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Abstract: Desalination is often considered an approach for mitigating water stress. Despite the
abundance of saline water worldwide, additional energy consumption and increased costs present
barriers to widespread deployment of desalination as a municipal water supply. Specific energy
consumption (SEC) is a common measure of the energy use in desalination processes, and depends
on many operational and water quality factors. We completed multiple linear regression and
relative importance statistical analyses of factors affecting SEC using both small-scale meta-data
and municipal-scale empirical data to predict the energy consumption of desalination. Statistically
significant results show water quality and initial year of operations to be significant and important
factors in estimating SEC, explaining over 80% of the variation in SEC. More recent initial year of
operations, lower salinity raw water, and higher salinity product water accurately predict lower
values of SEC. Economic analysis revealed a weak statistical relationship between SEC and cost
of water production. Analysis of associated greenhouse gas (GHG) emissions revealed important
considerations of both electricity source and SEC in estimating the GHG-related sustainability of
desalination. Results of our statistical analyses can aid decision-makers by predicting the SEC of
desalination to a reasonable degree of accuracy with limited data.

Keywords: desalination, greenhouse gas emissions, multiple linear regression, specific energy
consumption, statistical analysis

1. Introduction

Increasing stress on water supplies worldwide, coupled with population growth, has led many
water managers to seek alternative water sources to meet demand. Desalination of seawater or
brackish water is one such alternative water source, but it has important environmental, economic, and
performance tradeoffs [1]. For example, saline sources are abundant and drought-resistant. However,
removing dissolved solids (salts) from saline water requires significantly more energy than is required
for treating conventional surface water or groundwater sources (see [2,3] and the sources cited therein
for representative comparisons). There are other concerns, such as additional cost over conventional
water supplies [4,5] and environmental impacts of concentrated salt and waste chemical disposal [6–8].
Despite these concerns, worldwide desalination capacity continues to rise [9].

While desalination capacity is projected to increase globally [10], energy-water planners
and policymakers lack straightforward decision support tools that can help estimate the energy
requirements of new facilities with minimal site-specific data, for engaging community members in
desalination conversations [11]. Full engineering designs typically include energy requirements as part
of the plant specifications, yet those plans are usually completed late in the planning process. However,
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for many stakeholders, it would be valuable to understand the energy implications of different design
considerations early in the process, before critical siting decisions and design specifications have
been made. Unfortunately, based on personal conversations with policymakers, few such openly
accessible easy-to-use tools exist for estimating energy requirements based on specific operational
parameters. Commercial membrane manufacturers offer desalination process modeling software,
such as ROSA (Reverse Osmosis System Analysis) by Dow [12] and IMSDesign (Integrated Membrane
Solutions Design) by Hydranautics [13], but these software packages require detailed inputs regarding
operations and water chemistry, which can be a knowledge barrier in early stage decision-making.
Furthermore, because the performance depends on a wide range of operational parameters, the actual
energy requirements are a non-obvious result of many factors. This manuscript seeks to fill that
knowledge gap by use of a meta-regression analysis to create a predictive model of desalination’s
energy requirements based on a range of relevant factors with minimal data inputs. It is the intent that
this methodology would be useful for planners and decision-makers with publicly available data.

In the context of increasing desalination capacity and concern over energy consumption,
we surveyed peer-reviewed desalination literature and the DesalData database by Global Water
Intelligence [14] and conducted statistical analyses to determine which operational factors most
influence the specific energy consumption (SEC)—that is, total desalination plant energy consumption
per unit volume of product water, measured in equivalent kWh/m3—of desalination processes.
While published data are limited in terms of scope and specificity, we assembled a database from
various sources to reflect as many factors as plausible that we anticipate influence SEC of desalination
processes. Scientific- and statistically-based results pertaining to SEC and water cost are presented here in
a policy-making context to better aid decision-making regarding future desalination plant installations.

2. Background

Historically, desalination has been confined to areas with scarce water resources and abundant
energy supplies needed to drive the desalting processes, such as the Middle East, or other isolated
island communities. As the risk and reality of water scarcity faced other areas over time, desalination
capacity increased worldwide in locations outside the Middle East as well, including the United States,
Spain, Japan, and many others [9]. Worldwide desalination capacity has reportedly increased to a total
of nearly 87 million cubic meters per day (m3/day) as of 2015 [15].

Two primary technologies drive desalination operations: thermal and membrane processes.
Thermal-based desalination uses energy in the form of heat (or removed heat in the case of freeze
desalination) to separate water from dissolved solids. Common examples of thermal-based desalination
systems include multi-stage flash (MSF), multiple effect distillation (MED), and multi-effect boiling
(MEB) operations. Membrane-based desalination uses electricity to power high-pressure pumps feeding
semi-permeable membranes to filter out dissolved solids. Of the membrane-based desalination
technologies commercially available, reverse osmosis (RO) is the most common with applications
in both seawater reverse osmosis (SWRO) and brackish water reverse osmosis (BWRO). In both thermal-
and membrane-based desalination operations, the end result is a product water stream containing fewer
dissolved solids and a concentrate waste stream containing more dissolved solids. With the development
of membrane technologies, desalination operations gradually shifted from being primarily thermal-based
to more membrane-based, with 56% of the worldwide capacity and 96% of the United States capacity
using membrane technologies by 2006 [9]. Many innovative desalination technologies have emerged
in recent years, including forward osmosis, humidification–dehumidification, membrane distillation,
and others [16,17]; however, RO remains “the benchmark for comparison for any new desalination
technology” [18].

A substantial amount of the shift toward membrane-based desalination has been motivated by
lower energy requirements, as shown by the equivalent SEC in Table 1. Here, we make the distinction
between thermal energy and electrical energy. While both are measured in kilowatt-hours (kWh), the
two quantities are not directly comparable. To generate electrical energy (kWhe) in a typical thermal
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power plant, energy undergoes transformations from chemical to thermal to mechanical to electrical
energy. Since each energy transformation incurs some efficiency loss, the direct comparison of thermal
energy (kWhth) with electrical energy (kWhe) is inappropriate. For this analysis, we have converted
reported thermal energy values to equivalent electrical energy values using the relationship suggested
by Semiat based on an assumed 45% efficiency of a modern power plant [16], such that equivalent
electric kWh/m3 = kWhe/m3 + 0.45 kWhth/m3. Note that this relationship is only appropriate for
thermoelectric power plants. For the remainder of this analysis, we will report SEC in equivalent
electric kWh/m3; note, however, that many peer-reviewed literature sources are vague on the
distinction between thermal energy and electrical energy use.

Table 1. Specific energy consumption, as reported in literature [9,16,17,19–28], varies for different
desalination technologies. Total equivalent specific energy consumption is equal to the sum of
kilowatt-hours (electric) and kilowatt-hours (thermal), converted based on an assumed 45% efficiency
of a modern power station [16]: equivalent electric kWh/m3 = kWhe/m3 + 0.45 kWhth/m3.

Technology
Specific Energy Consumption (kWh/m3)

Electric Thermal Total Electric Equivalent

BWRO 0.5–3 – 0.5–3
SWRO 3–6 – 3–6

ED 1–3.5 – 1–3.5
EDR 1–2 – 1–2
MVC 7–15 – 7–15

FO 0.2–0.5 20–150 10–68
MD 1.5–4 4–40 3–22
MSF 2.5–5 40–120 21–59
MED 2–2.5 30–120 15–57
MEB 2 60 30

Notes: BWRO = brackish water reverse osmosis; SWRO = seawater reverse osmosis; ED = electrodialysis;
EDR = electrodialysis reversal; MVC = mechanical vapor compression; FO = forward osmosis; MD = membrane
distillation; MSF = multi-stage flash; MED = multiple effect distillation; MEB = multi-effect boiling.

As shown in Table 1, reported SEC varies widely in practice across desalination technologies.
For a given desalination technology, SEC can span a broad range due to different operational
and water quality factors. For SWRO, as for many other desalination technologies, the SEC of
commercial systems has decreased over time, dropping from an average of 20 kWh/m3 in 1980 to
1.62 kWh/m3 in 2005 [9]. While advances have been made in decreasing SEC, especially for RO
operations, separating dissolved solids from water requires a minimum amount of energy, which is
process-independent [29] but varies with system recovery [30–32]. The theoretical minimum SEC has
been calculated based on thermodynamic constraints at approximately 1.06 kWh/m3 for desalinating
raw (incoming) water with total dissolved solids (TDS) concentration of 35,000 mg/L at 50% recovery
(defined as the ratio of product water flow to raw water flow) [16,18,33]. As the recovery of a seawater
desalination system approaches zero, the minimum theoretical energy approaches 0.7 kWh/m3 [34].
For BWRO systems, the theoretical minimum specific energy consumption has been calculated at
approximately 0.2 kWh/m3; however, Avlonitis et al. state that a theoretical minimum SEC for BWRO
might not exist due to the lack of dominance of concentration polarization across the membrane that is
present in SWRO systems [35]. Mathematically, the ideal SEC for desalination increases as temperature
increases, yet the opposite is true in actual RO systems as salt and water fluxes increase at higher
temperatures [35], with diffusion through the membranes increasing at an estimated rate of 3% to
5% per ◦C [36] up to varying limits of commercial membranes [37], thereby reducing SEC.
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Many operational and water quality factors can influence SEC for a given desalination
technology [38–40]. For example, RO facilities with larger treatment capacity often observe economies
of scale in terms of SEC due to efficiency gains associated with larger pumps [16]. Similarly, use
of energy recovery technologies can substantially reduce the SEC of membrane-based desalination;
however, the capital costs of such systems can be prohibitively expensive for small-scale SWRO
(<100 m3/day capacity) [41]. In SWRO applications, Pelton turbines (typical energy savings of 35% to
42% compared to a baseline without energy recovery equipment) for energy recovery are generally
applicable for ≤5000 m3/day capacity, while isobaric energy recovery devices (typical energy savings
of 55% to 60%) are suited for >5000 m3/day [42]. Approaches to reduce SEC include use of high
permeability membranes [43], use of energy recovery devices, intermediate chemical demineralization,
use of renewable energy, and optimal process configuration [44]. With advanced materials, increased
water-solute selectivity has become more important than additional increases in water permeability,
since increasing permeability negligibly decreases SEC [45–47]. Since reported energy consumption
typically represents 19% to 44% of the cost of desalination [16,23,25,48–50], understanding which
factors most significantly affect the SEC of desalination processes becomes important for the future
environmental and social sustainability of desalination as an alternative water source.

3. Methodology

To determine the significance level of factors affecting SEC for desalination processes, we completed
multiple linear regression analyses of SEC and cost as a function of various factors. The general form of
the model is shown in Equation (1):

y = β0 + β1x1 + β2x2 + β3x3 + . . . + βnxn + ε (1)

where y represents the dependent variable (in this case, SEC or cost), each xi (for i = 1 . . . n) is
an independent explanatory variable, and each βi (for i = 0 . . . n) is a best-fit coefficient such that the
error term ε is minimized. The use of multiple linear regression statistical techniques assumes certain
characteristics about the model and the data on which it is based. In particular, statistical hypothesis
testing is recommended to examine significance of individual coefficients, overall model significance,
equality of two or more coefficients, satisfaction of restrictions for regression coefficients, stability of
the model over time, and the functional form of the model [51].

We used the open-source statistical program R to create our multiple linear regression models.
Based on the hypothesis tests for multiple linear regression given in Gujarati [51], we critically
examined our model results to check for each of the following criteria:

1. Significance of individual coefficients
2. Overall model significance
3. No (or little) multicollinearity
4. No (or little) heteroscedasticity
5. No (or little) autocorrelation.

The presence of multicollinearity, often quantified with a variance inflation factor, indicates a linear
relationship between two or more explanatory variables xi, which are assumed to be independent.
For example, the product water flow rate, qpw, and the raw water flow rate, qrw, are related to each
other via the recovery, R, as the ratio between the two explanatory variables. Consequently, some
multicollinearity is expected between qrw and qpw. Some suggest, however, that since “sometimes
we have no choice over the data we have available for empirical analysis,” a certain degree of
multicollinearity is not detrimental to a regression model if the model’s objective is predictive
only [51]. Heteroscedasticity and autocorrelation are indications of non-constant variance and serial
correlation (trending) among the model residual values (i.e., the difference between observed and
predicted values), respectively. Significant heteroscedasticity and autocorrelation would indicate
an inappropriate statistical model formulation (e.g., linear model versus non-linear model).
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We completed the statistical analyses of SEC and cost using two distinct datasets: (1) data collected
from published literature representing small-scale (product water flow: 0.7 to 220 m3/day) desalination
systems; and (2) data reported in the DesalData database representing municipal-scale (product water
flow: 2500 to 368,000 m3/day) systems. The small-scale database contained SEC data of desalination
processes reported in peer-reviewed literature published since 2000 [16,19–22,27,35,36,41,42,52–61],
including information for the raw water flow rate qrw (m3/day), product water flow rate qpw (m3/day),
recovery R (unitless), year YR, raw water TDS crw (mg/L), product water TDS cpw (mg/L), operating
(feed) pressure P (bar), energy recovery ER (binary variable, unitless), and temperature T (◦C).
These desalination factors, summarized in Table 2, represented the explanatory variables in our
multiple linear regression model for small-scale desalination facilities, referred to here as the small-scale
model. Recovery was included as “inverse recovery” in the models as 1

1−R since SEC is proportional
to this value [40,47]. The use of energy recovery systems was included as a binary variable with 0
indicating no energy recovery technology and 1 indicating the use of at least one energy recovery device,
since the amount of energy savings is not often reported and different energy recovery technologies
save similar percentages of operational energy [42]. For literature data where no raw water TDS
values were reported, we assumed values of 35,000 mg/L for seawater and 10,000 mg/L for brackish
water. Note that while many literature sources include some data on SEC of thermal desalination
processes, our database (n = 45) included only RO membrane-based technologies due to the statistical
requirement for complete datasets when employing multiple linear regression techniques.

Table 2. Different desalination factors, with ranges in observed values as noted, were used as
explanatory variables in the small-scale and municipal-scale models of specific energy consumption.

Factor Units Small-Scale Model Municipal-Scale Model

Year of initial operations N/A 2003–2015 1988–2012
Raw water TDS mg/L 1000–40,000 400–52,000
Product water TDS mg/L 6–1632 10–500
Raw water flow rate m3/day 2.04–600 –
Product water flow rate m3/day 0.696–220.4 –
Recovery N/A 0.04–0.81 –
Pressure bar 4–71 –
Energy recovery * N/A 0, 1 –
Temperature ◦C 18–35 –

Note: * Binary variable.

The municipal-scale database contained SEC data of desalination processes reported in the
DesalData database from Global Water Intelligence [14], reflecting actual operations at desalination
facilities worldwide. Although the DesalData database is extensive in its reporting with information
on over 18,000 facilities, several parameters are either not requested by Global Water Intelligence or not
reported by the desalination plants, with 74 facilities reporting SEC. Consequently, our municipal-scale
database (n = 36) contained SEC data including year YR, raw water TDS crw (mg/L), and product
water TDS cpw (mg/L) only, to maintain complete datasets.

Based on literature, energy consumption is a non-negligible determinant of the cost of desalinated
water, representing as much as 44% of costs [16,23,48–50]. To quantify the statistical significance of
SEC related to desalination economics, we completed an economic statistical analysis considering
both product water cost ppw ($/m3) and engineering-procurement-construction (EPC) price pEPC ($)
based on data from the DesalData database. As a small data sample (n = 16 for ppw; n = 28 for pEPC),
these cost data give a limited yet robust view of desalinated water economics.
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To complement the multiple linear regression models of the small-scale and municipal-scale
databases, we performed relative importance analyses of the coefficient estimates based on the
technique presented by Tomidandel and LeBreton [62]. Relative importance analysis partitions the
variance explained by a multiple linear regression model among the predictors (i.e., βi’s) such that
the relative importance weights of the coefficients sum to the model’s R2 value. Since “standardized
regression weights do not appropriately partition variance when predictors are correlated,” relative
importance analysis is one approach to coping with multicollinearity challenges [62]. We completed
the relative importance analyses of factors in our small-scale and municipal-scale databases using
a customized version of R code available from Tomidandel and LeBreton [63].

Because desalination is an energy-intensive process, its operation often causes the emission of
greenhouse gases (GHGs). These GHG emissions associated with electricity consumption vary in time
and space, as different electricity grids rely on different fuels with different associated GHG emissions.
To quantify the GHG emissions from SEC at modeled desalination operations, we used empirical
SEC and GHG data for U.S. desalination facilities to geographically represent the air emissions from
major desalination plants. The resulting GHG analysis represents a first-order quantification of GHG
emissions from electricity consumption for desalination; higher order impacts, such as GHG emissions
associated with chemical consumption, infrastructure materials, or other operations, are excluded in
this estimate.

4. Results

The results of our multiple linear regression and relative importance statistical analyses are
presented here, first for the small-scale and municipal-scale desalination models of SEC, followed by
economic analysis of product water cost and EPC price.

4.1. Small-Scale Desalination Operations Model

Using literature data on small-scale (0.7 m3/day ≤ qpw ≤ 220 m3/day; n = 45) desalination
operations, we created a multiple linear regression model of SEC as a function of eight independent
variables: raw water flow, product water flow, inverse recovery, raw water TDS, product water TDS,
pressure, energy recovery equipment, and temperature. A summary of the results of our multiple
linear regression model for small-scale desalination operations is shown in Table 3 and illustrated in
Figure 1. Three values in our small-scale dataset were determined to be outliers based on Rosner’s
outlier test [64] and were subsequently excluded from the analysis.

Using the five previously mentioned statistical criteria to evaluate the multiple linear regression
model, we can state the following:

1. Significance of individual coefficients
At a significance level (i.e., Pr(>|t|)) of 0.05 as is commonly accepted in statistical analysis, all of
the individual coefficients of the small-scale model are considered statistically significant since
Pr(>|t|) ≤ 0.05. Since we are making a hypothesis test regarding significance for each coefficient,
the value of Pr(>|t|) is essentially the probability of observing the estimated value by chance.
A lower value of Pr(>|t|) indicates a more statistically significant estimate.

2. Overall model significance
Again using the significance level of 0.05, the small-scale model is highly significant with a p-value
of 1.1 × 10−12. Additionally, the multiple R2 value of 0.85 indicates that approximately 85% of the
variation in SEC can be explained by the multiple linear regression model, making the coefficient
estimates a good model fit in predicting SEC.

3. Limited multicollinearity
Based on rules of thumb [51], multicollinearity is said to exist when the variance inflation factor
(VIF) for a given explanatory variable is greater than 10. In our small-scale model of desalination
operations, some strong multicollinearity exists with the explanatory variables for raw water
flow rate, product water flow rate, raw water TDS, and pressure, as given in the Appendix A,
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Table A1. For this predictive analysis, we have not attempted to correct for multicollinearity
due to data limitations and, rather, have taken the “do nothing” approach suggested by some
statisticians [51].

4. Limited heteroscedasticity
The residual plots of each of the explanatory variables in our small-scale model, shown in the
Appendix A, Figure A1, show some unequal variance across the sample size, indicated by the
vertical spread of the residual data. With limited data reported in literature, we proceeded with
the heteroscedasticity present in the small-scale model.

5. No (or little) autocorrelation
In the residual plots shown in the Appendix A, Figure A1, no observable trend is present for each
of the variables in our model of desalination factors, indicating no autocorrelation.

Table 3. Multiple linear regression results for the small-scale model of desalination operations (n = 45)
revealed a reasonable model fit with highly significant coefficients. Values have been rounded to two
significant figures.

Factor Variable Coefficient Estimate Standard Error t-Value Pr(>|t|)
Constant β0 7.7 1.2 6.2 3.8 × 10−7

Raw water flow (m3/day) qrw β1 3.9 × 10−2 5.3 × 10−3 7.3 1.4 × 10−8

Product water flow (m3/day) qpw β2 −8.6 × 10−2 1.5 × 10−2 −5.9 9.7 × 10−7

Inverse recovery 1
1−R β3 1.7 0.21 8.0 1.5 × 10−9

Raw water TDS (mg/L) crw β4 6.2 × 10−4 9.6 × 10 −5 6.4 2.0 × 10−7

Product water TDS (mg/L) cpw β5 4.2 × 10−3 1.7 × 10−3 2.5 1.7 × 10−2

Pressure (bar) P β6 −0.34 6.0 × 10−2 −5.7 2.0 × 10−6

Energy recovery equipment ER β7 −5.4 0.72 −7.6 5.9 × 10−9

Temperature (◦C) T β8 −0.20 4.5 × 10−2 −4.5 6.5 × 10−5

multiple R2 = 0.85; adjusted R2 = 0.82; F-statistic = 26 (p-value = 1.1 × 10−12)

With many explanatory variables in the small-scale model, we applied relative importance
analysis (from Tonidandel and LeBreton [62]) to estimate the relative weight, or the amount of variance
in SEC that is explained, for each variable. The relative weights sum to the R2 value. These results are
summarized in Table 4. When considering statistical significance along with relative weight, water
quality parameters (crw and cpw), pressure, and use of energy recovery equipment emerge as the
most important variables in predicting SEC. Although the remaining four factors in the small-scale
model each explain some amount of the variation in SEC, as observed by the relative weights in
Table 4, a majority of the modeled SEC is explained by water quality, pressure, and energy recovery
equipment alone.

Table 4. Relative importance analysis results for the small-scale model of desalination operations
(n = 45) revealed a strong dependence on water quality, pressure, and use of energy recovery equipment.
Values have been rounded to two significant figures.

Factor Variable Relative Weight

Raw water flow (m3/day) qrw 0.067 *
Product water flow (m3/day) qpw 0.072 *
Inverse recovery 1

1−R 0.071 *
Raw water TDS (mg/L) crw 0.15 *
Product water TDS (mg/L) cpw 0.19 *
Pressure (bar) P 0.12 *
Energy recovery equipment ER 0.15 *
Temperature (◦C) T 0.034

Note: * relative weight is statistically significant.
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Based on the multiple linear regression evaluation criteria and relative importance analysis,
our model of small-scale desalination operations is a good statistical fit of the data with predictive
capabilities, depending heavily on water quality, pressure, and use of energy recovery equipment.
Figure 1 illustrates the observed data as it aligns with the predicted SEC using our multiple linear
regression model. While the model overestimates some observed values and underestimates others,
the overall model fit is reasonable and appropriate for future use regarding SEC for small-scale
(0.7 m3/day ≤ qpw ≤ 220 m3/day) membrane-based desalination processes.
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Small-Scale Model (product flow: 0.7 to 220 m3/day); n = 45

Figure 1. Our model for small-scale desalination operations predicts energy consumption consistent
with observed energy consumption.

4.2. Municipal-Scale Desalination Operations Model

The DesalData database from Global Water Intelligence [14] is an extensive repository of data
from current and proposed desalination facilities worldwide. Reported data include facility location,
technology, suppliers, source water, operational characteristics, and other data. Using operational
data from DesalData for municipal-scale (2500 m3/day ≤ qpw ≤ 368,000 m3/day; n = 36) desalination
operations, we created a multiple linear regression model of SEC as a function of the three most
complete explanatory variables available in the DesalData database: initial year of operations, raw
water TDS, and product water TDS. Two values in our municipal-scale dataset were excluded from the
analysis since they reported values below the minimum theoretical energy consumption. A summary
of the results of our multiple linear regression model for municipal-scale desalination operations is
shown in Table 5 and illustrated in Figure 2. Using the five previously mentioned statistical criteria to
evaluate the multiple linear regression model, we can state the following:

1. Significance of individual coefficients
At a significance level of 0.05, all of the individual coefficients, including the constant, are
considered statistically significant in the municipal-scale model, as shown in Table 5.

2. Overall model significance
Again using the significance level of 0.05, the municipal-scale model is significant with a p-value of
5.5 × 10−14. In addition to the model’s significance, the multiple R2 value of 0.86 indicates that
approximately 86% of the variation in SEC can be explained by the variables in the multiple linear
regression model, making the coefficient estimates a strong model fit in predicting SEC.
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3. No (or little) multicollinearity
In our municipal-scale model, no multicollinearity exists in the explanatory variables, as shown by
the VIFs less than 10 in the Appendix A, Table A2.

4. No (or little) heteroscedasticity
The residual plots of each of the explanatory variables in our municipal-scale model, shown in the
Appendix A, Figure A2, show minor heteroscedasticity with relatively constant variance across
the dataset.

5. No (or little) autocorrelation
In the residual plots shown in the Appendix A, Figure A2, negligible, if any, observable trends are
present for the variables in our municipal-scale model.

Table 5. Multiple linear regression results for the municipal-scale model of desalination operations
(n = 36) revealed a reasonable model fit with highly significant coefficients. Values have been rounded
to two significant figures.

Factor Variable Coefficient Estimate Standard Error t-Value Pr(>|t|)
Constant β0 260 35 7.5 1.4 × 10−8

Year of initial operations YR β1 −0.13 1.7 × 10−2 −7.5 1.5 × 10−8

Raw water TDS (mg/L) crw β2 8.3 × 10−5 8.4 × 10−6 9.8 3.5 × 10−11

Product water TDS (mg/L) cpw β3 −2.4 × 10−3 7.1 × 10−4 −3.4 2.0 × 10−3

multiple R2 = 0.86; adjusted R2 = 0.85; F-statistic = 68 (p-value = 5.5 × 10−14)
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Municipal-Scale Model (product flow: 2500 to 368,000 m3/day); n = 36

Figure 2. Our model for municipal-scale desalination operations predicts energy consumption
consistent with observed energy consumption.

Unlike the small-scale model, our municipal-scale model depends on only three explanatory
variables. We performed a relative importance analysis for the municipal-scale model to estimate
the distribution of importance between these three variables, as shown in Table 6. Of the three
explanatory variables in the municipal-scale model, the relative weights of all of the factors were
found to be significant. Two factors—year of initial operations, YR, and raw water TDS, crw—together
explain over 80% of the variation in SEC in the municipal-scale model. Product water TDS, cpw, has
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lower relative importance since most large-scale desalination facilities treat product water to potable
standards, leading to less variation in empirical values.

Table 6. Relative importance analysis results for the municipal-scale model of desalination operations
(n = 36) revealed a significant contribution from year, raw water TDS, and product water TDS.
Values have been rounded to two significant figures.

Factor Variable Relative Weight

Year of initial operations YR 0.32 *
Raw water TDS (mg/L) crw 0.49 *

Product water TDS (mg/L) cpw 0.050 *

Note: * relative weight is statistically significant.

Like the small-scale model, the municipal-scale multiple linear regression model is a good
statistical fit of SEC data based on a small number of explanatory variables. The observed versus
predicted SEC values, shown in Figure 2, indicate strong performance of the municipal-scale model
over the relatively large range in product water flow rates (2500 to 368,000 m3/day) based on three
factors: year of initial operations, raw water TDS, and product water TDS. Of these factors, year and raw
water TDS were found to have the largest relative contribution based on relative importance analysis.
More recent years of operations reflect technological advances and increasing energy efficiency in
operations, such that modern desalination facilities are associated with lower SEC.

4.3. Economic Analysis

High capital investment costs and increasing cost of water are often cited as critical barriers to
expanding the use of desalination as an alternative water supply [4,5]. To evaluate these assertions with
municipal-scale data, we performed a multiple linear regression analysis of economic factors for cost of
product water (ppw) and EPC price (pEPC) using the DesalData database [14]. Only limited data were
available for performing multiple linear regression analysis of ppw (n = 16) and pEPC (n = 28) due
to the statistical requirement for complete data observations. The multiple linear regression models
of ppw and pEPC with the best model fit (in terms of multiple R2 and adjusted R2) were found to be
statistically poor, as shown in the Appendix A, Tables A3 and A4. The model of product water cost,
ppw, as a function of SEC, year of initial operations, raw water flow, and product water TDS, was
an insignificant model with multiple and adjusted R2 values of 0.41 and 0.20, respectively. Similarly,
the model of EPC price, pEPC, as a function of SEC, raw water flow, and product water TDS, was
a significant model but exhibited only moderate performance with multiple and adjusted R2 values
of 0.46 and 0.39, respectively. Model goodness-of-fit measures (e.g., R2) did not improve when we
repeated the multiple linear regression analysis using different combinations of the explanatory variables.

Based on the Pearson’s correlation coefficients (ρ, ranging from −1 to 1 with 0 representing no
correlation) reported in the Appendix A, Table A5, only a slight linear relationship exists between SEC
and product water cost with a Pearson’s ρ of 0.20. Conversely, we observed approximately zero linear
correlation between SEC and EPC price with a Pearson’s ρ of −0.041. Based on these results, which are
notably limited due to lack of available data, we found limited statistically significant relationships
between SEC and economic factors of product water cost and EPC price.

The lack of a strong statistical relationship between SEC and EPC price in our economic
analysis reflects the factors considered in other capital cost estimating tools for SWRO. For example,
the DesalData capital expense estimating tool predicts costs as a function of raw water flow, raw water
TDS, water temperature, and other qualitative or binary variables for pretreatment, intake and outfall
locations, second pass, remineralization, permitting, and country of operations [65]. In addition to
these cost factors, others include labor and maintenance costs and financing expenses as significant
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considerations [23,50]. Energy consumption is typically a significant factor in operations, but is not
necessarily a direct factor in capital equipment cost.

5. Policy and Sustainability Implications

High electricity requirements for RO operations often translate into high associated GHG
emissions. Since many U.S. electricity and GHG policy decisions are state-based, we quantified
the GHG emissions (as carbon dioxide equivalent, CO2e) associated with selected desalination facilities
nationwide, as shown in Figure 3. Since different locations utilize a different mix of electricity fuels
(with different associated GHG emissions), electricity consumption and GHG emissions produced
in one facility are not necessarily reflective of another site. For example, electricity generated in
California produces fewer GHG emissions on average than electricity generated in Texas. Consequently,
SWRO operations in California (with higher SEC) have lower associated GHG emissions per unit of
desalinated water than BWRO operations in Texas (with lower SEC).

Specific Energy 
ConsumptionScale:

Electricity Generation (by fuel):

kWh/m30.68

Coal Natural Gas Nuclear Hydro Renewables Other

0 250 500125
km±

Original analysis by Stillwell and Webber (2016), based on state-level data from the U.S. Environmental Protection Agency, Energy 
Information Administration, and DesalData.com. mtCO2e = metric ton carbon dioxide equivalent.

Chandler
Desalination Facility

Chandler, AZ
9,090 m3/day

6,200 mtCO2e/year

Kay Bailey Hutchinson
Desalination Facility

El Paso, TX
106,000 m3/day

36,000 mtCO2e/year

Layne Christensen
Desalination Pilot

Phoenix, AZ
200 m3/day

21 mtCO2e/year

Tampa Bay
Desalination Facility

Tampa Bay, FL
109,000 m3/day

56,000 mtCO2e/year

Geneva Water
Treatment Facility

Geneva, IL
30,000 m3/day

6,100 mtCO2e/year

Barstow
Desalination Facility

Barstow, CA
600 m3/day

210 mtCO2e/year

Huntington Beach
Desalination Facility
Huntington Beach, CA

189,000 m3/day
53,000 mtCO2e/year

Oceanside
Desalination Facility

Oceanside, CA
15,000 m3/day

5,100 mtCO2e/year

Figure 3. Greenhouse gas emissions associated with electricity consumption for desalination vary
with location in selected U.S. desalination facilities. Larger circles correspond to higher specific
energy consumption.

In response to severe and on-going drought, cities in California have renewed interest in
seawater desalination as a water source; however, energy requirements, environmental impacts,
and costs continue to be cited as criticisms. Some view desalination as a risky option when plants are
constructed before strong demand exists, yet others view desalination plant construction as a long-term
infrastructure investment [66]. Based on our statistical analysis of SEC and associated GHG emissions,
desalination in California might lead to fewer GHG emissions than similarly sized operations elsewhere
due to the lower CO2e emissions from California-generated electricity.

The GHG emissions associated with water-related energy reveal the importance of drought
management and water conservation as an approach to reducing CO2e emissions under various
state and federal emission policies. Using our municipal-scale multiple linear regression model,
we estimated SEC for the recently-opened Carlsbad Desalination Project in southern California to
be SECCarlsbad = 3.5 ± 0.23 kWh/m3, with the statistical uncertainty estimate successfully predicting
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the reported (likely conservative) SEC value of 3.6 kWh/m3 [67]. Based on the model by Stokes and
Horvath [68] of electricity and associated GHG emissions for water in southern California, replacing
the current imported water supply in southern California with desalinated water from the Carlsbad
facility would increase electricity consumption by a factor of 2.1. Consequently, a target reduction
in municipal water use of over 53% is necessary to avoid increasing GHG emissions in response to
substituting desalination for the baseline water supplies in southern California. This target reduction
percentage might notably decrease over time given the observed trend of increasing cost (both in
terms of economics and energy) of marginal water withdrawal and decreasing cost of desalination
and reuse [50]. Integrating desalination operations with renewable electricity generation [1,69–71] is
another option to increase the sustainability of desalination.

6. Model Limitations

The small-scale and municipal-scale models demonstrate strong statistical goodness-of-fit
measures (e.g., R2, model F-statistic) for predicting SEC in RO desalination; however, these models are
empirical and depend on the underlying data. As such, the trends are reflective of the data range under
consideration. Caution should be exercised in extrapolating SEC results. SEC has generally decreased
over time [9], but the theoretical minimum of 1.06 kWh/m3 (for crw = 35,000 mg/L and R = 0.50)
constrains the lower bounds [16,18,33]. Actual RO operations are not reversible thermodynamic
processes such that SEC is larger than the theoretical minimum [18]. Extrapolating input data, such as
initial year of operations or raw water TDS, outside the bound of the empirical data, shown in Table 2,
can lead to misleading and incorrect values of SEC.

Although we have compiled a thorough database with information on many desalination factors
affecting SEC for both small- and municipal-scale operations, our database is not exhaustive of all the
factors that affect energy use in desalination processes. Comparing the small-scale and municipal-scale
models, fewer explanatory variables are necessary to predict SEC at the municipal-scale; however,
a limited number of variables can miss important factors in a modeling and prediction effort.
In particular, very little data were available regarding management of concentrate waste streams,
which can affect overall facility sustainability and energy consumption. For inland RO facilities,
management and disposal of concentrated dissolved solids and waste chemical streams can be
a significant factor influencing overall energy consumption and desalination cost since inland facilities
have limited disposal options, including evaporation ponds, zero liquid discharge systems, or deep well
injection. Notably some of these disposal options might be socially, politically, or legally unacceptable.
Coastal RO facilities typically discharge concentrate waste to a saline surface water body (ocean, bay,
or gulf), which has lower associated energy consumption and cost but can still affect overall operations
and sustainability.

Other technologies, such as integrating related systems, can also affect energy consumption and
cost of desalination operations. For example, co-locating desalination facilities with thermoelectric
power plants can be mutually beneficial for both operations by sharing common raw water intake
structures, blending of concentrate discharge to reduce adverse environmental impacts, and utilization
of elevated temperature raw water to reduce SEC at the desalination facility [72]. Emerging technologies
for concentrate management have increased overall product water recovery while generating a solid
“waste” gypsum product that can be a marketable by-product when desalination facilities integrate or
cooperate with other manufacturers. Such approaches to desalination operations affect the overall SEC
and cost, but these technologies and integrated systems are beyond the scope of our statistical analyses.

7. Conclusions

Using meta-data and empirical data of desalination processes compiled from peer-reviewed
literature and the DesalData database, we completed multiple linear regression statistical analyses
to determine which operational factors affect specific energy consumption in desalination processes.
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Based on the statistical evaluation of our models, we show that the best statistical fit for predicting
SEC in small-scale (0.7 m3/day ≤ qpw ≤ 220 m3/day) RO processes is given as follows:

SEC = 7.7+ 3.9× 10−2qrw − 8.6× 10−2qpw + 1.7
1−R + 6.2× 10−4crw

+ 4.2× 10−3cpw − 0.34P− 5.4ER− 0.20T

where SEC represents the estimated specific energy consumption (kWh/m3), qrw is raw water flow
rate (m3/day), qpw is product water flow rate (m3/day), R is recovery, crw is raw water TDS (mg/L),
cpw is product water TDS (mg/L), P is pressure (bar), ER represents the use of energy recovery
systems (a binary variable), and T is temperature (◦C). Each of the coefficient estimates was shown
to be statistically significant, such that the model is a useful predictive tool in approximating SEC
for small-scale RO membrane-based desalination processes. Our model suggests that use of energy
recovery equipment, and increasing pressure, temperature, and product water flow rate each decrease
SEC overall. Water quality (crw and cpw), pressure, and use of energy recovery equipment were the
most important factors in explaining the variation in SEC, based on relative importance analysis.

In municipal-scale (2500 m3/day ≤ qpw ≤ 368,000 m3/day) RO operations, our best statistical fit
model for predicting SEC is given as follows:

SEC = 260− 0.13YR + 8.3× 10−5crw − 2.4× 10−3cpw

where YR is the initial year of operations. Like the small-scale model, each of the coefficient estimates
was shown to be statistically significant. Using the municipal-scale model in a predictive capacity,
we estimated the SEC for the Carlsbad Desalination Project within quantified uncertainty.

Our model of the factors affecting product water cost and EPC price showed only limited
statistically significant relationships with SEC. Consequently, we deduce that other factors absent
from the municipal-scale dataset likely have statistically significant influence over product water
cost and EPC price, such as concentrate management and disposal or other site-specific information.
Future research work could quantify these other factors affecting cost to determine the statistical
significance and magnitude of influence on desalinated water cost.

As populations grow and areas continue to experience water stress, desalination might become
increasingly attractive as an alternative water supply. Understanding the operational factors that affect
SEC and the associated GHG emissions can be useful in a policy-making context to evaluate proposed
desalination facilities in terms of environmental and social sustainability. While our multiple linear
regression statistical models are based solely on small-scale meta-data and municipal-scale empirical
data, the predictive capacity of our models and relative magnitudes and significance of coefficient
estimates can prove a useful initial step for estimating SEC for other RO membrane-based desalination
processes. This initial modeling step can motivate future in-depth membrane design models and
studies as desalination projects move forward.
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Appendix A. Statistical Model Details

Appendix A.1. Variance Inflation Factors

Variance inflation factors to check for multicollinearity (when VIF >10) are given for each
explanatory variable in our multiple linear regression models in Table A1 through Table A2.
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Table A1. Variance inflation factors (VIF) for variables considered in the small-scale multiple linear
regression model show some strong multicollinearity where VIF >10. Values have been rounded to
two significant figures.

Factor Variable Variance Inflation Factor

Raw water flow (m3/day) qrw 26
Product water flow (m3/day) qpw 20
Inverse recovery 1

1−R 2.0
Raw water TDS (mg/L) crw 86
Product water TDS (mg/L) cpw 3.5
Pressure (bar) P 83
Energy recovery equipment ER 3.3
Temperature (◦C) T 1.7

Table A2. Variance inflation factors (VIF) for variables considered in the municipal-scale multiple
linear regression model show no multicollinearity where VIF >10. Values have been rounded to two
significant figures.

Factor Variable Variance Inflation Factor

Year of initial operations YR 1.5
Raw water TDS (mg/L) crw 1.2
Product water TDS (mg/L) cpw 1.6

Appendix A.2. Residual Plots

Residual plots to check for heteroscedasticity and autocorrelation are given for each variable in
our multiple linear regression models in Figure A1 through Figure A2. Heteroscedasticity appears as
unequal variance (spread) of the residual values. Autocorrelation appears as a general trend among
residual values.
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Figure A1. Residual plots for the small-scale desalination multiple linear regression model show some
heteroscedasticity, but little trending as autocorrelation.
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Figure A2. Residual plots for the municipal-scale multiple linear regression model show minor
heteroscedasticity and negligible trending indicating autocorrelation.

Appendix A.3. Economic Analysis

The statistical analysis of economic factors revealed a poor to moderate fit for the models of cost
of product water (ppw) and EPC price (pEPC), as shown in Table A3 through Table A4. The Pearson’s
correlation coefficients, shown in Table A5, similarly indicate little to moderate correlation between
individual desalination operations and economic factors. Each of these desalination operational factors
explains a small amount of the variation in ppw and pEPC, respectively, such that more information is
necessary to accurately predict costs.

Table A3. Multiple linear regression results for the municipal-scale model of cost of product water
(n = 16) revealed a poor model fit with no significant coefficients. Values have been rounded to two
significant figures.

Factor Variable Coefficient Estimate Standard Error t-Value Pr(>|t|)

Constant β0 200 100 −2.0 0.076
SEC SEC β1 0.21 0.14 1.5 0.15

Year of initial operations YR β2 0.10 0.051 2.0 0.074
Raw water flow (m3/day) qrw β3 −3.2 × 10−6 1.7 × 10−6 −1.9 0.086

Product water TDS (mg/L) cpw β4 −1.2 × 10−3 8.9 × 10−4 −1.3 0.22

multiple R2 = 0.41; adjusted R2 = 0.20; F-statistic = 1.9 (p-value = 0.17)

Table A4. Multiple linear regression results for the municipal-scale model of EPC cost (n = 28) revealed
a moderate model fit with significant coefficients. Values have been rounded to two significant figures.

Factor Variable Coefficient Estimate Standard Error t-Value Pr(>|t|)

Constant β0 4.6 × 107 1.1 × 108 0.43 0.67
SEC SEC β1 4.8 × 107 2.1 × 107 2.3 0.030

Raw water flow (m3/day) qrw β3 1.1 × 103 3.8 × 102 2.9 0.0070
Product water TDS (mg/L) cpw β4 −6.9 × 105 2.0 × 105 −3.4 0.0023

multiple R2 = 0.46; adjusted R2 = 0.39; F-statistic = 6.8 (p-value = 0.0017)
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Table A5. Pertinent Pearson’s correlation coefficients (ρ) for different municipal-scale desalination
factors and economic considerations of cost of product water, ppw, and EPC price, pEPC, reveal little to
moderate correlation between factors. Values have been rounded to two significant figures.

Correlation ppw pEPC

SEC 0.20 −0.041
crw 0.24 0.061
cpw −0.38 −0.47
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