on this modeling step is, however, of importance as it
defines the quality and reliability of the modeling results. Furthermore, calibration helps to evaluate if
the representation of the system sufficiently meets the study objectives.

Information required for management decisions like the granting of permissions can be derived
from modeling. The California Department of Drinking Water recently published a guideline
comparing different approaches for the determination of underground residence time at MAR sites
using treated wastewater [245]. Numerical groundwater flow modeling was ranked less reliable than
geochemical field approaches such as intrinsic or added tracers [245]. This reflects that it often can
be difficult to create reliable models considering the frequently insufficient knowledge about aquifer
properties and especially preferential flow paths. In addition, the uncertainties inherent in modeling
results and limitations of the model need to be properly communicated so that water managers can
interpret the results correctly.

Overall, MAR is a valuable method for the sustainable management of groundwater and is widely
applied to restore groundwater resources. Modeling is nowadays integrated into MAR feasibility
studies and offers the unique possibility to predict the performance and to decrease the risk of failure
of a facility.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/8/12/579/s1,
Table S1: Database of modeling MAR case studies. List of general and specific MAR type, model type, models
used, specific and general modeling objectives and reference.
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